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We study the nonlinearities due to direct perturbation to the dark state in coherent population trapping (CPT).
To extract the susceptibilities of the CPT atoms with respect to probe fields, we treat the CPT dressing fields as
control parameters and redefine susceptibilities with respect to the probe fields alone. With such a redefinition,
we reveal that a CPT-based system displays an ultralarge, resonantly enhanced second-order cross susceptibility
χ (2) together with vanishing linear absorption. Physically, this effect is based on the CPT dark-state shift, which
is traced to the six-photon parametric processes for all involved fields (including the dressing and probe fields).
Because of the lack of the direct perturbation, this effect is absent in the electromagnetically induced transparency
(EIT)-based system, in which only resonantly enhanced third-order (Kerr) susceptibility χ (3) is obtainable but
much weaker than the second-order one. The second-order nonlinearity, because of its stronger effect, can be
more sensitive for quantum nonlinear optics at low light levels than the third-order nonlinearity.
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I. INTRODUCTION

Optical nonlinearity plays an important role in quantum
optics [1,2] and quantum information processing [3], be-
cause it lays foundation for various useful applications, such
as quantum nondemolition measurements [4–10], generation
of squeezing and entanglement [11–15], quantum teleporta-
tion [16–19], and so on. Generally, one expects both large
nonlinear susceptibilities and vanishing linear absorption for
all fields participating in the nonlinear processes [20–33].
These requirements are, however, incompatible with each
other in conventional optical devices. Recently, it was demon-
strated that the third-order (Kerr) nonlinearities are resonantly
enhanced via a coherent perturbation to electromagnetically
induced transparency (EIT) [22–24].

EIT is closely related to coherent population trapping
(CPT). Both of them, as one of the most representative co-
herence effects in laser physics, nonlinear optics and quantum
optics, are common in the dark resonance mechanism but
remarkably different in conditions [34–38]. Typically, they
happen when two optical fields as “dressing fields” are, re-
spectively, coupled to two arms of three-level atoms in �

configuration. On two-photon resonance, the atoms are not
excited but oscillate between two long-lived ground states.
This oscillation is called the “dark resonance” because of the
absence of the excitation. When the dark resonance occurs, the
atoms enter one of the coherent superposition states of the two
ground states. This specific superposition state is called the
“dark state.” The common physics of EIT and CPT lies in the
dark resonance or the dark state. The difference in conditions
lies in the relative amplitudes of the two dressing fields. They
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are in the great disparity for EIT but have comparable or
equal amplitudes for CPT. The EIT atoms stay in the state to
which the weak dressing field couples, while the CPT atoms
are comparably or equally populated in the two ground sates.
This determines the essential difference: considerably weak
coherence for EIT versus large or maximal coherence for
CPT. So far it has been demonstrated that a third-order (Kerr)
nonlinearity is resonantly enhanced through a perturbation
to EIT [22–24]. Because of the disparity in the ground state
populations, however, this perturbation is only applied to the
empty ground state but not to the populated ground state. This
forms an indirect perturbation to the EIT dark state.

A natural question arises: What happens if a direct pertur-
bation is introduced to the dark state? This happens most fre-
quently in the CPT-based systems because of the comparable
or equal populations in the dark state involved ground states.
Because the strong dressing fields and weak probe fields are
both directly coupled to the populated states, the nonlinear-
ities with respect to all involved fields are intertwined with
each other. Particularly, different orders of nonlinearities for
all involved fields can correspond to the same orders only
with respect to the probe fields. Usually, the interest is put
in the nonlinear response to the weak probe fields since the
dressing fields are much stronger and stay unchanged during
the interaction. To extract the response to the weak probe
fields alone, it is reasonable to merge the dressing fields into
the atoms and to treat the atoms plus the dressing fields as an
integrated coherent medium. Different from the usual case, the
new medium consists of not only the atoms but also the fields.
By separating the dressing fields as the control parameters,
we are left with the resulting nonlinearities with respect to
the probe fields alone. It turns out that this provides us with
a convenient way to focus on the nonlinear response to the
weak probe fields only. In the generalized sense we define
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FIG. 1. A CPT atom as a dressed atom consists of a three-level
atom and two dressing fields. The atom interacts with the dressing
fields in � configuration with half Rabi frequencies �1,2. Two-
photon resonance as dark resonance happens between the ground
states |1, 2〉 and does not contribute to the excited state. The atom
is driven into dark state, which is a coherent superposition of |1, 2〉.
When �1 � �2, the atom is populated comparably or equally in
|1, 2〉 and large or maximal coherence is established between them.

the second-order susceptibility. It is clear that this is not
contrary to the fact that second-order nonlinearity vanishes for
a centrosymmetric medium [21].

Here we show that the direct coherent perturbation to the
CPT dark state leads to novel nonlinear effects. One of two
probe fields is applied to one dark resonance arm while the
other probe field is cascaded to the other arm. By examina-
tion we find a giant, resonant enhancement of second-order
susceptibility with respect to the probe fields. As a physical
mechanism, this revealed coherent effect originates from the
CPT dark-state shift, which is dated back to six-photon para-
metric processes for all involved fields (including the dressing
and probe fields). In view of the importance of the dark state,
for consistency we use the dressed-state picture to present
the essential physics and the comprehensive calculation. The
essential physics is revealed by using the eigenvalue approach
while the susceptibilities are derived by using the density ma-
trix approach. These two approaches reach exactly the same
results involving the nonlinear susceptibilities and interaction
Hamiltonian for the probe fields. Three factors are important
for the effect. The first factor is the dark state, which acts as a
premise. Once formed, it stays long and there is no excitation
to the excited state and subsequent spontaneous emission.
The second factor is the photon exchange on one arm of the
dark-resonance in � configuration, and the third factor is the
Stark shift caused via the other arm. It is the combination of
these two factors that leads to the CPT dark-state shift and the
resulting second-order susceptibilities.

The remainder of this article is organized as follows. In
Sec. II we compare different dark states underlying EIT and
CPT. Section III presents the nonlinear response due to direct
perturbation to CPT dark state, and Sec. IV compares the
nonlinear susceptibilities between the EIT and CPT cases.
Finally our conclusion is given in Sec. V.

II. DIFFERENT DARK STATES BETWEEN EIT AND CPT

To discriminate the indirect and direct perturbations to
the dark state we first make a comparison between EIT and
CPT and describe the dark state as a background. As shown
in Fig. 1, an atom has two ground states |1〉 and |2〉 and

the excited state |3〉. Two dressing fields resonantly interact,
respectively, with the two atomic transitions |1〉 ↔ |3〉 and
|2〉 ↔ |3〉 in � configuration. The Hamiltonian for the atom-
field interaction is derived in the electronic dipole approxima-
tion and in an appropriate rotating frame as

H0 = h̄(�1σ31 + �2σ32 + �∗
1σ13 + �∗

2σ23), (1)

where h̄ is the Planck constant, σkl = |k〉〈l| (k, l = 1, 2, 3) are
the projection operators for k = l and the spin-flip operators
k �= l . By �l = −μ3lEl/(2h̄) (l = 1, 2) we denote half Rabi
frequencies, where μ3l are the electric dipole moments and
El are the amplitudes of the dressing fields. As the resonance
conditions, the circular frequencies ωl of the dressing fields
are equal to the resonance circular frequencies ω3l of the two
arms in � configuration, ωl = ω3l .

From the Hamiltonian Eq. (1) we have the equation for the
eigenvalue λ, ∣∣∣∣∣∣∣

−λ 0 �∗
1

0 −λ �∗
2

�1 �2 −λ

∣∣∣∣∣∣∣ = 0. (2)

Solving it we write the Hamiltonian in the form H = ∑
l=D,±

h̄λl |�l〉〈�l | with the eigenvalue states

|1̃〉 = 1

�
(�2|1〉 − �1|2〉),

|2̃〉 = 1√
2�

(�∗
1|1〉 + �∗

2|2〉 + |3〉), (3)

|3̃〉 = 1√
2�

(�∗
1|1〉 + �∗

2|2〉 − |3〉),

and the corresponding eigenvalues

λ1̃ = 0, λ2̃,3̃ = ±�, � =
√

|�1|2 + |�2|2. (4)

We note that the state |1̃〉 remains at zero energy, while the
pair of |2̃, 3̃〉 states are shifted up and down by an amount
�. The states |2̃, 3̃〉 contain all of the bare atomic states, but
in contrast, the state |1̃〉 has no contribution from |3〉 and
is therefore called the “dark state.” We write |D〉 = |1̃〉 for
its particularity. Once the dark state is formed there is no
possibility of excitation to |3〉 and subsequent spontaneous
emission. By including the spontaneous emission from |3〉 to
|1, 2〉 at equal rate, it is easy to find that all population indeed
stays in |D〉,

ρDD = 1. (5)

Since the atom is trapped in the dark state |D〉, which is at zero
energy, the Hamiltonian is now

H0 = 0. (6)

The atom is transparent to the dressing fields. For this reason,
the state |D〉 is usually called the dark state. This effect is
usually referred to as the dark resonance, which underlies
EIT and CPT. We can obtain the steady state solutions for the
density matrix elements as

ρ11 = |�2|2
�2

, ρ22 = |�1|2
�2

, ρ12 = −�∗
1�2

�2
. (7)
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FIG. 2. (a) A possible setup for nonlinear response of the CPT atoms (the atoms plus the dressing fields �1,2 as an integrated medium) to
the probe fields E1,2. (b) Coherent perturbation to the dark state by coupling the weak probe fields E1,2 to the populated ground states |1, 2〉
involved transitions |1〉 − |3〉 and |2〉 − |4〉, respectively. If we remove �1, then α1 and �2 (|�2| 	 |α1|) in EIT configuration and the atom
stays mainly in |1〉. Since the empty state |2〉 is coupled to E2, this turns out to be an indirect perturbation to the EIT dark state. In sharp
contrast, however, if �1 is used, |�1| 	 |α1|, each ground state is comparably or equally populated. Their interaction with E1,2 turns out to be
a direct perturbation to the CPT dark state. We will reveal that the direct perturbation to the CPT dark state has completely different effects
from those based on the indirect perturbation to the EIT dark state.

Now we discriminate two cases. One case is for |�1| 

|�2|, for which we have the EIT dark state,

|D〉 ≈ |1〉, ρ11 ≈ 1, ρ22 → 0, ρ12 → 0. (8)

For |�1| 
 |�2|, the dark state is the superposition state of
the extremely unbalanced populated ground states. The atom
almost stays in a single state, and the coherence tends to
vanish. This is just the usual EIT configuration. If a probe
field is coupled to the transition involving the |2〉 state and an
additional state [22,23], then the perturbation is not directly
to the dark-state because the |2〉 state almost keeps empty. In
sharp contrast, typically for �1 = �2 (real), we have the CPT
dark-state

|D〉 = 1√
2

(|1〉 − |2〉), ρ11 = ρ22 = −ρ12 = 1

2
. (9)

Generally, when the Rabi frequencies are equal or compara-
ble, |�1| � |�2|, the two equally or comparably populated
ground states superpose to constitute the dark-state, and we
have a large or maximal coherence. Beyond the EIT case, as a
discrimination, we refer to as the CPT dark-state. If any probe
field is coupled to either of the two ground states, then we will
have a direct perturbation to the CPT dark-state.

It should be noted that although the atom is trapped in
the CPT dark-state, this does not mean the absence of the
interaction of the dressing fields �1,2 with the atom. Actually,
the dark-state is maintained via two-photon resonance (dark
resonance) between the two ground states |1〉 and |2〉 via the
excited state |3〉,

|1〉 �1−→ |3〉 �∗
2−→ |2〉,

|1〉 �∗
1←− |3〉 �2←− |2〉. (10)

It is for destructive interference between the two pathways
that the atom is not excited to |3〉. The interfering two-photon
resonances are strong nonlinear processes. Once the CPT
dark-state is perturbed by a coherent perturbation, the two-

photon resonances are mixed with the nonlinear processes
involving in the weak probe fields. To focus on the response
to the probe fields, we need to treat the atoms and the dressing
fields �1,2 as an integrated coherent medium. In what follows,
by “CPT atoms” we mean that the atoms and the dressing
fields �1,2 act as an integrated coherent medium.

III. NONLINEARITIES VIA DIRECT PERTURBATION
TO CPT DARK-STATE

To investigate the nonlinearities based on the direct per-
turbation to the CPT dark-state, we propose a possible setup
as in Fig. 2(a) together with the atom-field interaction in N
configuration as in Fig. 2(b). While CPT is established by two
dressing fields (their half Rabi frequencies �1,2), applied to
the CPT atoms are two probe fields (their amplitudes E1,2). By
α1 = −μ31E1/(2h̄) and α2 = −μ42E2/(2h̄) we denote half
Rabi frequencies for the probe fields. The probe fields are
much weaker than the dressing fields, |α1,2| 
 |�1,2|. Our
purpose is to reveal the nonlinear response of the dressed
atoms to the probe fields. For the convenience of discrimi-
nation, simply by �1,2 we indicate the dressing fields while
by α1,2 (or E1,2) we denote the probe fields from now on. The
dressing and probe fields (�1, E1) propagate in different direc-
tions although they are of the same frequency and coupled to
the common transition |1〉 ↔ |3〉. Such a case was once em-
ployed for strong-driving-assisted multipartite entanglement
in cavity QED [39,40]. The weak probe field E2 of frequency
ω′

2 is far off the additional transition |2〉 ↔ |4〉 by a large
detuning � = ω42 − ω′

2 such that the conditions are satisfied,

|�| 	 |�1,2| 	 (|α1,2|, �), (11)

where � is spontaneous decay rate for each of dipole allowed
transitions |3, 4〉 � |1, 2〉.

The total Hamiltonian of the system reads as H = H0 + HI,
where the dressing part H0 is given in Eq. (1), and the probe
part HI takes the form in an appropriate rotating frame [1,2],

HI = h̄(α1σ31 + α2σ42 + α∗
1σ13 + α∗

2σ24) + h̄�σ44. (12)
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If the dressing field �1 is removed, then the present system
simply reduces to the EIT-based scheme [22]. In that case, α1

serves as a dressing field, and the atom stays mainly in the
ground state |1〉. The only perturbation to EIT is the coupling
of α2 to the far detuned transition |2〉 − |4〉, where |2〉 is
almost an empty ground state. No direct perturbation is to the
EIT dark state |D〉 ≈ |1〉.

However, the case differs completely for the CPT-based
configuration. Since each ground state constituting the dark
state is comparably or equally populated, the coherent per-
turbations by α1,2 are both directly applied to the dark state.
Therefore, we have direct perturbation to the CPT dark state.
We will focus on the response of the CPT atoms to the probe
fields α1,2 and treat the dressing fields as control parameters. It
will be shown that the second-order susceptibility with respect
to the probe fields, which is absent in the EIT case, happens
in the CPT case and dominates over the third-order one.

A. CPT dark-state shift via direct perturbation

As the essential difference, we show that the CPT dark-
state shift by direct perturbation has a remarkably different
dependence on the probe fields α1,2. We derive the eigenvalues
and eigenstates by following the method of Zubairy et al. [24].
The eigenvalue equation of the total Hamiltonian H = H0 +
HI is ∣∣∣∣∣∣∣∣∣

−λ 0 �∗
1 + α∗

1 0

0 −λ �∗
2 α∗

2

�1 + α1 �2 −λ 0

0 α2 0 � − λ

∣∣∣∣∣∣∣∣∣
= 0, (13)

which is written in the usual algebraic form

λ4 + uλ3 + vλ2 + wλ + z = 0, (14)

with parameters u = −�, v = −|�1 + α1|2 − |�2|2 − |α2|2,
w = �(|�1 + α1|2 + |�2|2), and z = |(�1 + α1)α2|2. Under
the conditions Eq. (11), the Hamiltonian of the composite
atom-field system can now be written in the form H =∑

l=D,2̃,3̃,4̃ h̄λl |l〉〈l| with the new dressed states

|1̃〉 ≈ s|1〉 − c|2〉,
|2̃〉 ≈ 1√

2
(c∗|1〉 + s∗|2〉 + |3〉),

|3̃〉 ≈ 1√
2

(c∗|1〉 + s∗|2〉 − |3〉),

|4̃〉 ≈ |4〉, (15)

with the corresponding eigenvalues

λ1̃ = −|cα2|2
�

, λ2̃,3̃ = ±�̃, λ4̃ = �, (16)

where we have used the parameters

c = �1 + α1

�̃
,

s = �2

�̃
,

�̃ =
√

|�1 + α1|2 + |�2|2. (17)

It is clear that the first dressed state |1̃〉, containing no ex-
cited state, is a dark state. Without confusion we also write
|D〉 = |1̃〉 for its importance. This dark state is slightly differ-
ent from that in Eq. (3) because of the addition of α1 to �1.
Differently, the CPT dark state λD has its energy shift λD =
λ1̃. Including the atomic relaxations we obtain ρDD ≈ 1, as
will be verified below. The Hamiltonian can be now reduced to

H ≈ h̄λD|D〉〈D|. (18)

It is easy to understand that the dark-state shift λD is propor-
tional to the |2〉 state population ρ22 = |c|2 = |�1 + α1|2/�̃2

and the linear Stark shift of an entire atom −|α2|2/�. Both
of them combine to give the contribution of the direct
perturbation to the dark state.

Let us look first at the power series expansion of the dark-
state shift λD in the probe fields α1,2. Noting that λD is now
already in the second order in α2, it is enough for us to expand
λD up to the second orders in α1. The resulting expansion is
written in the form

λD = −|�1|2
��2

|α2|2 − |�2|2
��4

(�∗
1α1 + �1α

∗
1 )|α2|2

− |�2|2
��4

(
1 − 2|�1|2

�2

)
|α1α2|2

+ |�2|2
��6

(
�∗2

1 α2
1 + �2

1α
∗2
1

)|α2|2. (19)

If �1 = 0, then Eq. (19) reduces to

λD = −|α1α2|2
��2

2

, (20)

which gives just the EIT-based third-order (Kerr) susceptibil-
ity [22].

However, there appears the power series in �1,2 in the
general CPT case (|�1| 	 |α1|, saturated by �). This is just a
consequence of the direct perturbation to the CPT dark state.
Once �1 = 0 all these series terms disappear. However, in
the presence of �1, different orders of nonlinearities for all
involved fields can correspond to the same orders only with
respect to the probe fields α1,2. Because we are interested in
the response of the dressed CPT atoms to the probe fields α1,2,
it is more interesting to treat the CPT atoms plus the dressing
fields �1,2 as an integrated coherent medium. To focus on the
response to the probe fields α1,2 alone, it is more reasonable to
define susceptibilities only for them and to treat the dressing
fields as control parameters at the same time.

In this sense, the first term in Eq. (19) corresponds to a
linear response of the CPT atoms to the probe field α2, as will
be shown below. Since the ground state |2〉 has its population
ρ22 = |�1|2/�2, the direct perturbation to the populated |2〉
state gives just rise to the linear Stark shift with the proportion
to |�1|2/�2. Once �1 = 0, the population vanishes ρ22 → 0
and this shift vanishes [22]. The CPT dark-state shift via
the direct perturbation only appears for the CPT case and is
absent for the EIT case [22]. The second term in Eq. (19), i.e.,
the (�∗

1α1 + �1α
∗
1 )|α2|2 term, which appears as a nonlinear

effect for the CPT case and is also absent for the EIT case,
belongs to the second-order susceptibility. Obviously, this
originates from the direct perturbation to the CPT dark state.
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FIG. 3. The coherent perturbation to the CPT dark state |D〉 by
the probe fields α1,2. α1 is merged in the dressing field Rabi frequency
dependent coupling coefficients (c, s). The direct perturbation to the
dark state depends on �1 in (c, s).

Certainly, because of the separation of the dressing fields,
this effect is not conflicting to the previous belief that the
second-order cross nonlinearities are not allowed for all in-
volved fields. The last two terms in Eq. (19) describe the third-
order nonlinearities. It is seen from the above analysis that due
to the comparable or equal Rabi frequencies |�1| ∼ |�2|, the
direct perturbation to the dark state happens most frequently
in the CPT-based systems.

B. Susceptibilities via direct perturbation

To confirm the above essential physics we turn to using
the standard nonlinear optics method [20–22] to calculate the
susceptibilities. This is done in exactly the same dressed-states
picture for consistency. We rewrite the total Hamiltonian
H = H0 + HI in the form

H = h̄(�̃σ2̃2̃ − �̃σ3̃3̃ + �σ4̃4̃ )

+ h̄α2

(
−cσ4̃D + s∗

√
2
σ4̃2̃ + s∗

√
2
σ4̃3̃

)

+ h̄α∗
2

(
−c∗σD4̃ + s√

2
σ2̃4̃ + s√

2
σ3̃4̃

)
. (21)

In Fig. 3 given is the pictorial representation for the interaction
of the dressed CPT atoms with the probe fields. It should be
noted that the probe field α1 is contained in the �1,2 dependent
coupling coefficients (c, s).

We first analyze the the direct perturbation to the CPT
dark state from Hamiltonian Eq. (21) before we solve for the
susceptibilities. Since the atom is trapped in the dark state
|D〉 and all other states |2̃ − 4̃〉 are empty, the energy shift
of the dark state |D〉 is important. In the order of |α2|2/�,
the σ2̃4̃ and σ3̃4̃ transitions have no contributions. The only
contributions come from the dispersive σ4̃D transition. The
amount of the dark-state shift can readily obtained as λD =
−|cα2|2/�, which is exactly the same as in Eq. (16). If
�1 = 0, i.e., c ≈ α1/�2, then the effective Rabi frequency
for the σ4̃D transition is α1α2/�2 and the dark-state shift is
|α1α2|2/��2. This originates from the fact that α2 is only
coupled to the empty state |2〉. This is the called indirect
perturbation to the EIT dark state. However, if the dressing
field �1 is applied and |�1| 	 |α1|, the parameter c contains

the power series in �1. These power series in �1 are a
consequence of the direct coupling to the populated ground
states |1, 2〉. Because of the populations in the ground states
constituting the CPT dark state, the direct perturbation to the
CPT dark state is most frequently met. More importantly,
up to third-order in the probe fields α1,2, the nonlinearities
contained in the dark-state shift λD are exactly the same as
those in the following polarization of the CPT atoms.

From the above analysis and the conditions Eq. (11) we
can deduce roughly that the σ4̃D transition contributes to the
density matrix element ρD4̃ ∝ c∗α∗

2/� in the linear order in
α2. The σ2̃4̃ and σ3̃4̃ transitions alone do not contribute to any
response to the probe fields. However, the cascade transitions
σD4̃ and σ4̃2̃ will contribute to ρD2̃ ∝ c∗s∗|α2|2/��̃ in the
second order, and the cascade transitions σD4̃ and σ4̃3̃ will
contribute to ρD3̃ similarly. In what follows we present the
derivation in details.

The master equation of the present system takes the stan-
dard form ρ̇ = − i

h̄ [H, ρ] + Lρ, where Lρ is the Lρ=Lρ13+
Lρ23 + Lρ14 + Lρ24, Lρkl = �

2 (2σklρσlk − σllρ − ρσll ).
Expressing the relaxations in terms of dressed states and
neglecting the rapidly oscillating terms, we derive the
equations for the density matrix elements. The populations
(ρDD, ρ2̃2̃, ρ3̃3̃ ) read

ρ̇DD = �

2
(ρ2̃2̃ + ρ3̃3̃ ) + �ρ4̃4̃ − icα2ρD4̃ + ic∗α∗

2ρ4̃D,

ρ̇2̃2̃ = −3�

4
ρ2̃2̃ + �

4
ρ3̃3̃ + �

2
ρ4̃4̃ + is∗α2√

2
ρ2̃4̃ − isα∗

2√
2

ρ4̃2̃,

ρ̇3̃3̃ = −3�

4
ρ3̃3̃ + �

4
ρ2̃2̃ + �

2
ρ4̃4̃ + is∗α2√

2
ρ3̃4̃ − isα∗

2√
2

ρ4̃3̃,

(22)

the equations for the off-diagonal elements (ρD2̃, ρD3̃, ρ2̃3̃ ) not
involving |4̃〉 are written

ρ̇D2̃ = −
(

�

2
− i�̃

)
ρD2̃ + ic∗α∗

2ρ4̃2̃ + is∗α2√
2

ρD4̃,

ρ̇D3̃ = −
(

�

2
+ i�̃

)
ρD3̃ + ic∗α∗

2ρ4̃3̃ + is∗α2√
2

ρD4̃, (23)

ρ̇2̃3̃ = −
(

5

4
� + 2i�̃

)
ρ2̃3̃ + is∗α2√

2
ρ2̃4̃ − isα∗

2√
2

ρ4̃3̃,

and equations for the off-diagonal elements (ρD4̃, ρ2̃4̃, ρ3̃4̃ )
associated with |4̃〉 are listed

ρ̇D4̃ = −(� − i�)ρD4̃ + ic∗α∗
2 (ρ4̃4̃ − ρDD)

+ isα∗
2√
2

ρD2̃ + isα∗
2√
2

ρD3̃,

ρ̇2̃4̃ = −
[

3�

2
− i(� − �̃)

]
ρ2̃4̃ − ic∗α∗

2ρ2̃D

− isα∗
2√
2

(ρ4̃4̃ − ρ2̃2̃ ) + isα∗
2√
2

ρ2̃3̃,

ρ̇3̃4̃ = −
[

3�

2
− i(� + �̃)

]
ρ3̃4̃ − ic∗α∗

2ρ3̃D

− isα∗
2√
2

(ρ4̃4̃ − ρ3̃3̃ ) + isα∗
2√
2

ρ3̃2̃. (24)
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We consider the solutions at the steady state, i.e., let ρ̇kl = 0.
Substituting the off-diagonal elements into the equations for
populations, using the conditions Eq. (11) and the closure
relation ρDD + ρ2̃2̃ + ρ3̃3̃ + ρ4̃4̃ = 1, we obtain the only non-
vanishing population ρDD ≈ 1, which verifies indeed that the
atom is trapped in its dark state.

To make a comparison and show the dominance of
the second-order susceptibility, we derive the susceptibili-
ties up to the third-order. We solve Eq. (24) and express
(ρD4̃, ρ2̃4̃, ρ3̃4̃) in terms of (ρD2̃, ρD3̃, ρ2̃3̃), and then we sub-
stitute the resulting expressions into Eq. (23). As predicted
as above, nonzero elements sufficient for the third-order sus-
ceptibilities are the dark-state-involved elements, which are
obtained as

ρD2̃ = −ρD3̃ = −c∗s∗|α2|2√
2��̃

, ρD4̃ = c∗α∗
2

�
. (25)

It is clear that only the dark-state-involved density matrix
elements are nonvanishing. Expressing the bare state elements
in terms of the nonvanishing dressed state elements

ρ13 = − s

c
ρ23 = s√

2
(ρD2̃ − ρD3̃ ), ρ24 = −cρD4̃, (26)

we obtain

ρ13 = −c∗|sα2|2
��̃

, ρ23 = s∗|cα2|2
��̃

, ρ24 = −|c|2α∗
2

�
. (27)

It should be emphasized that the linear and nonlinear contri-
butions of the direct perturbation to the CPT dark state are
contained in (c, s).

Now we are in a position to collect the bare-state off-
diagonal elements (ρ13, ρ23, ρ24) into the total complex po-
larization and perform an expansion in α1. Including the
contributions from all three transitions (|1〉 → |3〉, |3〉 → |2〉,
|2〉 → |4〉), we obtain the total complex polarization [21]

P = e1μ13ρ31 + e2μ24ρ42 + e3μ23ρ32, (28)

where the orthogonal unit vectors (e1, e2, e3) correspond to
the dipole moments (μ13, μ24, μ23), respectively, and con-
tain the information about the polarizations and frequencies.
We have the selection rules, Ek · el = Ekδkl (k = 1, 2; l =
1, 2, 3). Expanding to the second order in α1 and placing the
dressing field Rabi frequencies �1,2 and the atomic dipole
moments (μ13, μ24) in the susceptibilities, we express the total
polarization in terms of the probe field amplitudes E1,2,

P = ε0e1

⎛
⎜⎝

χ (2)∗|E2|2
+χ

(3)
1 E1|E2|2

+2χ
(3)∗
2 E∗

1 |E2|2

⎞
⎟⎠ + ε0e2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ (1)E2

+χ (2)E1E2

+χ (2)∗E∗
1 E2

+χ
(3)
1 |E1|2E2

+χ
(3)
2 E2

1 E2

+χ
(3)∗
2 E∗2

1 E2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε0e3

⎛
⎜⎝

χ ′(2)|E2|2
+χ

′(3)
1 E1|E2|2

+χ
′(3)∗
1 E∗

1 |E2|2

⎞
⎟⎠, (29)

where the resulting susceptibilities read

χ (1) = |μ24|2N |�1|2
2ε0h̄��2

, (30)

χ (2) = −μ∗
13|μ24|2N�∗

1|�2|2
4ε0h̄2��4

, (31)

χ
(3)
1 = |μ13μ24|2N |�2|2

8ε0 h̄3��4

(
1 − 2|�1|2

�2

)
, (32)

χ
(3)
2 = −μ∗2

13|μ24|2N�∗2
1 |�2|2

8ε0 h̄3��6
. (33)

ε0 is the permittivity of free space, and the contributions of
N atoms are included. We have not listed χ ′’s here since
they do not contribute to the probe fields, E1,2 · e3 = 0. In
addition, the decay of the atom can be neglected because of the
negligible ratio of the dissipation to dispersion contribution
�/|�| 
 1.

Here we have defined the orders n in the susceptibilities
χ (n) with respect to only the probe fields E1,2 and have used
the dressing fields �1,2 as the control parameters. Perhaps
one finds immediately that the nonlinear dependencies of χ (n)

on the Rabi frequencies �1,2 exactly appear in the dark-state
shift Eq. (19). As shown above, these dependencies of χ (n) on
�1,2 are simply the contributions from the direct perturbation
to the CPT dark state. Indeed, the dark-state shift Eq. (19)
and the atomic polarization Eq. (28) give exactly the same
nonlinearities. Also the polarization Eq. (29) is expressed only
in terms of the amplitudes of the probe fields, but does not
display the frequency factors. This is because we work in an
appropriate rotating frame, where the frequency factors are
removed. Actually, if we recover all the frequency factors
we have vanishing sums of the involved frequencies. This
indicates that the multiphoton parametric resonances of the
dressing and probe fields (�1,2, E1,2) with the three-level
atoms are established through a round trip of cascade transi-
tions, as will be shown in the following section. In each round
trip, the energy and moment conservations are guaranteed,
and the symmetry of frequency permutations is satisfied. In
principle, the susceptibilities are net contributions of differ-
ent multiphoton processes because the susceptibilities in the
same order can come from different multiphoton processes
involving the dressing fields. Matching the Rabi frequencies
�1,2 and dipole moments (μ13, μ23, μ24) in the the numerators
of the susceptibility expressions, we can list the dressing and
probe field frequencies as a possible form

χ (1) = χ
(1)
1 (−ω′

2, ω
′
2) + χ

(1)
2 (−ω′

2, ω
′
2,−ω2, ω2), (34)

χ (2) = χ (2)(−ω1, ω2,−ω′
2, ω

′
2,−ω2, ω1), (35)

χ
(3)
1 = χ

(3)
11 (−ω1, ω2,−ω′

2, ω
′
2,−ω2, ω1)

+χ
(3)
12 (−ω1, ω2,−ω′

2, ω
′
2,−ω2, ω1,−ω1, ω1), (36)

χ
(3)
2 = χ

(3)
2 (−ω1, ω2,−ω′

2, ω
′
2,−ω2, ω1,−ω1, ω1), (37)

where we have used |�1|2
�2 = 1 − |�2|2

�2 for χ (1) and have
divided it into two parts.

023816-6



GIANT SECOND-ORDER CROSS NONLINEARITIES VIA … PHYSICAL REVIEW A 101, 023816 (2020)

The probe fields have their self-consistent response to
the polarization of the CPT atoms. Noting the selection
rules, Ek · el = Ekδkl (k = 1, 2; l = 1, 2, 3), we obtain the
self-consistent equations for the amplitudes [2]

Ė1 = −iω1

⎛
⎜⎝

χ (2)∗|E2|2
+χ

(3)
1 E1|E2|2

+2χ
(3)∗
2 E∗

1 |E2|2

⎞
⎟⎠ − κ1

2
E1, (38)

Ė2 = −iω′
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ (1)E2

+χ (2)E1E2

+χ (2)∗E∗
1 E2

+χ
(3)
1 |E1|2E2

+χ
(3)
2 E2

1 E2

+χ
(3)∗
2 E∗2

1 E2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− κ2

2
E2, (39)

where the cavity loss rates κ1,2 are also included.
Following the standard technique we can treat the probe

fields quantum mechanically [1,2]. Using the annihilation and
creation operators (al , a†

l ; l = 1, 2) to express the probe fields,
El = alεl (where εl = √

h̄νl/V ε0; νl = ω1, ω
′
2 is the electric

field “per photon,” V is the cavity volume), from the χ ’s terms
in Eqs. (38) and (39) we obtain immediately the effective
Hamiltonian for the interaction between the probe fields

HI = h̄
(
χ̃ (1) + χ̃ (2)a1 + χ̃ (2)∗a†

1 + χ̃
(3)
1 a†

1a1

+ χ̃
(3)
2 a2

1 + χ̃
(3)∗
2 a†2

1

)
a†

2a2, (40)

where the susceptibilities with tildes χ̃ (n) (of which χ̃ (1) is
the Stark shift and χ̃ (2,3) are the cross interaction strengths)
take the same forms as (ε0/h̄)χ (n) in Eqs. (30)–(33) with
the substitutions of (μ31ε1, μ42ε2) for the dipole moments
(μ31, μ42), respectively.

Actually, exactly the same Hamiltonian is obtained from
the CPT dark-state shift in Eq. (19) by the above substitutions.
This simply verifies that the Hamiltonian for the interaction
between the probe fields is just a result of the dark-state
shift.

C. Dominance of second- over third-order nonlinearity

It is easy to verify that the second-order susceptibility χ (2)

dominates over the third-order susceptibility χ
(3)
1,2. For the

present case |�1| = |�2|, we have χ
(3)
1 = 0. Meanwhile, the

ratio of second- to third-order susceptibility can be readily
obtained,

|χ (2)|∣∣χ (3)
2 E1

∣∣ = |�1|
|α1| 	 1. (41)

Since the dressing field is much stronger than the probe
field, |�1| 	 |α1|, we have the second-order polarization
dominant over the third-order polarization. As Schmidt and
Imamoglu [22] once showed, the susceptibility χ

(3)
1 is raised

even by 9 orders compared with the usual three-level systems.
Since a giant, resonantly enhanced second-order nonlinear-
ity χ (2) dominates over the three-order susceptibility, the
second-order susceptibility χ (2) can be much more greatly

increased, by several orders depending on the ratio |�1/α1|.
Neglecting the third-order parts, we are left with the second-
order complex polarization with respect to the weak probe
fields,

P = ε0(e1χ
(2)∗|E2|2 + e2χ

(2)E1E2 + e2χ
(2)∗E∗

1 E2). (42)

Correspondingly, the Hamiltonian for the second-order non-
linear interaction between the probe fields is established as

HI = h̄(χ̃ (2)a1 + χ̃ (2)∗a†
1)a†

2a2. (43)

Equations (42) and (43) are our central result.
So far we have presented the nonlinear response of the

dressed CPT atoms to the probe fields close to the dark state.
The nonlinear susceptibilities are only confined to the probe
fields, while the dressing fields are treated as the control
parameters. The nonlinear dark-state shift as the physical
essence is given by using the eigenvalue approach, while the
nonlinear susceptibilities are calculated by using the density
matrix approach. These two aspects yield exactly the same
results, including the susceptibilities and the Hamiltonian for
the interaction between the probe fields.

We are now in a position to summarize the three funda-
mental elements for the effects of the direct perturbation to
the CPT dark state.

(i) The first factor is the formation of the CPT dark state
|D〉 with comparable or equal Rabi frequencies �1,2. The
other states are far off the dark state. The superposition states
|2̃, 3̃〉 are shifted by large spacing ±�, and the additional
state |4〉 remains far off the dark state by detuning �. In
other words, the atom always stays in the dark state during
the interaction. Note that this does not mean that the dressing
fields �1,2 do not interact with the dark-state atom. In fact,
the two-photon processes between the two ground states |1, 2〉
always are existent in the parametric processes. It is the very
dark resonance that determines the existence of parametric
processes although the resonant transitions are involved. The
expressions �2l (l = 1 − 3) in the denominator of χ ’s reflect
the saturation effects. However, the saturation does not excite
the atoms during the interaction, but sustains the dark state
and induces the dark-state-based parametric interaction.

(ii) The second factor is the photon exchange between the
probe field E1 and the dressing field �1. This is seen by noting
the appearance of μ∗

13�
∗
1 in the numerator of χ (2), and the

appearance of μ∗2
13�

∗2
1 in the numerators of χ

(3)
2 . This happens

for the CPT case (|�1| 	 |α1|) but is absent for the EIT case
(�1 = 0). The photon exchange originates from the direct
perturbation to the CPT dark state since the probe field E1

is coupled to one of the dark resonant arms.
(iii) The third factor is the linear Stark shift χ (1) of the dark

state |D〉 due to the field E2. Once we remove E2 (μ24 = 0)
the shift vanishes. Once we remove �1, we come to the EIT
case (�1 = 0) and the dark-state shift also vanishes. For the
present CPT case, although the frequency shift can be merged
into the large detuning �, it brings us the nonlinear effects.
This is seen by noting those nonlinear terms involving |�1|2
in χ

(3)
1 . The shift is the consequence of the direct perturbation

to the CPT dark state because the dark-state-involved ground
state |2〉 coupled to the probe field E2 is largely populated.
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FIG. 4. Going and return lines for multiphoton parametric interactions. The numbers in the circular brackets indicate the successive steps
in a round trip. As a comparison, (a) is for the indirect perturbation to the EIT dark state (i.e., to the empty state |2〉). Six-photon process of
all fields (�2, E1,2) other than �1 supports the third-order nonlinearity for the probe fields E1,2. (b) is for the direct perturbation to the CPT

dark state (i.e., to the comparably or equally populated |1, 2〉 states). With the substitution of CPT transition |1〉 �1−→
(1)

|3〉 for EIT transition

|1〉 E1−→
(1)

|3〉 as in (a), and with the substitution of |3〉 �∗
1−→

(6)
|1〉 for |3〉 E∗

1−→
(6)

|1〉, six-photon processes of all fields (E1,2, �1,2) are responsible for

the second-order nonlinearity for the probe fields E1,2. In addition, there exist six- and eight-photon processes of all fields for the third-order
nonlinearity, which is negligibly weak.

IV. COMPARISON BETWEEN EIT- AND CPT-BASED
NONLINEARITIES

A comparison is made to show the essential difference in
susceptibilities due to the EIT-based indirect perturbation and
due to the CPT-based direct perturbation.

A. EIT-based susceptibilities

As a special case (�1 → 0), we are left only with the indi-
rect perturbation to the EIT dark state. We can immediately
recover the EIT-induced Kerr nonlinearity as in Ref. [22].
When �1 → 0, the probe field E1 and the dressing field �2 are
in the EIT interaction with the atoms. Since |α1| 
 |�2|, the
ground state |1〉 is simply the dark state. The only perturbation
to the dark state is the additional field E2, which is coupled to
the empty state |2〉. This is only the indirection perturbation to
the EIT dark state, but no direct perturbation is used. It is seen
from Eqs. (30) to (33) that, as �1 → 0, we have vanishing
χ ’s parameters (χ (1), χ (2), χ

(3)
2 → 0), but nonvanishing third-

order susceptibility

χ
(3)
1 ≈ − |μ13μ24|2N

8ε0 h̄3�|�2|2
, (44)

which describes the Kerr nonlinear interaction strength. It is
exactly the same result as in Ref. [22] when we note that �2 is
half Rabi frequency. This reflects the generality of our results.

Now we show that χ
(3)
1 nonlinearity for E1,2 is essentially

extracted from six-photon parametric process of all fields in
EIT. At first, we should note that the total order of the χ ’s
numerators in (μ13,24,�1,2) corresponds to the steps of a
round trip for multiphoton process. In the EIT case (�1 → 0,
χ

(3)
12 → 0), it is seen from Eqs. (32) and (36) that the remain-

ing χ
(3)
11 term describes a six-photon process mediated by the

dressing and probe fields (�2, E1,2)

|1〉

⎧⎪⎪⎨
⎪⎪⎩

E1−→
(1)

E∗
1←−

(6)

⎫⎪⎪⎬
⎪⎪⎭ |3〉

⎧⎪⎪⎨
⎪⎪⎩

�∗
2−→

(2)

�2←−
(5)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
EIT

|2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
EIT + empty |2〉 state Stark shift

, (45)

which is easily seen from Fig. 4(a). The parametric multipho-
ton process is composed of the same going and return lines.
This differs from the EIT plus two-photon transition based
scheme [20], where a round contour consists of the different
going and return lines. Once in the absence of the dressing
field �2, no such six-photon process is existent and no EIT-
based Kerr nonlinearity. In the presence of the dressing field
�2, however, not only is vanishing the linear response to the
probe field E1 through the (1) transition but also the nonlinear
response is induced by the five-photon transitions (2)–(6) in
the going and return lines, which are performed by �2 and
E1,2. Because the dressing field �2 is much stronger than the
probe fields E1,2 and keeps unchanged during the interaction,
thus we are left with the third-order nonlinearity for the probe
fields E1,2. Now we can conclude that the third-order (Kerr)
nonlinearity in EIT configuration for E1,2 is actually taken out
from the six-photon parametric process of all fields, including
the dressing and probe fields (�2, E1,2). Since the dressing
fields serve as the controllable parameters, it is reasonable to
separate the dressing fields and to focus on the response of
the dressed atoms to the probe fields. This was done but not
stated in Ref. [22]. Here we would like to emphasize that the
EIT-based Kerr nonlinearity for the probe fields is essentially
attributed to the six-photon process that involves all fields.
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B. CPT-based susceptibilities

Following exactly the same line, we compare the case
with the direct perturbation to the CPT dark state. We show
that χ (2) nonlinearity for E1,2 is extracted from six-photon
parametric process of all fields (�1,2, E1,2) in CPT. When the
dark resonance as in Eq. (10) is maintained, the two ground
states are populated comparably or equally with large or
maximal coherence due to two equal or comparable dressing
fields |�1| ∼ |�2|. This is remarkably different from the the
EIT case in that the probe fields are both directly coupled
to the CPT involved ground states. Since the dressing fields
are strong and keep unchanged during the interaction, we can
focus on the nonlinear response of the dressed CPT atoms to
the probe fields E1,2.

(i) The susceptibility χ (1) is a linear frequency shift. This
arises from the interaction described by the cα2σ4̃D term and
its Hermitian conjugate term in Eq. (21). It is seen from
Eqs. (30), (34) that, by using |�1|2

�2 = 1 − |�2|2
�2 we can divide

χ (1) into two terms χ (1) = χ
(1)
1 + χ

(1)
2 . The two terms χ

(1)
1,2

come, respectively, from two- and four-photon processes

|2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
Linear Stark shift

, (46)

and

|3〉

⎧⎪⎪⎨
⎪⎪⎩

�∗
2−→

(2)

�2←−
(5)

⎫⎪⎪⎬
⎪⎪⎭ |2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
�2 saturated shift

. (47)

These two processes give the opposite contributions and the
net effect is dependent on |�1|2

�2 . This frequency shift is much
smaller than the detuning � and can be included in the latter.
However, the latter four-photon process is merged in the six-
photon transitions as follows.

(ii) The χ (2) and χ (2)∗ terms stand for the second-order
susceptibility for the E1,2 fields, and are established via six-
photon parametric processes of all dressing and probe fields
(�1,2, E1,2). As shown in Fig. 4(b), the two round trips of
transitions that correspond to the conjugate terms χ (2) and
χ (2)∗ are, respectively,

|1〉

⎧⎪⎪⎨
⎪⎪⎩

E1−→
(1)

�∗
1←−

(6)

⎫⎪⎪⎬
⎪⎪⎭ |3〉

⎧⎪⎪⎨
⎪⎪⎩

�∗
2−→

(2)

�2←−
(5)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
CPT + photon exchange

|2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
CPT + photon exchange + �2 saturated Stark shift

, (48)

and

|1〉

⎧⎪⎪⎨
⎪⎪⎩

�1−→
(1)

E∗
1←−

(6)

⎫⎪⎪⎬
⎪⎪⎭ |3〉

⎧⎪⎪⎨
⎪⎪⎩

�∗
2−→

(2)

�2←−
(5)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
CPT + photon exchange

|2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
CPT + photon exchange +�2saturated Stark shift

. (49)

To be exact, the latter five photon processes (2)–(6) in Eq. (48)
and the former five-photon processes (1)–(5) in Eq. (49)
contribute to the susceptibility χ (2) and χ (2)∗, respectively.
Therefore, χ (2) for E1,2 describes actually fifth-order nonlin-
earity for all fields. However, the dressing fields �1,2 are much
stronger than the probe fields E1,2 and remain unchanged
during the interaction. Comparing Eqs. (48) and (49) with

Eq. (45), it is easy to find the substitution of |1〉 �∗
1←−

(6)
|3〉

for |1〉 E∗
1←−

(6)
|3〉 and the substitution of |1〉 �1−→

(1)
|3〉 for |1〉 E1−→

(1)

|3〉. This is the essential difference from the EIT case. The
going and return steps between |1〉 and |3〉 are performed
by different fields. This causes the photon exchange between
the probe and dressing fields (E1,�1). The photon exchange
turns out to be one essentially important factor for the second-
order susceptibility χ (2). In a word, it is its simultaneous
introduction with the linear Stark shift into the dark resonance
that leads to the second-order nonlinearity for the probe fields
E1,2.

(iii) Meanwhile, the third-order susceptibility is negligibly
weak compared with the second-order susceptibility. We can
see that, the first term χ

(3)
11 in χ

(3)
1 corresponds to six-photon

parametric process as in Eq. (45). The second term χ
(3)
12 is

extracted from eight-photon parametric process

|1〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1−→
(1)
E∗

1←−
(6)

�1−→
(7)
�∗

1←−
(8)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

|3〉

⎧⎪⎪⎨
⎪⎪⎩

�∗
2−→

(2)

�2←−
(5)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
CPT + two-photon exchange

|2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
CPT + two-photon exchange + �2saturated Stark shift

, (50)

and χ
(3)
2 is drawn from eight-photon process

|1〉

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1−→
(1)
�∗

1←−
(6)

E1−→
(7)
�∗

1←−
(8)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

|3〉

⎧⎪⎪⎨
⎪⎪⎩

�∗
2−→

(2)

�2←−
(5)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
CPT + two-photon exchange

|2〉

⎧⎪⎪⎨
⎪⎪⎩

E2−→
(3)

E∗
2←−

(4)

⎫⎪⎪⎬
⎪⎪⎭ |4〉

︸ ︷︷ ︸
CPT + two-photon exchange + �2saturated Stark shift

. (51)
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It is seen that there contains two-photon exchange between
the probe and dressing fields (E1,�1) through |1〉 ↔ |3〉
transition. Because the dressing fields �1,2 are equally or
comparably strong, the two kinds of multiphoton parametric
processes in Eqs. (50) and (51) are comparable with the
six-photon parametric process in Eq. (45). Since the dressing
fields �1,2 remain unchanged, we are left with the third-order
nonlinearity for the fields E1,2. The preset case shows that
it is necessary for us to separate the dressing fields and to
focus on the response of the dressed atoms to the probe
fields because different multiphoton (six- and eight-photon)
processes correspond to the same order of nonlinearity for the
probe fields.

V. CONCLUSION

In conclusion, we have studied the nonlinear effects based
on the direct perturbation to the CPT dark state. The dressed
CPT atoms serves as an integrated coherent medium, in which
the dressing fields are merged into the dressed atoms. By
separating the weak probe fields from the dressing fields,
we are provided with a way to focus on the response of
the dressed CPT atoms to the weak probe fields only. With
such a background in mind, we have defined second-order
susceptibility with respect to the probe fields. The dressed-
state picture is employed to present the essential physics and
the comprehensive calculation since the atoms are maintained
in the CPT dark state during their interaction with the probe
fields. A through comparison of the nonlinear susceptibilities
is made between the EIT-based indirect perturbation and the
CPT-based direction perturbation.

It is shown that the direct perturbation to the CPT dark state
leads to the giant, resonantly enhanced second-order cross
nonlinearities with respect to the weak probe fields. Further,
the dark-state shift can be traced to the dark-state-based six-
photon parametric processes for all involved fields, including
the dressing and probe fields. A necessary premise for this
effect is the formation of the dark state, which contains no ex-
cited state, and stays unchanged once formed. The dark-state-
based six-photon parametric processes are established through
the two combinable factors. One is the photon exchange that
happens on one arm of the dark resonance in � configuration,
while the other is the linear Stark shift that is introduced
through the other arm. These two factors work together to lead
to a nonlinear dispersive perturbation to the dark state. The
creation and resonant enhancement of the second-order cross
nonlinearities are unique for the direct perturbation to the
CPT dark state since the direct perturbation to the CPT dark
state establishes the photon exchange between the dressing
and probe fields and the linear Stark shift of the CPT dark
state. The direct perturbation is most frequently met in the
CPT-based system because each dark-state-involved ground
state is comparably or equally populated. The second-order
nonlinearity, much more greatly enhanced than the third-order
one, is remarkably more sensitive for the quantum control at
low light levels.
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