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In this paper, based on the idea of reverse engineering, we propose a scheme to find analytical expressions
of a laser pulse that allows for controlling the evolution of two-level systems as desired, regardless of the time-
dependent phase of the system. The pulse relates to particular functions that predefine the evolution of a system.
For illustration, we present concrete examples of driving the system from an arbitrary initial state to a final
state along the user-prescribed particular way in both closed and open quantum systems. Simulation results
indicate that the desired evolutionary path is accurately obtained when the rotating wave approximation (RWA)
is satisfied. Most importantly, the scheme allows us to maintain system coherence and populations even in the
presence of certain dephasing and thermal noises. Thus it may naturally find applications in quantum computing
and quantum memories.
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I. INTRODUCTION

The control of quantum systems has long been the central
interest of quantum science [1–10]. For example, transfer-
ring population between individual discrete quantum states
of atoms and molecules is fundamental in modern atomic
and molecular physics [11,12]. The methods for popula-
tion transition include adiabatic control [13–15], shortcut-
to-adiabaticity (STA) [16–18], optimal control [19–21],
Lyapunov control [22–28], measurement-feedback control
[29–31], and so on. Among these impressive achievements,
adiabatic control technique has been holding an irreplace-
able position in the field of population transition due to
its robustness against small-to-moderate variations in control
parameters [32]. However, the extension of adiabatic passage
to the open quantum systems may be a difficult task since
adiabatic processes generally require relatively long times so
that decoherence would seriously decline system dynamics
[33]. In the context of a dissipative system, several studies
using numerical and analytical techniques proved that ef-
ficient control can still be achieved [34–37]. To relax the
restrictions of adiabatic condition required in adiabatic con-
trol, STA accelerates adiabatic processes by designing pulses
[38,39]. Other pulse-design methods such as optimal control
and Lyapunov control are also appreciated [40–42] since the
crafted external electromagnetic radiation fields are always
necessary for implementing varieties of quantum control tasks
[43–47], including population transition.

For population transition, the traditional pulse-design
methods are typically used to drive the interested system into
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a desired final state, sometimes along one specific instan-
taneous eigenstate [48,49], instead of controlling the evolu-
tion path of system arbitrarily. For instance, by suppressing
nonadiabatic transitions, STA transports an initial state to
a final state along a chosen state trajectory which is an
instantaneous eigenstate of original Hamiltonian [50,51]. By
combining STA with optimal control, robust population tran-
sition along specific trajectory is realized in a � system [52].
Fast adiabatic evolution is achieved by constructing effective
counterdiabatic Hamiltonian [53]. Daems et al. [54] estab-
lished a strategy based on an inverse-engineering protocol
that allows a robust and precise transfer to a given target
state.

To achieve arbitrary user-prescribed evolution path,
Golubev et al. [55] proposed a scheme based on the idea
of reverse engineering to obtain laser pulse for controlling
populations of two-level systems, which allows one to drive
the system from any initial state into a desired final state.
Later, they applied the approach for finding laser pulse to
control the charge migration in a real molecule [56]. However,
the pulse may hardly be obtained when the phase of ampli-
tude of eigenstate |g(e)〉 is time-dependent, i.e., the phases
φ j ( j = 1, 2) of the complex amplitudes c j (t ) = c̃ j (t )eiφ j are
time-varying, where c j (t ) satisfy

∑2
j=1 |c j (t )|2 = 1, |ψ (t )〉 =

c1(t )|g〉 + c2(t )|e〉, and c̃ j (t ) are real positive. In addition,
the reverse-engineering approach is merely applicable for the
closed quantum systems, originating from the fact that the
pulse is obtained based on the wave function of the system.
Recently, the reverse-engineering idea achieved significant
progress, which is generalized to the more realistic scenarios
to include dephasing and thermal noises based on the density
matrix of a system instead of the wave function [57]. No-
ticeably, the pulse is also quite difficult to obtain when the
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phase of coherence is time-dependent, i.e., the phase φ′ in
ρge = |ρge|eiφ′

is time-varying.
Inspired by previous works [55–57], in this paper, we

propose an alternative scheme to obtain analytical expressions
of laser pulse for controlling the evolution path of two-level
systems as desired. First, we predefine the evolution of the
system by the user-prescribed population control function
(PCF) and coherence control function (CCF). By reversely
solving the master equation of motion, we then obtain the
laser pulse that relates to the predefined PCF and CCF. Thus,
the reverse-engineering scheme sidesteps the consideration of
the phase of amplitude and the phase of coherence during
designing the laser pulse. The dominant feature of the scheme
is that it is suitable for both closed and open quantum systems,
enabling for controlling not only the final-state superposition
but also the exact evolution path. In addition, each final state
is achievable for closed quantum systems, while for open
quantum systems, there are unaccessible final states and we
shall discuss the limitations for that. We believe that the
scheme is a valuable addition to the arsenal of quantum
control, especially involving qubits driven by external fields
in a noisy environment.

The rest of this paper is organized as follows. In Sec. II,
we present the system model and the idea of pulse reverse
engineering. In Sec. III, we present some illustration examples
in the closed and open quantum systems. In Sec. IV, we dis-
cuss the robustness of the scheme and the accessible regions
for the population transition in the open quantum system case.
Conclusions are presented in Sec. V.

II. SYSTEM MODEL AND PULSE REVERSE
ENGINEERING

Let us consider the most common model: a two-level
system interacts with a classical monochromatic field. The
two-level system has a ground state |g〉 and an excited state |e〉
with eigenenergies h̄ωg and h̄ωe, respectively. The interaction
between the states |g〉 and |e〉 is of electric dipole form. For
instance, for an atom interacting with a laser pulse, such
electric diploe approximation is valid when the wavelengths
of the pulse are much greater than the mean spatial separation
of the electron and the nucleus [58]. The Hamiltonian in this
dipole approximation case has the following form (we set
h̄ = 1 hereafter)

Ĥ (t ) = −ω

2
σ̂z − μ · E(t )σ̂x, (1)

where ω = ωe − ωg is the two-level system transition fre-
quency, and σ̂ j ( j = x, y, z) are the pseudospin operators,
namely Pauli operators. For regular use later, we further
introduce the raising or lowering operators: σ̂± = (σ̂x ±
iσ̂y)/2. The electric dipole operator μ is given by μ =
eμ(μ|g〉〈e| + μ∗|e〉〈g|) with eμ being the unit vector in the
direction of the dipole and μ denoting the matrix element of
the dipole operator between states |g〉 and |e〉. The pulse E(t )
with carrier frequency ωp can be written as

E(t ) = ε(t )e−iωpt + ε∗(t )eiωpt , (2)

where ε(t ) contains the polarization, amplitude, and envelope
of the pulse E(t ). For simplicity, we assume μ is real and take
the scalar product between μ and E(t ), i.e., μ · E(t ) = μE (t ).

For convenience, we move to the interaction picture with
respect to Û (t ) = exp [i ω

2 σ̂zt]. Then the Hamiltonian H (t )
under the RWA reads

ĤI (t ) = −μ[ε(t )σ̂+e−i	t + ε∗(t )σ̂−ei	t ], (3)

where the detuning 	 = ωp − ω. We take into account the
presence of dephasing and thermal noises caused by environ-
ment with rates γ and �, respectively. Then, the general form
of the density matrix describing the evolution of the system is
given by the following equation [59]:

˙̂ρ(t ) = −i[ĤI (t ), ρ̂(t )] + γ

2
Dde[ρ̂(t )] + �Dth[ρ̂(t )], (4)

where Dde[ρ̂(t )] = σ̂zρ(t )σ̂z − ρ̂(t ) and Dth[ρ̂(t )] = n̄
[2σ̂+ρ̂(t )σ̂− − {σ̂−σ̂+, ρ̂(t )}] + (n̄ + 1)[2σ̂−ρ(t )σ̂+ −{σ̂+σ̂−,

ρ̂(t )}] with n̄ being the effective photon number. This
equation can be solved by directly solving the elements of
the density matrix [57]. Here we represent the density matrix
in the following form, which defines arbitrary evolution of
two-level system [60],

ρ̂(t ) = 1

2
[Î + u(t )σ̂x + v(t )σ̂y + w(t )σ̂z]

= 1

2

[
1 + w(t ) u(t ) − iv(t )

u(t ) + iv(t ) 1 − w(t )

]
, (5)

where Î is the identity operator, and the real functions
u(t ), v(t ),w(t ) are

u(t ) = Tr[σ̂xρ̂(t )] = ρeg + ρge,

v(t ) = Tr[σ̂yρ̂(t )] = i(ρeg − ρge),

w(t ) = Tr[σ̂zρ̂(t )] = ρee − ρgg, (6)

with ρnm (m, n = g, e) denoting the matrix elements of ρ̂(t ).
Then, it is not hard to calculate from Eqs. (4) and (5) that

u̇ = −�̃u − iμw(εe−i	t − ε∗ei	t ), (7a)

v̇ = −�̃v + μw(εe−i	t + ε∗ei	t ), (7b)

ẇ = − [u(u̇ + �̃u) + v(v̇ + �̃v)]

w
− 4n̄�w − 2�(w + 1),

(7c)

where �̃ = [(2n̄ + 1)� + γ ] is the total decoherence rate.
Note that we ignored “(t )” for the sake of brevity.

The goal here is to find the pulse E (t ) which will drive the
system to evolve as user-prescribed. Notice that ε(t )e−i	t =
ε(t )e−iωpt eiωt ≡ a + ib, where we define a = Re[ε(t )e−i	t ]
and b = Im[ε(t )e−i	t ] (Re[·] and Im[·] represent the real and
imaginary parts of the argument, respectively). To achieve the
goal, we reversely solve Eq. (7) and obtain

a = 1

2μw
(v̇ + �̃v), (8a)

b = 1

2μw
(u̇ + �̃u), (8b)

uu̇ + vv̇ + wẇ = −2�(2n̄ + 1)w2 − 2�w − �̃(u2 + v2).

(8c)
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Then the pulse E (t ) in the presence of dephasing and
thermal noises reads

E (t ) = 1

μw
[(v̇ + �̃v) cos(ωt ) + (u̇ + �̃u) sin(ωt )]. (9)

It is worth mentioning that the functions u(t ), v(t ), and w(t )
are bounded by Eq. (8c). Thus when giving two concrete
expression among the functions u(t ), v(t ), and w(t ), the
remaining one is achieved from Eq. (8c). For instance, given
the functions v(t ) and w(t ), the u(t ) reads

u(t ) = ±
√

y(t ),

y(t ) = 2e−2�̃t
∫ t

0
e2�̃τ f (τ )dτ + y(−∞)e−2�̃t , (10)

where f (t ) = −wẇ − vv̇ − �̃v2 − 4n̄�w2 − 2�w(w + 1).
Similarly, one can also give the concrete forms of u(t )
and w(t ), then obtain the function v(t ) as v(t ) = ±√

y′(t )
with y′(t ) = 2e−2�̃t

∫ t
0 e2�̃τ f ′(τ )dτ + y′(−∞)e−2�̃t , where

f ′(t ) = − wẇ − uu̇ − �̃u2 − 4n̄�w2 − 2�w(w + 1).
However, if we predefine the functions u(t ) and v(t ), the
analytic expression of w(t ) is unobtainable. In this case, one
can obtain the values of w(t ) by numerical calculations in
principle.

Until now, we demonstrate the connection between the
evolution of system and the pulse E (t ). That is, by giving two
of the functions u(t ), v(t ), and w(t ), the pulse E (t ) is deter-
mined by Eq. (9), which will guide the evolution of system
as user-prescribed. Since w(t ) confines the evolution of the
population, we refer to the function w(t ) as the population
control function (PCF). From Eq. (5), we note that the func-
tions u(t ) and v(t ) define the evolution of the coherence due to
ρge = 1

2 [u(t ) − iv(t )]. Thus, we refer to the function CA(t ) =
1
2 |u(t ) − iv(t )| as the coherence control function (CCF). It is
clear that the present reverse-engineering method is universal
over previous schemes [55–57] because the density matrix
formula Eq. (5) is, in fact, applicable to any two-level systems.
To be concrete, for closed quantum systems, we can represent
the wave function |ψ (t )〉 = c1(t )|g〉 + c2(t )|e〉 of the system
in the density matrix formula as

ρ̂ = |ψ (t )〉〈ψ (t )| =
[

c̃2
1(t ) c̃1(t )c̃2(t )eiφ

c̃1(t )c̃2(t )e−iφ c̃2
2(t )

]
, (11)

where c j (t ) = c̃ j (t )eiφ j ( j = 1, 2), |c1(t )|2 + |c2(t )|2 = 1,
and φ = φ1 − φ2 is the relative phase between the amplitudes
c1(t ) and c2(t ). The pulse proposed by the authors of Ref. [55]
only relates to the population control function c2

1(t ), and
requires that the phases φ1 and φ2 are time-independent.
However, the pulse given by Eq. (9) relates to not only the PCF
but also the CCF. The increased flexibility in designing the
pulse provides us one more degree of freedom for controlling
the system, i.e., the real component u(t ) [or the imaginary
component v(t )] of coherence. It also avoids the consideration
of the phases φ j ( j = 1, 2) of amplitudes. In addition, the
pulse may hardly be obtained by reversely solving the optical
Bloch equations for population control under dephasing and
dissipation [57] when the phase φ′ of ρge = |ρge|eiφ′

is time-
dependent, which is also sidestepped in the present reverse-
engineering method. In addition, the coherence of system is

solvable only in the case of long time evolution (the case of
steady states) in Ref. [57]. It is clear that another advantage of
the current reverse-engineering method over the previous one
[57] is that not only the path of population transition but also
the coherence of system are predictable at each moment.

III. ILLUSTRATION EXAMPLES

For facilitating a comparison to the existing techniques
[55–57], let us illustrate the present reverse-engineering
method by some concrete examples. Suppose that the function
w(t ) has the following form:

w(t ) = ai[1 − g(t )] + a f g(t ), (12)

where g(t ) = 1/[1 + exp(−αt )] goes smoothly from 0 to 1
with a real and positive parameter α controlling the duration
of transition ai → a f (ai, a f ∈ [−1, 1]). According to Eq. (5),
one notes that the function w(t ) relates to the evolution
of population Pg(e) = 〈g(e)|ρ̂(t )|g(e)〉. Concretely, since g(t )
goes smoothly from 0 to 1, resulting in w(t ) varying in range

[ai, a f ], so that ai
w(t )−−→ a f corresponds to 1+ai

2

Pe−→ 1+a f

2 and
1−ai

2

Pg−→ 1−a f

2 . The function v(t ) can be arbitrarily chosen
in principle. Here, it is considered to be the Gaussian form
v(t ) = Ae− 1

2 (t−τ )2/σ 2
, where the real parameter A ∈ [0, 1] is

the height of the curve’s peak, τ is the position of the center
of the peak, and σ controls the width of the “bell.” Therefore,
after giving the specific PCF w(t ) and CCF CA(t ), one can
fully control the evolution of the system as desired with the
control field given by Eq. (9).

A. Illustration I: Closed Quantum System

For the purpose of illustration, we first consider the case of
absence of dephasing and thermal noises, i.e., � = γ = 0 a.u.,
where atomic units are used throughout the paper unless
otherwise specified. We substitute the pulse E (t ) [given by
Eq. (9)] into the Hamiltonian H (t ) in Eq. (1), and numerically
solve the equation of motion for the system without RWA, i.e.,
˙̂ρ(t ) = −i[Ĥ (t ), ρ̂(t )]. The simulation results are presented in
Fig. 1, together with the prescribed functions and pulse E (t ).
In the simulation, we choose the parameters ai = 1 and a f =
−1, where ai = 1 and a f = −1 correspond to w(−∞) =
1 [ρ̂(−∞) = |e〉〈e|] and w(+∞) = −1 [ρ̂(+∞) = |g〉〈g|],
respectively. It is also worth mentioning that the value of ai( f )

can be arbitrarily chosen in the range [−1, 1], which provides
us the freedom to choose the desired final state starting from
arbitrary initial one.

Figure 1(a) depicts the PCF w(t ) and the evolution of
〈σ̂z〉 = Tr[σ̂zρ̂(t )], where ρ̂(t ) is numerically solved without
RWA. It is clear that the evolution of 〈σ̂z〉 (red dash line)
closely follows the PCF w(t ) (blue solid line) with small devi-
ations. Figure 1(b) shows the CCF CA(t ) and the evolution of
coherence defined as CN (t ) = |〈g|ρ̂(t )|e〉| [57]. We note that
CN (t ) coincides with CA(t ) very well when t < 0 a.u., while
there occurs small variations from then on, and finally CN (t )
plateaus to a finite value as CN (+∞) → 0.1. The population
evolutions of Pg = 〈g|ρ̂(t )|g〉 and Pe = 〈e|ρ̂(t )|e〉 are shown
in Fig. 1(c), from which one observes the perfect population
inversing, where Pg reaches 0.996 when the evolution time is
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V
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FIG. 1. (a) The PCF w(t ) and the 〈σ̂z〉 as a function of time.
(b) The analytical [CA(t )] and numerical [CN (t )] coherence as a
function of time. (c) The evolution of ground-state population Pg

and excited state population Pe. (d) The field obtained from Eq. (9)
with the following parameters: ai = 1, af = −1, α = 0.02 a.u., ω =
0.05 a.u., A = 0.6 a.u., τ = 0 a.u., σ = 50 a.u., � = γ = 0 a.u., and
μ = 6 a.u.

226.1 a.u.. Figure 1(d) shows the pulse E (t ) obtained from
Eq. (9). From the simulation, one notes that the evolution
of population performs very well, while the evolution of
coherence slightly deviates from the desired one. The reason
for being unable to fully control the evolution of the system
arises from the fact that the RWA is not strictly satisfied for the
chosen parameters. It is known that the RWA usually works
well only if the system is nearly resonant driven [55]. Thus,
whether the RWA well is satisfied or not influences the degree
of precision in controlling the evolution of system. This point
will be discussed in the next section.

As we mentioned previously, the pulse E (t ) is related to
the predefined evolution of the two-level system determined
by the functions u(t ), v(t ), and w(t ). That is, there is a
consistent one-to-one match between a given trajectory on
the Bloch sphere and the pulse. For each given trajectory,
the corresponding pulse area is a parameter of importance
for the control. Here we investigate the pulse area Apulse =
μ

∫
E (t )dt for different trajectories and compare it with the π

pulse. Figure 2 depicts five different trajectories on the Bloch
sphere, in which the trajectory of π pulse is generated with
the Hamiltonian Hπ = �

2 [σ+ exp(iθ ) + σ− exp(−iθ )]. We can
see from Fig. 2 that the trajectories (with different α) approach
the π -pulse trajectory when increasing the value of α. How-
ever, the pulse area decreases with the increasing the value of
α. This originates from the fact that α controls the speed of
the dynamics, the bigger the α the shorter the pulse.

B. Illustration II: Open Quantum System

As we mentioned above, one feature of the scheme is
that it allows us to control the evolution of quantum systems
as desired. Generally, the populations and the coherence of
system will be unavoidably influenced by the environment.
In the following, we study the reverse-engineering scheme
in the open quantum system by taking into account the pres-
ence of dephasing and thermal noises. First, we consider the
influence of pure dephasing by setting � = n̄ = 0 a.u. One

FIG. 2. Different evolution trajectories on the Bloch sphere. The
parameters for the trajectories of different α are ai = 1, af = −1,
A = 0.6 a.u., τ = 0 a.u., σ = 50 a.u., and μ = 6 a.u. The parameters
for the trajectory of π pulse are � = 1, θ ≈ 4.1, and t = 1.

illustrative example is depicted in Fig. 3, in which the parame-
ters are ai = 1, a f = −0.92, α = 0.05 a.u., ω = 0.5 a.u., A =
0.5 a.u., τ = 0 a.u., σ = 50 a.u., and μ = 6 a.u. As shown
clearly in Fig. 3(a), the PCF w(t ) (the red-solid line) and
the evolution of 〈σ̂z〉 (the blue-dash line) are coincident with
each other very well. Figure 3(b) shows a comparison of the
desired evolution of coherence CA(t ) and the exact evolution
CN (t ). As expected, a nearly perfect agreement is observed,
with the CA(t ) (the red-solid line) and CN (t ) (the blue-dash
line) barely discernible. In a word, the evolution of system
closely follows the desired one with the designed pulse, which

V
/m

]

FIG. 3. (a) The PCF w(t ) and 〈σ̂z〉, (b) CA(t ) and CN (t ), as a
function of time. (c) The field E (t ) obtained from Eq. (9). The
parameters are α = 0.05 a.u., ω = 0.5 a.u., A = 0.5 a.u., τ = 0 a.u.,
σ = 50 a.u., μ = 6 a.u., ai = 1, af = −0.92, γ = 0.001 a.u., and
� = n̄ = 0 a.u.
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V
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FIG. 4. (a) The CA(t ) and CN (t ), (b) the PCF w(t ) and 〈σ̂z〉,
(c) the populations Pe and Pg, as a function of time. (d) The field
E (t ) obtained from Eq. (9). The parameters are α = 0.02 a.u., ω =
0.5 a.u., A = 0.35 a.u., τ = 0 a.u., σ = 50 a.u., μ = 6 a.u., ai = −1,
af = −0.5, n̄ = 0.0 a.u., and � = γ = 0.005 a.u.

is shown in Fig. 3(c). The simulation results indicate the
good performance of the reverse-engineering scheme in the
presence of certain pure dephasing.

Next, we consider the general case wherein both dephasing
and thermal noises are involved. One illustrative example
is depicted in Fig. 4. The parameters in the simulation are
chosen as γ = � = 0.005 a.u., n̄ = 0 a.u., α = 0.02 a.u., A =
0.35 a.u., τ = 0 a.u., σ = 50 a.u., ai = −1, a f = −0.5. With
these parameters, the predefined CCF CA(t ) and PCF w(t ) are
shown by the red-dash line in Figs. 4(a) and 4(b), respectively.
It is shown that the CA(t → ∞) � 0.25 and w(t → ∞) =
−0.5, which means that the final coherence maintains around
0.25 and final population Pe = 1 − Pg = 1−w(t→∞)

2 = 0.25.
For comparison, the numerical results of CN (t ) and 〈σz〉 are
also presented by the blue-solid line in Figs. 4(a) and 4(b),
respectively. We can note that the evolution of CN (t ) and CA(t )
[Fig. 4(a)] as well as 〈σz〉 and w(t ) [Fig. 4(b)] are coincident
with each other very well, with only small oscillations in
CN (t ) and 〈σz〉 for long-time evolution. As a result, the system
closely follows the desired evolution given by the predefined
functions. In Fig. 4(c), we plot the population evolution of
Pg and Pe. Clearly, the desired final population Pe = 0.25
is obtained. Further observations from Figs. 4(a) and 4(c)
suggest that the reverse-engineering scheme is feasible to
keep the coherence without losing populations even in the
presence of dephasing and thermal noises. Figure 4(d) shows
that after achieving the desired population and coherence the
pulse strives to maintain the same system state in the presence
of dissipation, where the amplitude of pulse is dominated by
s(t → ∞), ṡ(t → ∞) (s = u, v,w), and the total decoher-
ence rate �̃ according to Eq. (9). Specifically, the amplitude
of pulse increases with the increasing of decoherence rate.

IV. DISCUSSION

As mentioned above, it is important to know the regime
in which the reverse-engineering scheme performs well, i.e.,
the RWA is well satisfied. To study this issue, by taking
the closed system as the example first, in Fig. 5(a) we plot

V
/m

]

FIG. 5. (a) The maximum error Em as a function of ω. The inset
of (a) shows the analytical and numerical coherence as a function of
time in the case of ω = 1 a.u.. (b) The PCF w(t ) and the 〈σ̂z〉 as
a function of time. (c) The evolution of Pg and Pe. (d) The pulse
obtained from Eq. (9) by using the same parameters as in Fig. 1
except ω = 1 a.u.

the maximum deviation between CN (t ) and CA(t ) (defined as
Em = max{|CN (t ) − CA(t )|}) as a function of ω. We can see
that Em approaches the minimum value when ω > 0.5 a.u.,
indicating that precisely controlling the evolution of system
is obtained. This point is exactly verified by the coherence
shown in the inset of Fig. 5(a) and the evolution of 〈σ̂z〉 shown
in Fig. 5(b) with the RWA being satisfied very well. More
concretely, the system closely follows the desired evolution
given by the functions u(t ), v(t ), and w(t ), resulting in CN (t )
and CA(t ), 〈σ̂z〉 and w(t ) coincide with each other perfectly.
Figures 5(c) and 5(d) are the evolution of populations and
the pulse E (t ), respectively. Comparing to the populations
depicted in Fig. 1(c), the populations here vary smooth when
the RWA is satisfied, at the expense of much oscillations for
the pulse [see from Figs. 1(d) and 5(d)]. In addition, one may
want to know to which extent of the techniques developed in
this context can also be implemented in the of open quantum
system case. In Fig. 6, we show the maximum error Em and
Cm (the maximum deviation between w(t ) and 〈σz〉 defined as
Cm = max{|w(t ) − 〈σz〉|}) as a function of ω. We can see from
the Fig. 6 that both Em and Cm decrease with the increase of
ω, and approach the minimum value when ω > 0.4, indicating
the reverse-engineering scheme performs well.

In practice, there inevitably exist variations on the system
parameters during the driving process. It is thus worthwhile to
discuss the robustness of the scheme against such variations.
First, we take into consideration the experimental imperfec-
tion operations which may induce variations on the pulse,
denoting it by δE (t ). To show the influence of δE (t ) on the
system dynamics, in the case of closed quantum system, we
plot the population Pg and the coherence CN versus time and
δE (t )/E (t ) in Figs. 7(a) and 7(b), respectively. According to
the plots, we obtain the following results. (i) The population
Pg is insensitive to the variation δE (t ) since Pg is almost
unchange with δE (t )/E (t ) varying in the range [−0.1, 0.1].
This result is in coincidence with the declaration of Ref. [55]
that the strength of field only slightly influences the speed of
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FIG. 6. The maximum error Em and Cm as a function of ω in the
case of open quantum system. The parameters for the simulation are
the same with Fig. 4.

population transition, and it thus would not affect the final
population distribution Pg(t f = 1000). (ii) The variation δE (t )
has much influence on the coherence due to CN (t f = 1000) �
0.01 in the absence of variation while CN (t f = 1000) � 0.1
when 10% variation on E (t ) occurring. Next we study the
influence of variation on ω, denoting by δω. The evolutions
of population Pg and coherence CN versus time and δω/ω are
plotted in Figs. 7(c) and 7(d), respectively. We can see from
Figs. 7(c) and 7(d) that both Pg and CN are sensitive to δω/ω

since there occurs the amount of deviation of 17% and 25%
for the final Pg and CN when δω/ω = 1%, respectively. Thus,
it is necessary to precisely obtain the system parameter ω to
achieve the desired evolution path.

FIG. 7. (a) The population Pg and (b) the coherence CN versus the
evolution time and variation of field δE (t )/E (t ). (c) The population
Pg and (d) the coherence CN versus the evolution time and δω/ω

The parameters are ai = 1, af = −1, α = 0.02 a.u., ω = 1 a.u. A =
0.6 a.u., τ = 0 a.u., σ = 50 a.u., � = γ = 0 a.u., n̄ = 0.0 a.u., and
μ = 6 a.u.

FIG. 8. The fidelity versus η for different final state. The param-
eters are ai = 1, α = 0.02 a.u., ω = 1 a.u., A = 0.6 a.u., τ = 0 a.u.,
σ = 50 a.u., � = γ = 0 a.u., n̄ = 0.0 a.u., t f = 1500 a.u., and μ =
6 a.u.

In the above, we showed that the scheme is robust against
the variation of pulse intensity when transferring the initial
state |e〉 to final state |g〉. One may wonder whether this is
also true for different final state. In the following, we study
how the perturbations on the pulse affect the performance
of the scheme for different final state. For the pulse with
perturbation, we write it as E ′(t ) = (1 + η)E (t ), where η

quantifies the uncertainty. In Fig. 8, we present the simulation

of the fidelity F =
√√

ρ̂ f ρ̂(t f )
√

ρ̂ f against the uncertainty η

of the pulse for different final state, where ρ̂ f is the desired
final state in the density operator form and ρ̂(t f ) is the system
state in the presence of perturbations at final time t f . From
Fig. 8, we can observe that the target fidelities are insensitive
to the perturbation of the pulse since these fidelities are only
slightly changed even when η = 20%. Therefore, it can be
concluded that the robustness against the variation of pulse
intensity is quite nice for the population control in the present
scheme.

According to Eq. (8c), it is clear that u2 + v2 + w2 = c
(c is a constant and it is assumed to be unit here) in the
case of closed quantum system. Then the function u(t ) =
±

√
1 − (v2 + w2) is always real with the given functions v(t )

and w(t ) in Sec. III. Thus, it is reasonable to drive an initial
state to an arbitrary final state, i.e., a f in the function w(t )
can be arbitrarily chosen in the range of [−1, 1]. However, in
the case of open quantum system, the function u(t ) may exist
complex values for some regions of a f due to the presence of
dissipation, resulting in the complex valued pulse as seen from
Eq. (9). The regions of a f that lead to complex values of u(t )
are defined as the unaccessible regions since we assumed that
the predefined functions u(t ), v(t ),w(t ) are real. Therefore,
the accessible regions of a f are to make zero complex values
of u(t ), i.e., Im[u(t )] = 0.

In Fig. 9, we investigate such accessible regions in the
presence of dissipation by showing the contour plots of the
imaginary part of u(t ) as a function of time and a f in Figs. 9(a)
to 9(c), and as a function of time and the effective photon
number n̄ in Fig. 9(d). Here we fixed ai = −0.6 corresponding
to the initial population of Pg = 0.8 for all of the simulations.
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FIG. 9. (a) The imaginary part of u(t ) as function of time and
af for � = 0.0001 a.u., γ = 0 a.u., and n̄ = 0 a.u. (b) The imaginary
part of u(t ) as a function of time and af for � = 0.001 a.u., γ =
0 a.u., and n̄ = 0 a.u. (c) The imaginary part of u(t ) as a function
of time and af for � = 0.001 a.u., γ = 0.001 a.u., and n̄ = 0 a.u.

(d) The imaginary part of u(t ) as a function of time and n̄ for
� = 0.001 a.u., γ = 0.001 a.u., and af = −0.2. For all plots, the
remaining parameters are the same as Fig. 4 except ai = −0.6 and
α = 0.04 a.u.

In Figs. 9(a) and 9(b), we chose � = 10−4 a.u. and � =
10−3 a.u. with γ = n̄ = 0 a.u., respectively. It is clear that
the accessible regions of a f are reduced when increasing the
thermal noise rate �. When further taking the dephasing into
consideration, the accessible regions of a f are further shrink-
ing, which can be seen by comparing Figs. 9(a) and 9(c). An
animation is given in Supplemental Movie, which shows the
shrinking process when continuously increase the value of γ

[61]. From the animation, one can note that the accessible
regions shrink to zero when γ > 0.01 a.u. In Fig. 9(d), we
consider the influence of the effective photon number n̄ (or
equivalently the temperature) on the population transition.
Here we fixed � = γ = 10−4 a.u., ai = −0.6, and a f = −0.2
(corresponds to transferring population of Pg = 0.8 to 0.6).
We can see that there is an upper bound n̄ � 0.33 for the
accessible regions. Of note, the upper bound is different when
choosing different parameters of ai, a f , as well as � and γ . In
addition, the accessible regions of a f in Figs. 9(a) to 9(c) are

FIG. 10. (a) The imaginary part of u(t ) as a function of time and
A with σ = 50 a.u. (b) The imaginary part of u(t ) as a function of
time and σ A = 0.35 a.u. For all plots, the remaining parameters
are ai = −1, af = −0.5, n̄ = 0 a.u., � = 0.001 a.u., γ = 0.001 a.u.,
μ = 6 a.u., and α = 0.04 a.u.

TABLE I. Different values of ai corresponding to the accessible
maximum value of af (aM

f ), minimum value of af (am
f ), and the

accessible region 	af , which is defined as 	af = aM
f − am

f . The
parameters are A = 0.35 a.u., τ = 0 a.u., σ = 50 a.u., α = 0.04 a.u.,
n̄ = γ = 0 a.u., and � = 0.0001 a.u.

ai −0.9 −0.6 −0.3 0 0.3 0.6 0.9

aM
f 0.7551 0.6327 0.5510 0.4694 0.4286 0.3878 0

am
f −1 −1 −0.9592 −0.8776 −0.8367 −0.8367 0

	af 1.7551 1.6327 1.5102 1.3470 1.2653 1.2245 0

also different when starting from different initial states (i.e.,
the different value of ai) in the presence of dissipation.

One may also wonder how changes in the parameters of
A and σ affect the accessible population regions for a given
environmental γ and �. To tackle this issue, we display the
contour plots of the imaginary part of u(t ) as a function
of time and parameter A in Fig. 10(a) and σ in Fig. 10(b).
It can be clearly seen from Fig. 10 that there are large
ranges of A and σ which allow for reaching the desired final
populations. However, one should notice that for different
evolution trajectories the accessible regions of A and σ would
be different. Thus, even for a fixed A and σ , the allowed
accessible population region will be different on the contrary.
In Table I, we list some different ai with the corresponding
accessible region of a f , in which aM

f denotes the maximum
accessible value of a f , am

f represents the minimum accessible
value of a f , and 	a f = aM

f − am
f . It is clear that the accessible

region 	a f decreases with the increasing of ai. The reason
may originate from the fact that the population of Pe increases
with the increasing of ai, which results in more dissipation
effect during the system dynamics.

V. CONCLUSION

In summary, based on the idea of reverse engineering, we
proposed a simple scheme to find analytical expressions of the
laser pulse for controlling the evolution of two-level systems
as desired. The laser pulse is reversely solved based on the
general formalism of the density matrix. Thus the scheme
sidesteps the consideration of phases of states’ amplitude
and coherence over previous reverse-engineering methods.
The flexibility in choosing the PCF and CCF ensures us to
predetermine the evolution of system, and design pulse to
control the system as desired. To illustrate the effectiveness
of the scheme, we showed several examples in both closed
and open quantum systems. Numerical simulation shows that
the scheme works well, i.e., the populations and coherence of
the system closely follows the desired one, when the RWA
is strictly satisfied. Notably, the scheme can be applied to
maintain system coherence and populations at the realistic
scenarios including dephasing and thermal noises. Addition-
ally, although the focus is on the laser-driven system control,
the scheme presented here is general and may be applied for
achieving ultrashort laser pulse in the molecule MePeNNA
[62] and modulating the magnetic field for population transi-
tion in spin systems [63,64], and so on. Finally, we leave open
the possibility to generalize the pulse reverse engineering to
the case without the rotating-wave approximation [65,66].
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