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Masked states of an atom coupled to a standing-wave cavity mode
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The form of the eigenstates of an atom coupled to a cavity mode displaying a three-dimensional periodic
profile are obtained. It is shown that the quantized motion leads to degenerate states where the atomic degrees of
freedom are masked, that is, upon detection of one component of this composite system the others remain in an
entangled state. When the system is extended to include drive and dissipation it is found to undergo a dissipative
quantum phase transition at a critical drive amplitude. Unlike other phase transitions reported in the literature, the
degeneracy prepares the system in a superposition of incompatible states upon detection of the electromagnetic
field. Probing the field hints at an order above the transition point that, due to state masking, allows for atomic
coherence to survive at long times.
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I. INTRODUCTION

The first experimental evidence of the discrete quantum
nature of the electromagnetic field represents one of the
crowning achievements of cavity quantum electrodynamics
and provides a beautiful demonstration of measurements at
the quantum level [1]. The demonstration relied on the coher-
ent interaction between the microwave photons stored inside a
superconducting cavity and a traversing atom. This interaction
allowed for the atom to act as a probe—a secondary system
coupled to the state of the field—that acquired information as
correlations built up. Since the cavity minimizes the coupling
to the surrounding environment, detection of the atomic state
at different interaction times was used to infer the photon
number distribution of the field. Given the extraordinary con-
trol acquired over quantum systems, it has become possible
to exploit other correlations between light and matter to test
fundamental principles [2–5]. For example, the correlations
that rise between the dynamical variables of light and matter
when a structured beam is shinned upon an atomic cloud
have been used to detect the orbital angular momentum of
the photon [6] and those that rise between internal and ex-
ternal degrees of freedom of a tightly trapped ion to probe
abrupt changes in the spatial distribution of a structured field
[7–9].

Recently, this control has been extended to driven-
dissipative settings where the interaction between light and
matter is tailored through external fields [10–12]. As a result,
these quantum open systems can be used to access a regime
where dissipation and coherence compete to realize novel
quantum states [13–19]. These states can still be probed
from the information leaked to the environment following
the same principles as above. Take the breakdown of photon
blockade as an example [13,14]. It considers an extension
of the two-state atom coupled to a cavity-mode where the
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mode is now driven by an external coherent field. The system
displays two different behaviors depending on the strength
of the driving field amplitude. For weak driving fields, the
absorption of one photon shifts the system out of resonance
with the drive, leading to a maximum of a single photon
inside the cavity and therefore photon antibunching in the
cavity output channel. After the driving field is ramped up
past a limiting value, however, the cavity mode populates and
output photon statistics display coherence. The phase of the
output photons is associated to one of two possible atomic
polarizations and its measurement allows for the state of the
atom to be inferred [20]. Similar behavior is encountered
in the case of atomic self-organization when the interaction
between the external degrees of freedom and a standing-
wave cavity mode is considered [15,17,18,21]. The abrupt
changes in behavior found in both cases can be studied in
analogy to quantum phase transitions in thermal equilibrium
where the system undergoes an order-disorder transition, an
analogy that can be traced back to the early days of the laser
[22–24].

This paper concerns the correlations between a single
atom coupled to a single mode of a standing-wave cavity. It
is built around the multipartite entanglement that correlates
photon number, atomic momentum, and electronic state. The
effect of this entanglement in the context of quantum phase
transitions is rarely discussed in the existing literature. Usual
models are based on physical considerations from which one
degree of freedom can be parametrized and then focus on
the correlations between the remaining two, whether it is the
effect of the atomic position as an effective coupling strength
[14,25], the cavity field mediating the interaction between
internal and external atomic degrees of freedom [26,27], or
the internal field creating a bridge for the field to connect
center-of-mass states [11,21,28]. When the three components
are accounted for, new conserved operators emerge and the
model Hamiltonian displays degeneracies. In particular, when
each degree of freedom can be found in one of two states
(states |↑a〉 and |↓a〉 for a = 1, 2, 3 degrees of freedom) the
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combined ground state is of the form (Sec. II)

|�〉 = |↑1,↑2,↑3〉 + |↑1,↓2,↓3〉 + |↓1,↑2,↓3〉 + |↓1,↓2,↑3〉
2

.

It can be thought of as if any two degrees of freedom conspire
to create an effective state for the remaining degree to probe.
The atomic degrees of freedom mask one another so the field
cannot be used to determine their individual states.

Atomic state masking translates to the driven dissipative
scenario where a lossy standing-wave cavity is driven by an
external coherent drive. Here, the system undergoes a phase
transition above a critical driving field amplitude like the
breakdown of photon blockade or self-organization (Sec. IV).
Ordering, however, does not assure a formation of regular
patterns in the traditional sense due to masking. The order
now defines a subspace for coherent dynamics to unfold since
detection of output photons leaves the system in an entangled
state. The system reaches order above the critical drive, but
lack of information accessible to the probing field allows for
quantum correlations between atomic degrees of freedom to
survive.

The structure of the paper is as follows. In Sec. II the
model Hamiltonian is presented in a way that draws attention
towards the correlations that follow the exchange of excitation
and momentum. Building upon previous results by Ren and
Carmichael [29,30] these correlations are shown to cause
degeneracies that obscure the information available to an
external observer probing any single degree of freedom. To
explore the impact of this result, a particular observer is
introduced in Sec. III when the effect of a surrounding en-
vironment is considered. This observer has access to photons
that leak through the cavity walls and is able to control the
photon input through an external coherent drive. The resulting
system is shown to display two competing behaviors as the
parameter space is explored. This result is supported by both
a mean-field study and a numerical evolution accounting
for quantum correlations in Secs. IV and V, respectively.
The mean-field results predict ordered solutions, but, being
dynamically unstable throughout the parameter space, they
appear to be unreachable. It is until quantum correlations are
taken into account using a master equation evolution that order
is encountered. The results point towards the importance of
quantum correlations in this composite quantum system and,
unlike traditional results, how extra degrees of freedom can
lead to coherence. A summary of the work and conclusions is
given in Sec. VI.

II. TWO-STATE ATOM INSIDE A CAVITY

In this work I consider the case of a two-state system of
mass M and momentum p̂ interacting with a single cavity
mode. When the conditions for dipolar coupling and rotating-
wave approximations are met [31–33], their evolution is
described by the Hamiltonian

Ĥ = p̂2

2M
+ h̄ωcâ†â + h̄ωaσ̂+σ̂− + d · E(x)(âσ̂+ + â†σ̂−),

(1)

with â and â† photon annihilation and creation operators for
the cavity mode, σ̂+ and σ̂− raising and lowering operators for
the two-state system that satisfy the commutation relations

[σ̂+, σ̂−] = σ̂3, [σ̂±, σ̂3] = ∓2σ̂±,

and parameters ωa, ωc to represent the resonance frequency
of the two-level transition and field mode frequency. The first
three terms of Eq. (1) describe the free evolution of the cavity
mode and two-state system while the last term describes
their coupling. This coupling depends on the atomic position
through the local field amplitude E(x) projected along the
electric dipole axis d. And, as such, it allows for the atom to
probe the spatial profile of the mode. Throughout this section
the coupling is considered to be

d · E(x) = h̄� sin(k1x1) sin(k2x2) cos(k3x3), (2)

as found in the idealized scenario of a polarized atom coupled
to a standing-wave cavity in three dimensions.

The standing-wave cavity provides a useful setting where
the correlations among internal and external degrees of free-
dom can be studied. Its normal modes are characterized by
a wave vector k with km components along the xm directions
(m = 1, 2, 3) and their periodic profile gives way to physical
interpretation through simple algebraic manipulation. The
analysis that follows, however, is readily extended to different
cavity geometries, e.g., cylindrical cavities used in early maser
experiments [34,35], open-ended parabolic cavities [36,37], or
even rectangular cavities where one wall is removed to allow
for external manipulation of the atomic state [11]. With the
model Hamiltonian (1) describing the elementary process of
absorption and emission of photons by the two-state system
as it transitions among excited |e〉 and ground |g〉 states,
the spatial structure simply determines the rate at which
this process occurs. The rate is maximized when the spatial
distributions of the external states |φ(e)〉 and |φ(g)〉 match that
of the field. This condition is fulfilled for an otherwise free
atom since the external states follow the symmetries imposed
by the surrounding cavity mode and, to some extent, mimic
its spatial profile. In other words, the dynamical variables of
the field become candidates to describe the atomic center of
mass. For the standing-wave cavity this means that external
states can be expanded as a linear combination of plane waves
that are both eigenstates of the momentum operator,

p̂m|qm + lmkm〉 = h̄(qm + lmkm)|qm + lmkm〉, (3)

and reflect the periodicity of the cavity mode with lm =
0,±1,±2, . . . and quasimomentum qm ∈ [−km/2, km/2).

The previous description merely sets a natural basis for
the unbound states of atom and cavity mode. Entanglement
enters the picture through the exchange of excitations and
momenta. Conservation of excitations, on the one hand, cause
the eigenstates of Eq. (1) to take the form

|�〉 = |φ(e)〉|e, n − 1〉 + |φ(g)〉|g, n〉, (4)
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for a cavity containing n = 1, 2, . . . photons, thus organiz-
ing the dynamic into Jaynes-Cummings-like doublets plus
a single unpaired ground state |φo〉|g, 0〉. Conservation of
momentum, on the other hand, is represented by the operators
[30,38]

Ôm = exp

(
iπ p̂m

h̄km

)
σ̂3, (5)

and causes the eigenstates to organize into parity chains
that connect inner and external states along each momentum
component:

· · · ↔ |0, e, n − 1〉 ↔ |km, g, n〉 ↔ |2km, e, n − 1〉
↔ · · · (ηm = +1), (6)

· · · ↔ |0, g, n〉 ↔ |km, e, n − 1〉 ↔ |2km, g, n〉
↔ · · · (ηm = −1). (7)

Here, ηm = ±1 correspond to the eigenvalues of Ôm and the
quasimomentum qm has been removed from the notation since
it remains constant. From Eqs. (6) and (7) the exchange of
interactions that correlate photon number and electronic state
are seen to be accompanied by an exchange of momentum
that correlates electronic states and center-of-mass motion.
The dynamics then follow standard Rabi oscillations with
a caveat: with each absorption or emission of a photon the
center-of-mass spreads over the momentum ladder in steps
of |h̄km|. The possibility to move up and down the ladder
is attributed to the structure of the cavity mode itself. Being
formed by a superposition of counterpropagating waves, the
mode presents the atom with two paths to follow at each half
Rabi cycle (for each component ±km). The ambiguity created
by this choice of path is reflected in the eigenstates of Ĥ
which, unlike excitations, are restricted to manifolds of given
parity rather than given total momentum (cavity mode plus
atom).

There is an apparent similarity between the parity chains
and the eigenstates of the Rabi Hamiltonian [39,40]. The
similarity arrives from the inclusion of both rotating and
counter-rotating terms in the Rabi model that play the role
of the standing wave in the current model. It is then expected
for the eigenstates of the Rabi Hamiltonian and those of the
Ôm operators to share the same structure. The former is found
inside a photon-number ladder and the latter by an equivalent
momentum one. The main difference between the two models
resides in the length of the steps of each ladder. While the
free-mode energy spectrum displays a harmonic structure the
kinetic energy is anharmonic, meaning that the momentum
states can be Doppler shifted out of resonance. This shift
can be neglected for light-matter systems displaying small
recoil energies, allowing for external degrees of freedom to
be used to simulate effects originally conceived for inner
degrees. The similarity also allows for results obtained under
the Jaynes-Cummings and Rabi models to be exploited for the
current one. For example, if instead of a standing-wave cavity,
a waveguide with defined traveling mode was considered, then
the eigenstates of the Hamiltonian (1) would be restricted
to manifolds of total momentum P̂ = h̄kmσ̂3 + p̂m. In this
case knowledge of one component defines unequivocally the

others and the system can be probed by measuring internal or
external degrees of freedom.

In the remainder of this work I consider the cavity mode to
be tuned in exact resonance with the atomic transition, ωa =
ωc. The parity chains become degenerate under this condition
and the model Hamiltonian is diagonalized by the upper (+)
and lower (−) dressed states

|±, n〉 = |e, n − 1〉 ± |g, n〉√
2

.

Equation (1) takes the form

Ĥ = p̂2

2M
+ h̄ωan̂

+
∑

n

√
nd · E(x)[|+, n〉〈+, n| − |−, n〉〈−, n|], (8)

where the center-of-mass motion is conditioned on the in-
ternal state. The atom remains sensitive to the phase and
amplitude of the field, but the dressed states provide effective
potentials for the dynamics to unfold. Entanglement between
internal and external degrees of freedom develops from these
two possible paths.

A. Dynamics: Which-path information

As a prelude to state masking presented in the follow-
ing subsection consider the evolution of a two-state system
prepared with a spread in momentum that is significantly
smaller than the photon momentum (	pm 
 h̄km). A two-
state system prepared this way is equipped with a resolution
that allows it to probe the spatial profile of the field. This setup
has been exploited in matter wave diffraction experiments
where, traditionally, the superposition of two counterprop-
agating lasers create a grating for traversing atoms to be
diffracted on [41–43]. The same dynamics follow when the
field is quantum in nature. Here the internal states and cavity
mode correlate to create two possible gratings determined by
upper and lower branches in Eq. (8). As the atom traverses the
cavity the composite system evolves into the state [30]

|ψ (t )〉 � eiωDt (c(+)|ψ (+)(t )〉 + c(−)|ψ (−)(t )〉), (9)

where the Doppler shift is approximated by a central value ωD

leading to an overall phase (valid for small recoil frequencies
and short times) and the conditional states are

|ψ (±)(t )〉 = exp

[
± i

√
nt

h̄
d · E(x)

]
|φ(t0),±, n〉. (10)

The conditional states differ by a relative phase that causes
the atomic motion to carry information of the mode photon
number n in addition to that of its spatial profile. In a similar
fashion, by considering more spatial dimensions, each degree
of freedom correlates with others, adding to the information
embedded into each degree of freedom and allowing for
momentum components to probe one another. This is better
shown by writing the dipole potential (2) in the form

d · E(x) = −h̄�

4

∑
j, j′=0,1

(−1) j

× cos[k1x1 + (−1) jk2x2 + (−1) j′k3x3], (11)
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displaying four terms that share the same structure but differ
in phase. Each term corresponds to a particular combination
of momentum components. For example, when one wall of
the cavity is removed the two-dimensional coupling

d · E(x)
∣∣
2D = h̄� cos k1x1 sin k2x2 (12)

can be written as

2 cos k1x1 sin k2x2 = sin[k1x1 − k2x2] − sin[k1x1 + k2x2].
(13)

These two terms act upon the correlated ( p̂1 + p̂2) and anti-
correlated ( p̂1 − p̂2) momentum components. The operators
commute with each other and form a complete basis in
two dimensions, which can then be used to diagonalize the
Hamiltonian in the same way as the dressed states above.

For each additional dimension the atomic state is pre-
sented with more paths—or gratings—to follow. The outgoing
state reflects these correlations and can be obtained by using
Eqs. (10) and (12) and the Jacobi-Anger expansion

exp[i�t cos kx] =
∑

m

imJm(�t )eimkx, (14)

where Jm is the Bessel function of order m [44]. When the four
terms of Eq. (11) are taken into account this leads to a product
of Bessel functions and exponentials that determine the spread
in momentum distribution. Take the case of a one-dimensional
potential where the conditioned states are

|ψ (±)(t )〉 =
∑
n,m

Jm(
√

n�t )(±eikx )m|φ(t0),±, n〉. (15)

The relative phase causes a drift between the center-of-mass
states in momentum space that allows them to be distin-
guished with better resolution as time advances. With less and
less overlap among the conditional external states a suppres-
sion of interference follows. A first mark of this distinction
is found in the Rabi oscillations of an atom initially prepared
in the excited state with low momentum (l � 0) traversing an
empty cavity. The Rabi oscillations dampen due to the loss of
coherence as the overlap between conditional states decreases.
For one dimension the damping is given by

〈φ(+)(t )|φ(−)(t )〉∣∣1D =
∑

m

(−1)m|Jm(�t )|2, (16)

while for two dimensions this rate increases to

〈φ(+)(t )|φ(−)(t )〉|2D=
∑

m1,m2

(−1)m1+m2

∣∣∣∣Jm1

(
�t

2

)
Jm2

(
�t

2

)∣∣∣∣
2

.

(17)

As the dimension of the Hilbert space increases so does the
number of possible paths the atom can explore leading to a
higher damping rate. In Fig. 1(a) the damped Rabi oscillations
are presented for the one- and two-dimensional potentials for
comparison. The atom is originally prepared in the excited
state with a defined momentum (lm = 0) inside an empty
cavity.

The loss of coherence has an impact on the atomic system
that goes beyond the damping of the Rabi oscillations. As
described above, at each half-Rabi cycle the atom exchanges

an excitation with the mode that is accompanied by a dis-
placement in each momentum component. The displacement
occurs in two directions (±km) with equal probability am-
plitudes and leaves the atomic momentum in a superposition
state. After many cycles have passed these choices cause the
momentum distribution to have traced a quantum random
walk [45–47]. This is displayed in Fig. 1(b), where the distri-
bution is presented for a one-dimensional cavity [d · E(x) =
h̄� cos kx] at a time t = 80 �−1, long before the Doppler
shift becomes comparable to �. The two-peaked distribution
is characteristic of the quantum random walk as explored
theoretically for optical [48,49] and cold atom systems [50].
The situation is richer when more spatial dimensions are
considered. Figures 1(c) and 1(d) display the two-dimensional
case, where the random walk is performed over the correlated
and anticorrelated momentum components in accordance with
Eq. (12). When the average over one momentum component
is taken, the two-peaked distribution gives way to a single-
peaked one Gaussian distribution. This distribution is charac-
teristic of the classical random walk.

B. Masked states

The damping of Rabi oscillations and coherences that gave
rise to the quantum random walk provide two paradigmatic
examples of decoherence. Information acquired by a probe
can destroy quantum coherences and veil effects that we have
come to associate with the quantum. In the approach taken
above, the probe consisted of one momentum component that
correlated to internal and external degrees of freedom of the
system following a standard which-path scenario. Different
sets of paths were introduced systematically from the pairing
between system components, e.g., two-state energy and pho-
ton number [see Eq. (8)] or momentum correlations [Eq. (11)].
Since the system was monitored the distinguishability of the
paths was the main source of decoherence: each pair of paths
differed from one another through a relative phase, a binary
parameter that could take the values zero or π . For couplings
of the form

h̄� sin(k1x1) sin(k2x2) cos(k3x3)(âσ̂+ + â†σ̂−),

these phases can cancel out and a degeneracy of the Hamil-
tonian is expected. This degeneracy obscures the information
that can be obtained by probing any one component as shown
in the following.

I now shift the attention from the system dynamics to the
lowest nontrivial eigenstate of the system, but remain in a
regime where the coupling strength dominates over the recoil
frequency. In this regime an atom inside a standing-wave
cavity tends to localize such that fluctuations in position are
minimized. This localization occurs around the minima of the
effective potential, a region that is conditioned to the internal
state. In one dimension and for a system found along the
upper dressed-state branch the atom localizes around kx =
2nπ (denoted by a state |x↑〉) and when found along the lower
branch it localizes around kx = (2n + 1)π (state |x↓〉). The
lowest-energy state is composed of a superposition of these
two degenerate states

|φ1D〉 = eiϕ |+, 1〉|x↑〉 + e−iϕ |−, 1〉|x↓〉√
2

. (18)
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FIG. 1. Quantum Rabi oscillation signal and momentum distribution for ωr = 10−4�. (a) Probability Pe of finding the atom in the excited
state as a function of time for one (up) and two dimensions (down). (b)–(d) Probability distribution |c(e)

lm
|2 of finding the atom in an excited

state with momentum components lmkm at time �t = 80 for one (b) and two dimensions (c),(d). Only states of momentum lmkm with even lm

are found.

Equation (18) establishes that, for conditions of strong lo-
calization in one dimension, knowledge of the external state
determines the internal state and vice versa. The two state
components are strongly entangled and, as such, are good
probes for one another. This is exemplified in Fig. 2, where
the conditioned external states are plotted in the position
representation for the same set of parameters as in Fig. 1. The
states do not overlap for this choice of parameters. The phase
ϕ carries information regarding the population of the system
on each parity branch and is set by the initial conditions.

The situation changes when more dimensions are taken
into account since the region of localization is also condi-
tioned to the correlations in momentum. For two dimensions
the lowest-energy state becomes

|φ2D〉 = |+, 1〉[ei(ϕ1+ϕ2 )|x1↑, x2↑〉 + e−i(ϕ1+ϕ2 )|x1↓, x2↓〉]
2

+ |−, 1〉[ei(ϕ1−ϕ2 )|x1↑, x2↓〉 + e−i(ϕ1−ϕ2 )|x1↓, x2↑〉]
2

,

(19)

as expected from the potential (13). The eigenstates describe a
checkerboard pattern with alternating regions of localization.

The existence of only two regions is caused by the dichotomy
introduced by each degree of freedom and has deeper conse-
quences: since each state can only accommodate one of two

0 2 4 6
0

10

20

30

kx

|φ(
x
)|2

FIG. 2. Lowest-energy center-of-mass states conditioned to two
effective potentials due to the internal states for ωr = 10−4� and n =
1. Black (gray) curves indicate upper (lower) dressed states. The gray
curve is displaced vertically by five for clarity.
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values its detection conditions the remaining components to
a superposition. For example, by projecting the state over the
upper branch

〈+, 1|φ2D〉 = ei(ϕ1+ϕ2 )|x1↑, x2↑〉 + e−i(ϕ1+ϕ2 )|x1↓, x2↓〉√
2

, (20)

the external degrees remains entangled. The same behavior
is found by detecting any one component. For more than
one dimension, detection of a single atomic component does
not define the state of the other components unequivocally
and instead leaves them in an entangled state. The atomic
components mask one another so they cannot be determined
unambiguously.

III. QUANTUM OPEN SYSTEM: DRIVEN-DISSIPATIVE
QUANTUM PHASE TRANSITION

The importance of this superposition becomes apparent
when the system is coupled to an external environment that
is continuously probing the field. If the system is primarily
coupled to the environment through one component, e.g.,
photons that leak through a partial transmitting cavity wall,
state masking allows for entanglement to remain for long
times in this dissipative setting. In the following the model
is extended to include dissipation in the form of photons
leaving the cavity at a rate κ , the cavity linewidth. An open
system configuration also presents advantages as the system
can be manipulated externally and the information regarding
the state of the system can be obtained in real time by
detecting the outgoing photons. In order to explore the effects
of atomic state masking an external coherent field is also
considered. This external field is used to drive the cavity out
of the trivial ground state and allow for a steady state that
displays a nonzero photon number. With the inclusion of drive
and dissipation, the master equation for the system density
operator is

ρ̇ = 1

ih̄
[Ĥ + ĤD, ρ] + κ (2âρâ† − ρâ†â − â†âρ), (21)

where Ĥ is given in Eq. (8) and ĤD accounts for a coherent
field of amplitude ε and frequency ωc acting over the cavity
mode

ĤD = h̄ε(eiωct â + e−iωct â†). (22)

The driving field presents the system with another appeal-
ing feature as it introduces a competition between coupling
strength and coherent field amplitude. When the former dom-
inates, states that minimize fluctuations in photon number are
expected, but as the latter dominates the states acquire a pre-
ferred phase to minimize their energy cost. This competition
is known to cause a system described by Eq. (21) to undergo
a phase transition when only internal degrees of freedom are
considered. These transitions occur at a critical driving field
amplitude [13,14]

εcrit = 1
2�, (23)

and are reflected on the lowest quasienergy steady state. The
lowest quasienergy state displays zero photon-number expec-
tation below the critical drive amplitude and a growing value
above it [13]. Such response by the cavity mode is a symptom

of ordering on the underlying system. While below a critical
amplitude the atom radiates to cancel the incoming field,
above the critical amplitude atom and cavity field organize
to radiate in one of two possible configurations ruled by the
dressed-state branches [20]. The configurations correspond to
a system driven up one of the two dressed-state branches.
Such ordering is monitored by detecting the cavity output
channel [14].

It is in this driving process where the center of mass affects
the known dynamics. The ordered phase is accompanied by
a potential that localizes the center of mass, creating multiple
paths for the state to be driven up that are not just dependent
on the dressed-state branches. Since the expectation values
of cavity-mode operators are not able to distinguish between
the paths this leads to degenerate subspaces where coherence
survives for long times. Adopting the language of Sec. II B,
when atomic components mask one another the field scattered
from |+, x↑〉 must be equal to that from |−, x↓〉 under Eq. (21).
The first question to ask is whether the existence of these
two degenerate and incompatible states prevent the system
from reaching an ordered phase. In Sec. V this question is
answered in the negative before conditions for the underlying
coherences to appear are presented.

Restricted momentum space

To study ordering of the open system it is sufficient to
restrict ourselves to one spatial dimension. This is possible
since the system is being monitored by the photon field, so
the pairing between the electronic state and one momentum
component is enough to mask the atomic state. Such restric-
tion is not possible using the closed-system examples above
where photon number and two-state energy exhibit perfect
correlation and two external degrees were needed: one to
mask the internal state and another to probe the system.

It is also convenient to restrict the momentum space to
three values only, k = 0,±km [17], since we are interested
in monitoring the phases of the system. The kinetic energy
within this restricted space is

1

2M
p̂2

m = h̄ωr

2
(|km〉〈km| − |0〉〈0|), (24)

taking one of two values separated by the atomic recoil fre-
quency. The operator |km〉〈km| projects over the unit momen-
tum subspace, expanding along positive and negative values.
The zero and one momentum states are coupled through the
dipole coupling strength

2� cos kmxm = �(|km〉〈0| + |0〉〈km|). (25)

The external dynamics can then be described by the two-state
operators:

Ĵ3 = |km〉〈km| − |0〉〈0|, (26)

Ĵ+ = Ĵ †
− = |km〉〈0|. (27)

The interaction Hamiltonian in this restricted space takes the
form

Ĥ = h̄ωr

2
Ĵ3 + h̄ωc(â†â + σ̂+σ̂−)

+ h̄�

2
(Ĵ+ + Ĵ−)(âσ̂+ + â†σ̂−) (28)
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and exhibits both Jaynes-Cummings and Rabi interactions.
The former is between internal states and free cavity field
and the latter is between center-of-mass states interacting with
the dressed field. By restricting the momentum space to three
levels, a geometrical view of the dynamics is made possible.
When the coupling strength dominates, the eigenstates of Ĥ
display strong correlations among momentum components
that can be interpreted as localized states. These external
states point towards the equator of the Bloch sphere with a
phase determined by the operator

Ĵ1 = Ĵ+ + Ĵ−, (29)

contrasting the case where recoil energy dominates and the
states point towards the poles of the Bloch sphere. Finally,
notice that parity chains are now organized by the conserved
operator

Ô = σ̂3Ĵ3. (30)

IV. MEAN-FIELD APPROXIMATION:
INCOMPATIBLE SOLUTIONS

A first hint towards ordering of the system is found in the
steady-state solutions of the mean-field equations. Mean-field
equations are obtained from expectations in the Heisenberg
equations of motion under the assumption that expectations
of operator products factorize. For a system evolving under
Eq. (21) the internal dynamical variables, field amplitude α ≡
〈â〉, atomic polarization β ≡ 2〈σ̂−〉, and population ζ ≡ 〈σ̂3〉,
satisfy

dα

dt
= −κα − i

1

4
�Xkβ − iε, (31)

dβ

dt
= i�Xkαζ , (32)

dζ

dt
= −i

1

2
�Xk (αβ∗ − α∗β ), (33)

in a frame oscillating with the cavity frequency ωc. In turn,
the external variables, localization Xk = 〈Ĵ+ + Ĵ−〉, Yk =
i〈Ĵ+ − Ĵ−〉, and momentum difference Zk = 〈Ĵ3〉, satisfy

dXk

dt
= ωrYk, (34)

dYk

dt
= −ωrXk + 1

2
�Zk (αβ∗ + α∗β ), (35)

dZk

dt
= −1

2
�Yk (αβ∗ + α∗β ). (36)

Working from Eq. (32) two steady-state solutions are read-
ily found: (i) a trivial solution where cavity and atom remain
decoupled since the center of mass is delocalized (Xk = 0);
(ii) a nontrivial solution where vanishing population (ζ = 0)
gives way to a unit polarization

β = eiϕ (37)

through the conserved quantity |β|2 + ζ 2 = 1. A third solu-
tion where an empty cavity (α = 0) is caused by the destruc-
tive interference of radiated and driving fields is inhibited for
free atoms with finite mass (nonzero recoil energy).

The nontrivial solution appears to encompass this third be-
havior as it describes a cavity driven by the radiated field of a

polarized atom interfering with the external field. By inserting
Eq. (37) into Eq. (31) under the steady-state condition, the
field quadratures

αR = 1

2

εcrit

κ
Xk sin ϕ, (38)

αI = −1

2

εcrit

κ
Xk cos ϕ − ε

κ
(39)

are found with 2εcrit = � as defined above. The superposition
of driving and radiated field creates a potential that can
localize the atom. The localization is obtained from Eq. (33)
and Eqs. (37)–(39), to give

Xk = 2ε

εcrit
cos ϕ, (40)

where the phase of the dipole ϕ is given by solutions of the
transcendental equation

cos4 ϕ −
(

ωrκ

2ε2
+ ε2

crit

ε2
+ 1

)
cos2 ϕ + ε2

crit

ε2
= 0. (41)

This is obtained from Eqs. (34) and (40) using the con-
servation law X 2

k + Y 2
k + Z2

k = 1. It is worth comparing this
solution to those where only inner degrees are considered
(limit of infinite mass). In that case Xk is a constant and the
phase of the dipole is locked to that of the field thus lowering
the order of the transcendental equation [see Eq. (42) on
Ref. [51]].

In Fig. 3 the steady-state quadratures of the cavity field are
plotted. A linear stability analysis has been used to distinguish
between locally stable solutions (plotted here in solid red
lines) and unstable ones (dashed blue lines). For this region
of the parameter space only the trivial solution is found
to be locally stable. With the atom and cavity decoupled
under this solution, the cavity field corresponds to that of a
driven Lorentzian cavity. Its amplitude grows linearly with the
driving field amplitude and its phase is locked to that of the
drive. This response is to be compared with the nontrivial one.
Nontrivial solutions describe two competing behaviors: nearly
vanishing cavity field below a limiting drive amplitude and a
growing field above it. As the drive amplitude increases past
a limiting value the dressed atom cannot radiate a field that is
strong enough to cancel the incoming field and spontaneously
acquires one of two phases. It is this dressed-state polarization
that marks the inherent order of the solution [20].

A system evolving under the mean-field equations (31)–
(36) cannot reach the ordered state since the nontrivial so-
lution remains unstable throughout. This is attributed to a
cavity field that probes an atomic state where the polariza-
tion is masked by two possible and incompatible regions of
localization, i.e., for the same field value the atom displays
two solutions: one where it is localized at the minima and
one where it is localized at the maxima of the potential.
This is due to its phase satisfying a quartic equation and the
dependence of the dipole coupling on a product of internal and
external atomic degrees of freedom. These macroscopically
incompatible states cause the nontrivial solutions to remain
unstable and prevent the system from reaching an ordered
phase regardless of the driving field amplitude.
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FIG. 3. Steady-state field quadratures obtained from mean-field Eqs. (31)–(36) for ωr = 0.25κ , � = 20κ . Red solid (blue dashed) lines
correspond to stable (unstable) states as found from a linear stability analysis. Field quadratures are scaled by �/κ .

V. QUANTUM CORRELATIONS: ORDERING OF
THE MASKED SYSTEM

The cavity-field quadratures in Fig. 3 are rescaled by �/κ

and the driving field amplitude by εcrit. With the photon-
number expectation being bounded by the ratio between in-
coming and outgoing photon flux ε2/κ2 and the value required
to activate the nonlinearity �2/κ2, the scaling allows us to set
up a thermodynamic limit, a limit of high excitation number
where fluctuations can be neglected [13]. The limit is reached
when ε,� → ∞ keeping the ratio ε/� constant. Disorder is
seen to remain close to this limit and suggests that, if order
is to be found, a description that accounts for the quantum
correlations between atomic degrees of freedom has to be
considered. To describe the correlations and degeneracies of
the system, it is possible to evolve the density matrix under
the master equation (21) until it reaches a steady state. The
results presented in the following are obtained by performing
this evolution numerically [52].

A. Phase-space representation

The Wigner distributions of the field in the steady state are
displayed in Fig. 4. The distributions are obtained from two
different drive amplitudes (above and below a limiting drive
amplitude ε = �/4) chosen from mean-field solutions and the
driven Jaynes-Cummings model results as a guide [55]. Frame
(a) is reserved for the case of ε = �/16, below the limiting
field amplitude, where disorder is to be expected. The steady
state is characterized by a single-peaked Wigner distribution
centered around the vacuum state. A nearly empty cavity

FIG. 4. Steady-state Wigner distribution for ωr = 0.25κ , � =
20κ and driving field amplitudes ε = εcrit/8 in (a) and ε = εcrit

in (b).

represents a system deep into the photon blockade regime
where the nonlinear spectrum of the Jaynes-Cummings model
causes the absorption of one excitation to shift the mode out of
resonance. Frame (b), by comparison, is reserved for a driving
field ε = �/2 well above the limiting amplitude (ε = �/4).
The steady state displays a double-peaked distribution that
signals optical bimodality caused by the symmetry breaking
and underlying order of the system. The two peaks represent
the transmission lines of the system, metastable states dis-
playing high photon-number expectation (n̄) that are related
to the upper and lower dressed-state branches. This can be
seen from the quasienergy spectrum [55]. When the drive is
increased past the limiting value, the nonlinear spectrum gives
way to a continuous spectrum where the system is driven up
a quasiharmonic energy ladder (

√
n̄ − 1 − √

n̄ � 0). Unlike
the driven Jaynes-Cummings model, each peak contains a
superposition of both dressed-state branches masked by the
appropriate atomic localization.

The transmission lines are connected, if only weakly, by
quantum fluctuations. The loss of a photon allows for transi-
tions from one dressed-state branch to the other through [13]

∑
n′

〈+, n′,J1|â|−, n,J1〉 =
√

n − √
n − 1

2
,

where |J1〉 is an eigenstate of the external operator Ĵ1 [de-
fined in Eq. (29)]. This is represented in Fig. 4(b) by two dark
paths that connect the peaks. The Wigner distribution takes
negative values along these paths. To better appreciate the
strength of the fluctuations, the Wigner distribution is plotted
using a logarithm scale in Fig. 5. As the drive amplitude is
ramped up and the system delves deeper into the ordered
regime, the peaks grow further apart and the paths become
less prominent.

The change in the modality of the system signals a dissipa-
tive quantum phase transition on the system [23], which, up to
this point, resembles the breakdown of the photon blockade in
the driven Jaynes-Cummings model. In the present case, how-
ever, the transition is lost under the mean-field approximation
and stabilizes once quantum correlations are taken into ac-
count. This is attributed to the atomic state masking and is one
of the main results from this work. The mean-field results are
unstable since each transmission line refers to a subspace, a
region where a superposition of classically incompatible states
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FIG. 5. Absolute value of the Wigner distribution in the ordered
regime using a logarithm scale [log |W (α, α∗)|]. The same parame-
ters as Fig. 4(b) are taken.

is possible. Quantum correlations are required to describe the
coexistence of these states.

In fact, the existence of these subspaces was already im-
plied by the numerical method used to evolve the density
matrix. The Wigner distributions plotted in Fig. 4 are obtained
for a system that is initially prepared in the state

|ψ (t0)〉 = |g, n = 0,J3 = +1〉. (42)

This is an eigenstate of the restricted parity operator Ô with
eigenvalue one [see Eq. (30)]. Information regarding the initial
state is usually not important in driven-dissipative systems
as the master equation drives the system to a particular dis-
tribution independent of the initial conditions at long times,
under standard circumstances [53]. But with the conservation
of the parity branches under the master equation this is not
necessarily the case. A state prepared in

|ψ (t0)〉 = |g, n = 0,J3 = −1〉 (43)

is an eigenstate of the parity operator with eigenvalue minus
one. The evolution of this state leads to a Wigner distribution
that is virtually indistinguishable from the one plotted above.
But the two states live in different spaces and the distributions
cannot overlap. They only lead to similar distributions because
the cavity field is not able to distinguish between the parities.
As mentioned above, this can be exploited to leave the system
in a degenerate subspace where coherences can be preserved.

B. Quantum trajectory theory

While information of the atomic state remains hidden from
the field, an external observer monitoring the outgoing field
can infer the state of the system conditioned to a particular
measurement record using quantum trajectory theory [54].
The scheme selected to monitor the outgoing field must be
able to detect its phase. For it is the phase, rather than the
photon-number expectation, that differentiates between the
two peaks in the Wigner distribution. Heterodyne detection is
a good candidate for this measurement, where current records
are obtained by mixing the output signal with an intense
coherent field that provides a phase reference. The resulting
field is then detected and the outgoing field quadratures can be

measured from this detection. This process can be simulated
by a stochastic Schrödinger equation when the local oscil-
lator amplitude is strong. The evolution of the system state
vector |ψREC〉 conditioned to a particular measurement record
satisfies

d|ψREC〉 =
[

1

ih̄
(Ĥ − ih̄κ â†â)dt +

√
2κ â dq

]
|ψREC〉, (44)

where dq represents the heterodyne counts accumulated in
the time interval t and t + dt [54]. The counts depend on the
conditional state through the equation

dq = 〈ψREC|√2κ â†|ψREC〉
〈ψREC|ψREC〉 dt + dZ, (45)

where the complex Wiener increment dZ accounts for the shot
noise of the local oscillator. The filtered heterodyne current is
constructed from these counts using

dI = −κD

[
I dt − dq√

κ

]
, (46)

where κD is the linewidth of the detector.
A generic heterodyne record is composed of the real

and imaginary components of the current. For the system at
hand the imaginary component is centered around a given
value, while the real current transitions among two values
corresponding to each peak of the Wigner distribution [see
Fig. 4(b) above]. These transitions occur at random times.
They represent a change in the ordering of the system and are
driven by fluctuations. A toy model describing the conditioned
states helps to clarify how the atomic state is conditioned to
the values found in a particular heterodyne record. The model
is based on intuition gathered from the analytic solutions of
the driven Jaynes-Cummings model [55]. When the real part
of the photocurrent displays a positive value, the conditioned
state can be expanded as a superposition of the states

|ψ+
REC〉 =

∑
n

cn(eiϕu |+, n,J1 = 1〉 + eiϕd |−, n,J1 = −1〉),

(47)

where phases ϕu,d depend on the parity of the initial states
from Eq. (18). Notice the external component is described in
the localization basis rather than momentum population basis.
This masked atomic state is inferred from measurements of
a scattered field that carries a phase +φ. This undisclosed
phase is related to the relative phase between coupling and
driving strengths since applying the interaction Hamiltonian
over these states leads to a dipole coupling of +h̄�/2. In the
same manner, when the real part of the photocurrent takes a
negative value, the conditioned state is

|ψ−
REC〉 =

∑
n

c′
n(eiϕu |+, n,J1 = −1〉 + eiϕd |−, n,J1 = 1〉),

(48)

such that the scattered field carries a phase −φ (related to
−h̄ω/2 coupling). A system conditioned to a heterodyne
record remains entangled in the atomic components.

It is now important to show under which conditions these
entangled states can be chosen to display coherence in the
atomic variables. When the system is initially prepared in
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FIG. 6. Sample quantum trajectory for a system prepared in state
(49) with ωr = 0.25κ , � = 20κ , ε = εcrit, and κD = 0.25κ . The time
is measured in units of inverse cavity linewidths κ−1. Top frame is
reserved for the field quadratures obtained from Eq. (46), middle
frame for atomic correlations, and bottom frame for atomic internal
state.

a single parity chain, the expectations 〈σ̂−〉REC and 〈Ĵ+ +
Ĵ−〉REC are identically zero. This can be shown by direct sub-
stitution with appropriate φu,d phases. This is caused by the
partial trace over an atomic component destroying the coher-
ence of the process. Yet, when starting from a superposition
of the two chains the expectations display slow oscillations
(compared to the Rabi and recoil frequencies) determined by
the beating frequency of both parities. A sample quantum
trajectory is shown using a frame sequence in Fig. 6 to reveal
these oscillations. The sample trajectory is taken for the initial
state

|ψREC(t0)〉 = |g, 0,−1〉 + i|e, 0,−1〉√
2

(49)

with equal components over both parity chains. The top
frame shows the simulated photocurrent record. It exhibits
two locally stable solutions where the phase of the field
remains trapped for many cavity lifetimes until fluctuations
drive it towards the other. For this record, the first three tran-
sitions occur around 700, 800, and 1100 cavity lifetimes. The
measured field signals a particular ordering of the system as
suggested by the expectation 〈(Ĵ+ + Ĵ−)σ̂−〉 portrayed in the
second frame. This operator expectation also takes one of two
possible values predicted by the toy model. Knowledge of the
outgoing field conditions the atom into a particular subspace
to evolve in. When the measured field transitions between
stable values so does the atomic expectation. The coherent
dynamics encountered within each subspace remain hidden
from the field. It isn’t until expectations 〈σ̂−〉 or 〈Ĵ+ + Ĵ−〉
are computed that the coherence is revealed. The polarization
expectation value 〈σ̂−〉 is portrayed in the bottom frame.
It displays the desired slow oscillations at an undetermined
frequency. The expectation value is still conditioned to the

state of the field as it displays abrupt changes on its imaginary
component that accompany the changes on the phase of the
field. It, however, displays a long-lived coherence due to the
existence of the subspaces.

The imaginary part of the potential changes abruptly as the
field amplitude transitions between the two possible phases.
In order for this oscillation to be consistent with the corre-
lations between polarization and localization the latter must
display a continuous oscillation. The atomic motion is then
described by a slow coherent oscillation from one antinode of
the potential to another, with the effective coupling strength
that correlates photon number and electronic energies to
follow this behavior. This perspective helps explain the low
frequency of the oscillations. They are caused by the recoil
energy that does not allow for the external states to settle
at the equator of the Bloch sphere but instead to perform
harmonic motion around it. For zero recoil energy, internal
and external fields are uncorrelated and the oscillations are
lost. The frequency is then determined by an interplay of
recoil frequency and coupling strength. The amplitude of the
oscillations, however, is determined by the relative population
between parity chains. This is as expected, since the lowering
operator transfers states from one parity chain to the other.

VI. CONCLUSIONS

The model presented here describes an idealized scenario
where a two-state system interacts with a standing-wave cav-
ity mode. The interaction is dipolar in character and describes
the exchanges of excitation and momentum that correlate the
internal and external degrees of freedom of this composite
quantum system. These correlations are commonly exploited
to probe the underlying global system. As examples, an atom
traversing a cavity has been used to measure the photon num-
ber expectation of the cavity mode [56,57] or the spatial dis-
tribution of the mode [58,59]. The detection is not restricted
to the atomic variables; the quadratures of a scattered field
have been used to probe phase transitions in optical systems
and infer the global state [11,14]. In these three examples the
measured component provides a good probe for the system,
taking values from which the global state of the system could
be inferred up to a good approximation.

I have taken a step in a different direction, where, by
considering both internal and external degrees of freedom,
the emerging quantum correlations allow for multiple states
to display the same value when probed. The selected probe is
not a bad one because of fluctuations, but because symmetries
of the model allow for degeneracies that involve correlations
among several degrees of freedom. The atomic components
mask one another so each one cannot be determined unam-
biguously by, for instance, measuring the scattered field.

This feature is shown to have striking consequences when
the description is extended to include a coherent driving field
and the effect of a surrounding electromagnetic environment
that constantly measures the state of the system. Here, the
competition between driving field amplitude and coupling
strength causes the system to undergo a dissipative quantum
phase transition but, due to atomic masking, the ordering
above a critical point is only seen when quantum correlations
are taken into account. This causes a departure between
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mean-field results and the thermodynamic limit found under
the quantum evolution. The latter leads to a double peaked
Wigner distribution of the field above the critical point. As the
thermodynamic limit is reached and the effect of fluctuations
neglected, the paths connecting both peaks disappear and
the system displays optical bistability. In contrast, the mean-
field solutions describe two macroscopically incompatible
states that inhibit any form of optical bistability. This raises
an interesting point when considering the analogy between
quantum phase transitions in optical systems and those of
closed systems in thermal equilibrium [23]. Under this anal-
ogy the steady states play the role of the ground state and
the mean-field equations provide a blueprint for the phase
diagram. However, as shown here, the mean-field solutions
fail to announce an organization in the underlying system
when quantum correlations survive the effect of dissipation. In
this case the organization does not correspond to the standard
formation of regular patterns; since atomic degrees of freedom
are masked, state superpositions are found within an ordered
state. These states are expected to appear in experiments as
the control of external and internal degrees of quantum states
continues to increase.

Ultimately these correlations can be exploited to store co-
herence on the system. This atomic coherence can be probed

experimentally using other forms of driving. In Ref. [28]
Domokos, Salzburguer, and Ritsch explore the case where
atom, rather than cavity mode, is driven by an external co-
herent field. The cavity is excited by the photons scattered
from the atom and ordering is still expected above a critical
drive amplitude. In this case the driving field enters through
the side of an open cavity and breaks the parity symmetry
[see Eq. (5)] due to the possibility of exciting the electronic
state without scattering photons into the cavity mode. By
breaking the symmetry, it becomes possible to use this driving
to probe the atomic components individually. In this sense,
an experiment where atomic masking can be detected is
feasible using a setting similar to those in Refs. [11,12]
with the addition of a second driving field for the cavity
mode.
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