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All-optical logic gate based on manipulation of surface polaritons
solitons via external gradient magnetic fields
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We theoretically study the magneto-optical manipulation of surface polaritons (SPs) in the negative index
metamaterial–dielectric interface waveguide system. We analyze the linear and nonlinear propagation properties
of the system when a weak gradient magnetic field is applied. A lossless superluminal SPs soliton is obtained via
active Raman gain. We show that the SPs soliton will deflect in the weak gradient magnetic field (Stern-Gerlach-
like effect); thus, the trajectory of SPs can be controlled by the gradient magnetic field, and dynamic control of
SPs can also be realized by using a time-dependent gradient magnetic field. In addition, a “XNOR”-like logic
gate is realized based on the trajectory control of SPs with external magnetic field and the interaction of the SPs
soliton. This paper has certain theoretical significance for nanoscale optical information processing.
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I. INTRODUCTION

The surface-plasmon polariton (SPP) is a strongly con-
fined electromagnetic (EM) mode associated with collective
surface-plasmon oscillation. It confines the EM energy into
the subwavelength space region near the metal-dielectric in-
terface, which makes it promising for future on chips inte-
grated optics [1], quantum plasmonic circuitry [2], etc. Thus,
SPPs have huge potential for nanoscale quantum information
processing and communication.

However, the practical application of SPPs is limited by the
high Ohmic loss in metals. Several schemes for compensating
the Ohmic loss have been proposed. In 2008, Kamli et al.
suggested to replace the metal with negative-index meta-
material (NIMM) and place an electromagnetically induced
transparency medium at the NIMM-dielectric interface [3].
They found that the surface polaritons (SPs), the surface
electromagnetic waves propagating along a dielectric-NIMM
interface, can propagate with very small attenuation. Then,
this technic was developed to obtain large phase shifts [4],
maximum entangled states of two optical pulses [5], and slow
light propagation [6] of SPs, while simultaneously avoiding
losses. More recently, the lossless SPs scheme was extended
for nonlinear-SPs rogue waves and breathers excitation, and
frequency-comb generation [7,8]. Gain-assisted schemes can
also compensate Ohmic loss, such as electromagnetically
induced gain [9]. Furthermore, other gain schemes including
coherent population oscillation [10] and active Raman gain
(ARG) [11] have been used in the NIMM-dielectric interface
to excite low-loss nonlinear-SPs solitons.

On the road towards practical SPP and SPs devices, not
only Ohmic loss needs to be overcome, but also the effective
manipulating methods need to be explored. Such methods
have been widely studied, such as nanostructure engineering
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[12,13] and active plasmonic technologies [1,14–16]. And
to active control SPPs and SPs, external field is needed.
Recently, many researchers have shown special interest in
controlling SPPs with external magnetic field and have made
great progresses, such as transmission control [17,18], intense
modulation [19], ultrafast switches [20], etc.

Nevertheless, the track manipulation of SPPs with external
magnetic field may be attractive for designing novel optical
integrated circuits components. Manipulation of laser beams
via external gradient magnetic fields in atomic gases has
been observed and studied extensively, which is known as the
optical Stern-Gerlach effect [21–25]. But to our knowledge,
such effect has not yet been reported on SPPs or SPs.

In this paper, we propose a scheme to manipulate SPs
via external magnetic field in the NIMM-dielectric interface
waveguide, and achieve the ultra-low-loss propagation of SPs
solitons via ARG. We show that the propagation track of SPs
solitons is controllable as the form of the gradient function of
external static magnetic field changes, and a dynamic manip-
ulation is realized when a time-dependent gradient magnetic
field is applied. Furthermore, an all-optical “XNOR”-like
logic gate is demonstrated based on a specially designed
gradient magnetic field and the SPs soliton interaction.

II. THEORETICAL MODEL

We consider a planar waveguide system consisting of a
NIMM and dielectric. We assume the NIMM occupies the
lower half-infinity plane while the dielectric stays in the upper
half-infinity plane as shown in Fig. 1(a). ε1 (ε2) and μ1 (μ2)
is permittivity and permeability of the NIMM (dielectric),
respectively, and the frequency dependencies of ε1 and μ1

are given by the Drude model [3] in the optical region.
The dielectric is chosen as the ARG medium, which has a
�-type energy-levels configuration [Fig. 1(b)], interacting
with a weak, pulsed probe field at center angular fre-
quency ωp (coupling with |2〉 ↔ |3〉 transition) and a strong,
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FIG. 1. (a) A schematic of manipulating ultra-low-loss SPs in a
NIMM dielectric interface waveguide. The waveguide is structured
by a half-space NIMM and half-space ARG medium. The SPs wave
is excited by an obliquely incident probe laser, and the vertically
incident control laser provides an active gain to balance absorption.
(b) �-type energy configuration of the ARG medium. To obtain a
suitable gain and suppress the Doppler effect, the control field is far
detuned by �3. (c) Applied magnetic field to manipulate the SPs. The
magnetic field is along the waveguide interface in the x direction and
the gradient direction is parallel to the y axis.

continuous-wave control field at center angular frequency ωc

with a far detuning (coupling with |1〉 ↔ |3〉 transition). The
probe field is chosen as the transverse magnetic (TM) mode
of SPs, and the control field is chosen as the plane wave.
There exist decay phenomena due to the finite lifetime of
state | j〉, which is described by decay rate γ j ( j = 2, 3).
Two-photon (one-photon) detuning is represented by �2(�3).
Note that the decay γ j is introduced phenomenologically
to describe the dephasing of the system, which is mainly
contributed by spontaneous emission, and also includes other
dephasing processes, such as elastic collision. The coordinate
system is set as illustrated in Fig. 1(a). The SPs are excited
and propagate along the interface of the waveguide in the
x direction while the control field is vertically incident. The
corresponding electric field of the probe and control field
are Ep = Ep(x, y, t )up(z) exp [i(βx − ωpt )] + c.c. and Ec =
Ecŷ exp [i(kcz − ωct )] + c.c., where El (l = p, c) is the ampli-
tude of the electric field, up(z) is the mode function in the z
direction resulting from the dielectric-NIMM interface, and
β(ωp) = ωp[εr1εr2(εr1μr2 − εr2μr1)/(ε2

r1 − ε2
r2)]1/2/c and kc

are the propagate constant of the probe field and control field,
respectively. The imaginary part of the β(ωp) characterizes
the absorption of the waveguide, which is contributed by
both electric and magnetic absorption response of the NIMM.
The optical frequency ωp is chosen to make the electric and
magnetic absorption destructive interference, thus the total ab-
sorption is largely reduced [3,8,10]. The explicit expressions
of the EM field are given in Appendix A.

An external gradient magnetic field is parallel to the x di-
rection and inhomogeneous in the y direction [Fig. 1(c)]; such
magnetic field is described by B(y) = B0(y)x̂. The existence
of the external magnetic field will cause a Zeeman level shift
of energy level Ej , which reads �Ej,Zeemma = μBgj

Fm j
FB0(y)

with μB the Bohr magneton, gj
F the gyromagnetic factor, m j

F
the magnetic quantum number, and superscript j indicating
the state number. The energy shift finally induces a correction

to the detuning: �′
2(3) = �2(3) − μ2(3)1B0(y), where μ jl =

μB(gj
Fm j

F − gl
Fml

F)/h̄. Here, h̄ is Planck’s constant.
In the interaction picture with electric dipole and

rotating-wave approximations, the Hamiltonian of the
system reads ĤI = −h̄

∑
j �

′
j | j〉〈 j| − h̄[�c|3〉〈1| + exp (iθp)

ζp(z)�p|3〉〈2| + H.c.], where �c = (ŷ · p13)Ec/h̄,�p = |p23|
Ep(x, y, t )/h̄, ζp(z) = up(z) · e23. Here, p jl is the electric
dipole matrix element related to the states | j〉 and |l〉, and
θp = [β + k2 − k3]x is the phase mismatch caused by the
eigendispersion β of SPs, with k2(3) the wave number of state
|2(3)〉.

Deriving from the Schrödinger equation and Maxwell
equation, we can obtain the dynamic equations of the system,
which read(

i
∂

∂t
+ d2

)
A2 + e−iθ∗

p ζ ∗
p (z)�∗

pA3 = 0, (1a)

(
i
∂

∂t
+ d3

)
A3+eiθpζp(z)�pA2 + �cA1 = 0, (1b)

|A1|2 + |A2|2 + |A3|2 = 1, (1c)

eiθpζp(z)

(
L̂ + 1

2β

∂2

∂y2

)
�p + κ23A3A∗

2 = 0, (1d)

L̂ = i

(
∂

∂x
+ 1

neff

1

c

∂

∂t

)
,

(1e)

with Aj the state amplitude of state | j〉; d2(3) = �′
2(3) + iγ2(3)

the dephasing parameter; L̂ the wave operator; neff and c
the effective refractive index and speed of light in vacuum,
respectively; and κ23 = Na|p23|2ω2

p/(2ε0 h̄βc2) the coupling
strength where Na is atoms concentration and ε0 is per-
mittivity of free space. Note that our system is under the
ARG scheme, which is off-resonant excitation; thus, using
the amplitude equations based on the Schrödinger equation
together with the Maxwell equation is still a good approach to
describe the system [26].

Based on the multiscale method [26], the asymp-
totic expansions are used: Aj = A(0)

j + ε1A(1)
j + ε2A(2)

j + · · · ,

( j = 1, 2, 3), dj = d (0)
j + ε1d (1)

j + ε2d (2)
j , ( j = 2, 3), �p =

ε1�(1)
p + ε2�(2)

p + · · · . To obtain a divergence-free expan-
sion, all quantities on the right-hand side of the expansions are
considered as functions of the multiscale variables zl = εl z
(l = 0, 1, 2) and tl = εl t (l = 0, 1). Here, ε is a dimensionless
small parameter characterizing the typical amplitude ratio of
the probe field and the control field. Then Eqs. (1a)–(1d) can
be solved order by order.

III. The LINEAR PROPERTY OF THE SYSTEM

First, we will show the possibility to make ultra-low-
loss propagating SPs via ARG. To this end, we analyze
the linear dispersion property of the system. When the
probe field is absent (corresponding to the zeroth-order
solution), the state amplitude of the system reads A(0)

1 =
|d (0)

3 |/
√

|�c|2 + |d (0)
3 |2, A(0)

2 = 0, and A(0)
3 = −�cA(0)

1 /d (0)
3

with d (0)
2(3) = �2(3) + iγ2(3). Due to the fact that the control

laser is vertically incident, the steady state is homogeneous.
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FIG. 2. (a) Time evolution of the population in states |1〉 (red
line), |2〉 (green line), and |3〉 (blue line). (b) Negative imaginary
part (gain) −Im(K ) as a function of ω.

Notice that the external magnetic field is assumed to be the
order of ε2; thus, it has no effect on the zeroth-order solu-
tion, or on the first-order solution, i.e., the linear dispersion
property. The first-order solution is �(1)

p = Feiθ with θ =
(K (ω)x0 − ωt0) and F is a slowly varying envelope function
of multiscale variables yet to be determined. Following the
calculated routine we obtain the linear dispersion of SPs
interacting with the ARG medium:

K (ω) = 1

neff

ω

c
+ κ23

∣∣A(0)
3

∣∣2

ω − d∗(0)
2

. (2)

The explicit expressions of the first-order solution are given
in Appendix B. We should be aware that ω is the angular
frequency shift to the center frequency ωp. The imaginary part
of K (ω) characterizes the linear absorption (positive sign) or
gain (negative sign) of the probe field, which reads

K̃ (ω) = − κ23γ2

∣∣A(0)
3

∣∣2

(ω − �2)2 + γ 2
2

. (3)

Figure 2(a) shows the time evolution of the population
in states |1〉 (red line), |2〉 (green line), and |3〉 (blue line).
System parameters of the ARG medium are chosen as
γ1 = 0, γ2 = 2π × 103 s−1, γ3 = 2π × 3 × 106 s−1 [27,28].
Other parameters are �2 = 0, �3 = 2π × 108 s−1,�c =
2π × 6 × 106 s−1. In Fig. 2(a), the initial-states amplitude
is A1 = A3 = 1/

√
2, A2 = 0, and the probe field is absent

(�p = 0); we can find that the population on state |3〉 is
oscillating, and damping quickly, and becoming stable, and
the nonvanishing population on state |3〉 can provide an active
gain to the SPs.

In Eq. (3), we know that, as long as the population on state
|3〉 is not vanished (i.e., A(0)

3 �= 0) or, equivalently, the strong
control field is present in the system, the sign on the right-hand
side of Eq. (3) keeps negative, which means the probe SPs
always receive a gain from the system. Shown in Fig. 2(b) is
the gain spectrum −Im[K (ω)] [with κ23 = 1 × 108 cm−1 s−1;
other parameters are the same as those in Fig. 2(a)], which is
resulted from the nonvanished population on state |3〉.

According to the previous work [3,10], in order to reserve
the longitudinal compression of the SPs, the center frequency
ωp is located in the domain where there exists absorption
(caused by Ohmic loss), i.e., β̃(ωp) = Im[β(ωp)] > 0. When
the eigenabsorption caused by Ohmic loss and linear gain
provided by the ARG medium is balanced, the SPs will
propagate without any loss. Then we get the no loss condi-
tion: K̃ (ω) + β̃(ωp) = 0. This condition indicates that we can

adjust the two-photon detuning �2 to obtain lossless SPs, and
the special detuning reads

�2,lossless = ω ±
√

γ2β̃(ωp)
[
κ23

∣∣A(0)
3

∣∣2 − γ2β̃(ωp)
]

β̃(ωp)
. (4)

In a realistic system, when the detuning �2 is near the value
as in Eq. (4), the lossless condition is still satisfied approx-
imately. In other words, an ultra-low-loss SP is possible to
obtain in this system.

Further more, it can be seen from the above analysis that
whether the control field is on or off is essential. If we turn
off the control field, the linear gain will disappear and the
SPs suffer from a severe eigenabsorption. Such a controllable
absorption of the SPs scheme is useful to design modulators
or all-optical switches [1,16].

IV. MANIPULATING THE SP SOLITON VIA
THE GRADIENT MAGNETIC FIELD

The first-order solution gives the linear dispersion of the
SPs, as well as all high-order dispersion relations: Kl (ω) =
∂ lK (ω)/∂ωl (l = 1, 2, 3, · · · ). Nevertheless, we are more
interested in a shape-preserving propagation of the probe
field, i.e., the SPs soliton. Thus we will derive the nonlinear
evolution equation of the probe field.

In the second order, a divergency-free solution of �(2)
p

requires

∂F
∂x1

+ 1

Vg

∂F
∂t1

= 0, (5)

which means the envelope F travels with complex group
velocity Vg = K−1

1 . In this system, due to the ARG effect, the
group velocity of the SPs can be superluminal, i.e., the group
velocity vg = Re[Vg] < 0 [29,30]. Another favorable feature
of our system is the giant Kerr effect. On the one hand, the
ARG medium provides a considerable nonlinearity which is
approximately 1011 times larger than the conventional one
[31]. On the other hand, the waveguide system tightly confines
the EM field to the interface, and the light-matter interaction
is enhanced locally, which produces an extra enhancement
on nonlinearity. Thus, in such a lossless system, it is easy
to balance the dispersion (or diffraction) and the nonlinearity,
and to obtain SPs solitons.

In the third-order solutions, the solvability of third order
�(3)

p gives

i

(
∂F
∂x2

+ 1

Vg

∂F
∂t2

)
+ 1

2β

∂2F
∂y2

1

− K2

2

∂2F
∂t2

1

+W |F |2Fe−2ᾱx2 + MB(2)F = 0, (6)

with the average nonlinear coefficient

W = κ23

ω − d∗(0)
2

(
A∗(0)

3 a(2)
31 + A(0)

3 a∗(2)
31

)
ge (7)
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and

M = − κ23

ω − d∗(0)
2

{∣∣A(0)
3

∣∣2
μ21

ω − d∗(0)
2

−
[(

1 − �3

∣∣A(0)
3

∣∣2

d∗(0)
3

)∣∣A(0)
3

∣∣2

d (0)
3

+ c.c.

]
μ31

}
, (8)

and B(2) = B(y)/ε2. Coefficient a(2)
31 is given in

Appendix B. Here, ge = ∫ |ζp(z)|4dz/
∫ |ζp(z)|2dz is the

enhancement factor due to the waveguide confinement. Then
the self-Kerr susceptibility reads

χ (3) = 2c

ωp

|p23|2
h̄2 W = geχ

(3)
0 , (9)

where p23 is the transition dipole matrix element correspond-
ing to the probe transition, and χ

(3)
0 is the Kerr susceptibility

in the no-waveguide system [31].
Combining Eqs. (5) and (6), and returning to the original

variables, we can obtain the evolution equation of envelope
U = �p exp (−iαx):

i

(
∂

∂x
+ 1

Vg

∂

∂t
+ α

)
U + 1

2β

∂2U

∂y2
− K2

2

∂2U

∂t2

+W |U |2U + MB(y)U = 0, (10)

with α = Im[β(ωp) + K (0)].
We make a Galileo transformation and normalize the

variables to their typical scales, i.e., u = U/U0, s = (x −
vgt )/LDiff , ξ = y/Ry, τ = t/τ0, with Ry the transverse radius
of the probe pulse, LDiff = β̄R2

y the typical diffraction length,
U0 the typical Rabi frequency, τ0 the pulse duration of the
probe pulse, and the bar over the symbol denoting its real part.
Then we obtain the dimensionless form of Eq. (10):

i

λ

∂u

∂τ
+ 1

2

∂2u

∂ξ 2
+ g1|u|2u + g2(ξ, τ )u

= −ig3u + g4

2

(
λ2 ∂2u

∂s2
− 2λ

∂2u

∂τ∂s
+ ∂2u

∂τ 2

)
, (11)

with g1 = LDiff/LN , g2 = LDiff MB(ξ, τ ), g3 = LDiff/LA,

g4 = LDiff/LDisp, λ = vgτ0/LDiff . And LN = 1/U 2
0 Re(W ),

LA = 1/α, and LDisp = τ 2
0 /Re(K2) are typical nonlinear

length, absorption length, and group velocity dispersion
length, respectively.

Considering a probe field with large pulse duration τ0, such
that the group-velocity dispersion [GVD, K2(ω)] will not take
effect over the finite ARG medium length, i.e., g4 	 1, and
using the method we discussed in the previous section, the
absorption can be made negligibly small, then g3 	 1. Thus
Eq. (11) is simplified to

i

λ

∂u

∂τ
+ 1

2

∂2u

∂ξ 2
+ g1|u|2u + g2(ξ, τ )u = 0, (12)

which is a nonlinear Schrödinger equation with an external
potential g2(ξ, τ ) resulting from the external magnetic field.
The terms proportional to λ and λ2 are also neglected; we
will show the reason later. Note that the imaginary parts of
all coefficients in the equation are ignored. This is valid if a
realistic set of parameters can be found to make the imaginary

part of these coefficients negligibly small compared with their
corresponding real parts. When the nonlinearity balances the
diffraction effect, g1 = 1 and thus the typical Rabi frequency

reads U0 = 1/
√

β̄|W̄ |R2
y .

It is obvious that variable s is not apparent in Eq. (12),
thus we can write the solution of this equation as u(τ, s, ξ ) =
w(s)v(τ, ξ ), where w(s) is a traveling wave function describ-
ing the propagation character along the x direction. After
integrating over the variable s, Eq. (12) becomes

i

λ

∂v

∂τ
+ 1

2

∂2v

∂ξ 2
+ g̃1|v|2v + g2(ξ, τ )v = 0, (13)

with g̃1 = g1
∫ ∞
−∞ |w|2ds/

∫ ∞
−∞ wds. Without loss of

generality, we take it as a Gaussian profile w(s) =
(1/

√
2πρ2

0 ) exp [−s2/(2ρ2
0 )], and ρ0 is a free parameter.

This means the SPs soliton propagates with x component
x = vgt = LDiffλτ . With the above assumption, the terms
proportional to λ and λ2 in Eq. (11) are vanished after
integrating over s.

Following the equivalent-particle theory [32,33], we get
the shape-preserving solution of Eq. (13):

v(τ ′, ξ ) = ηsech{η[ξ − ξp(τ ′)]} exp {i[vp(τ ′)ξ + σ (τ ′)]},
(14)

where ξp(τ ′) = 〈ξ 〉T is the central position of the soliton,
vp(τ ′) = dξp/dτ ′, dσ/dτ ′ = [η2 − v2

p(τ ′)]/2 where η is the
amplitude parameter, and τ ′ = λτ . The operator 〈 f 〉T =∫ +∞
−∞ f |v|2dξ/

∫ +∞
−∞ |v|2dξ donates the transverse average

value. The solution reveals that the soliton will obtain a
transverse velocity vp, and then obtain a transverse position
shift ξp. The equation of transverse motion reads [32,33]

d2ξp

dτ ′2 = −∂Up

∂ξp
, (15)

with Up the equivalent potential, ∂ξpUp = −〈∂ξ (g2)〉T , and
the initial values are ξp(0) = ξ0, ξ

′
p(0) = 0. When the exter-

nal magnetic field is absent (g2 = 0) or homogeneous, ξp =
ξ0, vp = 0, the SPs soliton will keep its propagate direction
under this condition.

We choose a set of realistic parameters to perform our anal-
ysis. The corresponding energy levels of the ARG medium are
|1〉 = |5 2S1/2, F = 2, mF = 2〉, gF = −1/3, |2〉 = |5 2S1/2,

F = 3, mF = 2〉, gF = 1/3, |3〉 = |5 2P3/2, F = 3, mF = 2〉,
gF = 7/18 [28]. The decay rates parameters are the same as
the former section; other parameters read τ0 = 5 μs, �2 =
2π × 1.4 × 105 s−1, �3 = 2π × 5.2 × 108 s−1, �c = 2π ×
5 × 107 s−1, κ23 = 1 × 109 cm−1 s−1, Ry = 10 μm, ωc ≈
ωp = 2π × 3.85 × 1014 s−1 (corresponds to wavelength λc ≈
λp = 780 nm), β(ωp) = (9.19 + 0.000 13) × 104 cm−1, then
U0 = 2π × 4.98 × 106 s−1, K = (−1.03 + 0.0072i) ×
10 cm−1, K1 = −(1.15 + 0.016) × 10−1 s cm−1, K2 =
−(2.58 + 0.054) × 10−11 s2 cm−1, W = (1.11 + 0.0078) ×
10−13 s2 cm−1, LDiff = 0.92 mm, Ldisp = 9.71 mm, Labs =
1/α = 7.91 mm, λ ≈ −5, M = −(1.35 + 0.019i) ×
108 m−1 T−1. It is obvious that the dispersion length and
absorption length are much longer than diffraction length,
thus it is reasonable to neglect the GVD term in Eq. (11). And
for the coefficients in Eq. (12), the imaginary parts are indeed
much smaller than their corresponding real parts, and, as a
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FIG. 3. Deflection of the SPs soliton. The bright light spots rep-
resent |�p/U0|. Traveling trajectory of the SP soliton under the action
of (a) linear gradient magnetic field B0(y) = kLy (with gradient kL =
−0.04 T m−1) and (b) time-dependent linear gradient magnetic field
B0(y, t ) = kT f (t )y [with kT = −0.3 T m−1, f (t ) = cos(3t/τ0 )]. The
green dashed lines in panels (a) and (b) are theoretical trajectory
calculated from Eq. (15).

result, to drop the imaginary part for these coefficients is also
reliable.

Shown in Fig. 3 are the wave shape |�p/U0| for a single
superluminal SPs soliton and its trajectory deflection under
the external gradient magnetic field, which is obtained numer-
ically from Eq. (12).

Figure 3(a) shows the deflect effect of the SPs soliton
with a static external magnetic field B0(y) = kLy with gradient
kL = −0.04 T m−1. In this case, the equivalent potential Up =
−kLMξp, with M = M̄β̄R3

y , then we obtain the trajectory
equation by solving Eq. (15): ξp = kLMλ2τ 2/2 or, equiv-
alently, y = kLMRyx2/(2L2

Diff ), which is a parabola, and is
shown in Fig. 3(a) with green dashed line. We see that the
theoretical result of the trajectory fits the numerical result
well. The trajectory of SPs can be manipulated by changing
the gradient kL.

Figure 3(b) shows the dynamic deflect effect of the
SPs soliton with a time-dependent external magnetic
field B0(y, t ) = kT f (t )y with gradient kT = −0.3 T m−1,

f (t ) = cos(3t/τ0). Corresponding equivalent potential Up =
−kTMξp cos(3τ ), thus the trajectory equation is ξp =
kTMλ2[1 − cos(3τ )]/9 or, equivalently, y = kTMλ2[1 −
cos(3x/λLDiff )]/9 and it is a cosine curve. The green dashed
line in Fig. 3(b) is given by the above analytic expression
of the trajectory. We see that under a cosine-varied gradient
magnetic field the trace of the SPs soliton is a cosine curve,
and the numerical result agrees with the theoretical result well.

The technique of manipulating the SPs with gradient mag-
netic field, both of static and dynamic manipulating, may be
useful for optical information processing.

V. XNOR-LIKE LOGIC GATE BASED ON DEFLECT
EFFECT OF THE SP SOLITON

Based on the deflect effect of the SPs soliton, we designed
a XNOR-like logic gate. We apply a time-dependent gradient
magnetic field to the system. The gradient function has a
triangle profile, which is given by g(y) = ky tanh(y/Ry), and
the time variation is described by f (t ) = 2[h(τ1 − t/τ0) +
h(t/τ0 − τ2)] − 1, where h(τ ) is the Heaviside unit step func-
tion, and τ1 and τ2 are the times at which the external gradient
magnetic field changes its sign for the first time and the second
time, respectively.

FIG. 4. Logical operation of the XNOR gate. (a) The 3D view
of wave shape |�p/U0|, (b) input signal amplitude �̄p/U0[�̄p =
Re(�p)], and (c) output signal wave shape |�p/U0| for the logical
operation “1 XNOR 1=1.” (d) The 3D view of wave shape |�p/U0|,
(e) input signal amplitude �̄p/U0[�̄p = Re(�p)], and (f) output
signal wave shape |�p/U0| for the logical operation “1 XNOR 0=0.”

The input signals are two SPs solitons located in the
symmetrical positions in the y axis with the same ampli-
tude: �p/U0 = ηsech[η(ξ + ξ0)] exp (σ1π i) + ηsech[η(ξ −
ξ0)] exp (σ2π i), where σ1(2) = 0, 1 is the phase difference
parameter, η is the amplitude parameter, and ξ0 is the position
parameter. If |σ1 − σ2| = 1(0) then the phase difference of
the two signals is π (0). In our design, the value of σ1(2)

is a “0 − 1” logical variable. In the following simulation,
k = −0.3 T m−1, τ1 = 0.8, τ2 = 1.4, ξ0 = 5.5, η = −2, and
other parameters are the same as given above.

At the beginning, the two signals are distant from each
other and the interaction between them is weak, and both of
them will propagate straight to the other side of the NIMM
waveguide. However, when the designed magnetic field is
applied to the system, the gradient of the magnetic field is
symmetrical about the x axis, thus the two input signals will
deflect in the opposite direction, and they will grow closer to
or more distant from each other, depending on the sign of the
gradient of the magnetic field. In our system, they will grow
closer to each other. As the distance between the two signals
decreases, the interaction between them tends to be stronger,
and they will be mutually attractive (the phase difference
of the two input signals is zero) or mutually exclusive (the
phase difference of the two input signals is π ) [34]. The
time variation is designed to change the sign of the magnetic
gradient for two times, which will lead to the relative velocity
(y component) of the two signals first accelerating from zero
and then decreasing to near zero, and the relative distance
decreases. When the sign of the magnetic gradient changes
twice, the two SPs soliton signals will keep interacting and
colliding periodically, and there will be an output signal in the
other side of the NIMM waveguide.

As shown in Figs. 4(a) and 4(d), the two input signals come
into the waveguide at position x = 0 and output a signal at po-
sition x = 15LDiff . Figure 4(a) illustrates the case |σ1 − σ2| =
0, we set σ1 = σ2 = 1, and the input signal’s wave shape
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�̄p/U0[�̄p = Re(�p)] is presented in Fig. 4(b). The same
phase of the two SPs solitons causes attractive interaction, and
the amplitude is enhanced when the two solitons collide. The
enhanced center amplitude |�p/U0| is used as an output signal
representing the logical “1,” demonstrated in Fig. 4(c). Thus,
logical operation “1 XNOR 1=1” is realized. If the input is
σ1 = σ2 = 0, the output will not change, and logical operation
“0 XNOR 0=1” is obtained.

Figure 4(d) illustrates the wave shape |�p/U0| in the case
|σ1 − σ2| = 1. We set σ1 = 1, σ2 = 0, and the input signal’s
wave shape �̄p/U0[�̄p = Re(�p)] is presented in Fig. 4(e).
The π phase difference of the two SPs solitons causes exclu-
sive interaction, and the amplitude becomes extremely small
at the collision center when the two SPs solitons collide. This
means a weak intensity of |�p/U0| will present at the collision
center, and it can be used as an output signal representing the
logical “0,” as shown in Fig. 4(f). Then we realize the logical
operation “1 XNOR 0=0,” and if the input is σ1 = 0, σ2 = 1,
we also can get the logical operation “0 XNOR 1=0.”

VI. CONCLUSIONS

In conclusion, we have proposed a scheme to manipulate
SPs with external gradient magnetic field. We have shown that
a lossless SPs soliton can be obtained in the NIMM-dielectric
interface waveguide via ARG effect. And in this system, the

SPs soliton can be deflected in the external gradient magnetic
field, both in a static and in a dynamic way, thus the trajectory
of the SPs soliton can be manipulated by external gradient
magnetic fields. Furthermore, we have designed a XNOR-like
logic gate in a NIMM-ARG medium system with a special
external gradient magnetic field. The results reported here
suggest a way to manipulate SPs and may have potential
applications for optical information processing.
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APPENDIX A: THE TM MODE OF
THE EM FIELD

The permittivity (εr1) and the permeability (μr1)
of a NIMM can be described by the Drude model,
i.e., εr1(ωp) = ε∞ − ω2

e/ωp(ωp + iγe), μr1(ωp) = μ∞ −
ω2

m/ωp(ωp + iγm), where ωe,m are electric and magnetic
plasma frequencies of the NIMM, γe,m are corresponding
decay rates, and ε∞ and μ∞ are background constants.

The quantized probe field reads [3]

Ep(r, t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− c

ωpεr1
(β ẑ + ik1x̂)ek1zei(βx−ωpt )Ê0 + c.c., z < 0

− c

ωpεr2
(β ẑ − ik2x̂)e−k2zei(βx−ωpt )Ê0 + c.c., z > 0

(A1)

where k2
j = β2 − εr jμr jω

2
p/c2 ( j = 1 for the NIMM, j =

2 for the dielectric) satisfies the relation k1εr2 = −k2εr2,
which gives the propagation constant of the SPs, i.e.,
β(ωp) = ωp[εr1εr2(εr1μr2 − εr2μr1)/(ε2

r1 − ε2
r2)]1/2/c; Ê0 =√

h̄ωp/ε0V â(ωp) is the field operator; â(ωp) is the creation
operator of TM photons; V = LxLyLz is the effective volume,
where Lx and Ly are the lengths of the NIMM-dielectric
interface in the x and y directions, respectively; and Lz is the
effective length characterizing EM-field confinement in the z
direction, which is defined as

Lz ≡
∑
j=1,2

1

2Re(k j )

(
ε̃r j

|εr j |2
|β|2 + |k j |2

k2
0

+ μ̃r j

)
, (A2)

with ε̃r ≡ Re[∂ (ωpεr )/∂ωp], μ̃r ≡ Re[∂ (ωpμr )/∂ωp].
When the dielectric is chosen as the ARG medium,

and the photon number of the laser field is much larger
than unity, thus â(ωp) can be taken as quantity func-
tion a(r, t ); the pulsed EM field in the ARG medium
then becomes Ep(r, t ) = Ep(r, t )up(z) exp [i(βx − ωpt )] +
c.c., with Ep(r, t ) = √

h̄ωp/ε0V a(r, t ); and, according to
Eq. (A1), the mode function reads up(z) = −c[β(ωp)ẑ −
ik2(ωp)x̂)ek2z]/εr2ωp.

In our analysis, the above system parameters are
given by ε∞ = 1, μ∞ = 1, ωe = 1.37 × 1016 s−1, ωm =
2.45 × 1015 s−1, γe = 2.73 × 1013 s−1 (as for Ag), and
γm = γe/1000.

APPENDIX B: MULTISCALE METHOD AND THE
EXPLICIT EXPRESSIONS OF THE FIRST- AND

SECOND-ORDER SOLUTIONS

In multiscale method, the expansions of the derivative
read ∂/∂t = ∂/∂t0 + ε∂/∂t1 + ε2∂/∂t2, ∂/∂x = ∂/∂x0 +
ε∂/∂x1 + ε2∂/∂x2, ∂/∂y = ε∂/∂y1. Substituting all
expansions into the system equations, we obtain a series
of linear but inhomogeneous equations in each order:

(
i

∂

∂t0
+ d (0)

2

)
A( j)

2 + A(0)
3 ζ ∗

p (z)e−iθ∗
p �∗( j)

p = M ( j), (B1a)

(
i

∂

∂t0
+ d (0)

3

)
A( j)

3 + �cA( j)
1 = N ( j), (B1b)

(
A∗(0)

1 A( j)
1 + A∗(0)

3 A( j)
3

)
+ c.c. = P( j), (B1c)

L̂1�
( j)
p ζp(z)eiθp + κ23A(0)

3 A∗( j)
2 = Q( j), (B1d)
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and the expressions on the right-hand side of the above
equations are

M ( j) = h( j − 2)(−1)ζ ∗
p (z)e−iθ∗

p

j−1∑
m=1

�( j−m)
p A(m)

3

+ h( j − 2)(−1)

(
i

∂

∂t1
+ d (1)

2

)
A( j−1)

2

+ h( j − 3)(−1)

(
i

∂

∂t2
+ d (2)

2

)
A( j−2)

2 , (B2)

N ( j) = h( j − 2)(−1)ζp(z)eiθp

j−1∑
m=1

�( j−m)
p A(m)

2

+ h( j − 2)(−1)

(
i

∂

∂t1
+ d (1)

3

)
A( j−1)

3

+ h( j − 3)(−1)

(
i

∂

∂t2
+ d (2)

3

)
A( j−2)

3

+ δ1 j (−1)d (1)
3 A(0)

3 + δ2 j (−1)d (2)
3 A(0)

3 , (B3)

P( j) = 2δ0 j − h( j − 2)
3∑

k=1

j−1∑
m=1

Aj−m
k A∗(m)

k , (B4)

Q( j) = h( j − 2)(−1)i

(
∂

∂x1
+ 1

neff

1

c

∂

∂t1

)
�( j−1)

p ζp(z)eiθp

+ h( j − 3)(−1)i

(
∂

∂x2
+ 1

neff

1

c

∂

∂t2

)
�( j−2)

p ζp(z)eiθp

+ h( j − 3)(−1)
1

2β

∂2

∂y2
1

�( j−2)
p ζp(z)eiθp

+ h( j − 2)(−1)κ23

j−1∑
m=1

A( j−m)
3 A∗(m)

2 , (B5)

where h(x) is the Heaviside unit step function, and δi j is
the Kronecker delta symbol. Note that in our analysis the
external magnetic field is assumed to be the order of ε2,
then in the above equations d (0)

2(3) = �2(3) + iγ2(3), d (1)
2(3) =

0, ε2d (2)
2(3) = −μ2(3)1B(y). Solving the above equations order

by order, we can obtain the solution in each order.
We define some new operators: L̂1 = i(∂/∂x0 +

c−1n−1
neff∂/∂t0), L̂2 = i∂/∂t0 + d (0)

2 , L̂ = L̂∗
2 L̂1 − κ23|A(0)

3 |2,
where L̂∗

2 is the conjugate operator of L̂2. Then we obtain the
formal solution of Eqs. (B1):

A( j)
2 = 1

κ23A∗(0)
3

[
Q∗( j) − L̂∗

1�
∗( j)
p ζ ∗

p (z)e−iθ∗
p
]
, (B6)

A( j)
3 = 1

d (0)
3

(
N ( j) − �cA( j)

1

)
, (B7)

and �
( j)
p satisfy L̂�

( j)
p ζp(z)eiθp = S( j) with S( j) = L̂∗

2Q( j) −
κ23A(0)

3 M∗( j).

Then we will give the explicit form of the solutions in the
first and second order.

1. First-order solutions

For the case j = 1, we can obtain M (1) = N (1) = P(1) =
Q(1) = S(1) = 0; then it reduces to linear problem L̂�(1)

p = 0.
So we introduce a trial solution �(1)

p = F exp (iθ ), where F is
the slowly varying envelope of the probe field (a function of
slow variables), θ = K (ω)x0 − ωt0. From the formal solution,
we obtain

A(1)
1 = A(1)

3 = 0, (B8)

A(1)
2 = A(0)

3

ω − d (0)
2

F∗e−iθ∗
ζ ∗

p (z)e−iθ∗
p

= a(1)
2 F∗e−iθ∗

ζ ∗
p (z)e−iθ∗

p . (B9)

2. Second-order solutions

For the case j = 2, we can obtain the expressions of
M (2), N (2), P(2), Q(2), S(2) by substituting the zeroth- and first-
order solutions into Eqs. (B2)–(B5). The eigenproblem of �(2)

p

gives �(2)
p = 0, then we obtain the second-order solution:

A(2)
1 = a(2)

11 |F |2e−2θ ′′ |ζp(z)|2e−2θ ′′
p + a(2)

12 , (B10)

A(2)
2 = a(2)

2

∂F∗

∂t1
e−iθ∗

ζ ∗
p (z)e−iθ∗

p , (B11)

A(2)
3 = a(2)

31 |F |2e−2θ ′′ |ζp(z)|2e−2θ ′′
p + a(2)

32 , (B12)

with the coefficients

a(2)
11 = 1

2A(0)
1

∣∣A(0)
3

∣∣2

|�c|2 + ∣∣d (0)
3

∣∣2

× d (0)
3

(
ω − d (0)

2

) + c.c. − ∣∣d (0)
3

∣∣2∣∣ω − d (0)
2

∣∣2 , (B13a)

a(2)
12 = 1

2A(0)
1

∣∣A(0)
3

∣∣2

|�c|2 + ∣∣d (0)
3

∣∣2

(
d (2)

3 d∗(0)
3 + c.c.

)
, (B13b)

a(2)
2 = i

κ23A∗(0)
3

(
1

neff

1

c
− 1

V ∗
g

)
, (B13c)

a(2)
31 = −a(2)

11 �c

d (0)
3

− A(0)
3

d (0)
3

(
ω − d (0)

2

) , (B13d)

a(2)
32 = −a(2)

12 �c

d (0)
3

− d (2)
3

d (0)
3

A(0)
3 , (B13e)

where θ ′′ = Im(θ ), θ ′′
p = Im(θp).
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