
PHYSICAL REVIEW A 101, 023813 (2020)

Enhancement of tripartite quantum correlation by coherent feedback control
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Measurement-free coherent feedback control is promising to manipulate various quantum optical systems
for preparing nonclassical states of light. In this paper, three different coherent feedback control systems
are constructed based on cascaded four-wave mixing processes. By utilizing a beam splitter as the feedback
controller, we theoretically investigate the enhancement of tripartite quantum correlation and its pairwise
correlation. The absorption effect of Rb vapor cells and the loss of optical propagation in the coherent feedback
loop are also taken into account. The quantum correlation in the three structures can be characterized by the
degree of relative intensity squeezing of the output fields. We find that the tripartite quantum correlation can
be maximally enhanced by an optimal feedback ratio. In addition, two of the three pairwise correlations in the
quantum regime can also be improved by tuning the strength of feedback, while the other pairwise correlation
remains in the classical regime. Our results pave the way for the experimental implementation and may find
potential applications in quantum communication and quantum metrology.
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I. INTRODUCTION

Quantum correlation shared among multiple quantum cor-
related beams is important for both the fundamental science
[1,2] and quantum information technology [3,4]. In recent
years, four-wave mixing (FWM) processes have been experi-
mentally demonstrated to be a successful technique to gener-
ate multiple quantum correlated beams in the hot Rb vapor cell
[5–8] for its strong nonlinearity, multispatial mode nature, and
natural spatial separation of the generated nonclassical beams
[9]. Due to these advantages, FWM has also found a variety of
interesting applications [10–23]. With the rapid development
of quantum technology, a high degree of quantum correlation
is of great significance, not only to improve the communi-
cation fidelity of the quantum information protocol [24–26]
but also to improve the measurement precision of quantum
metrology [17,27–29]. Quantum control has been investigated
for a long time [30–34] and widely used in various protocols
to improve the properties of systems [35–38]. Its advantages
over classical approaches indicate that quantum control plays
a fundamental role in emerging quantum technologies [39,40].

Quantum feedback control is an important concept in
quantum control theory [41,42]. The control methods are
usually divided into two types: measurement-based quantum
feedback control [35,36] and coherent feedback control (CFC)
[37,38,41]. The CFC scheme feeds the output field of the
controlled system back into the initial inputs to manipulate
the system. It has been applied to quantum error correction
[43,44] and optical field squeezing enhancement by placing
a linear optical component in a simple coherent feedback
loop [45,46]. Because no measurement process is involved
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and no back-action noise is introduced into the controlled
system, the CFC scheme is promising to manipulate various
quantum optical systems for preparing nonclassical states of
light [45–48]. Recently, our group experimentally realized
a feedback optical parametric amplifier with a single FWM
process and found that the quantum correlation between
the output fields can be enhanced by tuning the strength of
the feedback [49]. However, such study is only limited to the
case of bipartite quantum correlation. Multipartite quantum
correlation is important for realizing multiuser quantum com-
munication protocol and multiparameter quantum metrology.
In this paper, we theoretically investigate the enhancement of
tripartite quantum correlation and its pairwise correlation by
utilizing a CFC scheme. Three different CFC structures are
constructed based on cascaded FWM processes, and a tunable
beam splitter (BS) is introduced as the feedback controller.
The BS controller controls the feedback loop by feeding
part of the output conjugate field back into one input port
of the cascaded FWM system. The absorption effect of Rb
vapor cells and the loss of optical propagation in the coherent
feedback loop are also taken into account. Specifically, for the
three structures, we find that the tripartite quantum correlation
can be maximally enhanced by an optimal feedback ratio.
In addition, two of the three pairwise correlations in the
quantum regime can also be improved by tuning the strength
of feedback, while the other pairwise correlation is always in
the classical regime. Our results pave the way for the experi-
mental implementation and may find potential applications in
quantum communication and quantum metrology.

This article is organized as follows. In Sec. II, we begin
with a brief description of the three CFC structures and then
derive the expressions of the three output fields generated
from the CFC structures. In Sec. III, we characterize the quan-
tum correlation between the three output fields by the degree
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FIG. 1. The theoretical models of controllable quantum feedback structures based on cascaded FWM processes. (a) â1 is the coherent
input probe beam, b̂3 and ν̂1 are the vacuum inputs, â3 is the amplified probe beam, and b̂4 and ĉ1 are the generated conjugate beams. (b) â1

is the coherent input probe beam, b̂1 and ν̂1 are the vacuum inputs, â3 is the amplified probe beam, and b̂2 and ĉ1 are the generated conjugate
beams. (c) â1 is the coherent input probe beam, b̂3 and ν̂1 are the vacuum inputs, â3 is the amplified probe beam, and b̂2 and ĉ1 are the
generated conjugate beams. (d) Double-� scheme in the D1 line of 85Rb: � and δ stand for the one-photon detuning and the two-photon
detuning, respectively.

of relative intensity squeezing and investigate correlation en-
hancement of output fields with the change of feedback ratio.
The values of optimal feedback ratio are given. In Sec. IV,
we study the enhancement of the pairwise correlations from
the triple quantum correlated beams generated in Sec. II. In
Sec. V, we give a brief conclusion of the paper.

II. CFC STRUCTURES

The conceptual models of the CFC structures based on the
cascaded FWM processes are illustrated in Figs. 1(a)–1(c).
For ease of expression, we named the three structures system
A, system B, and system C, respectively. The graph in the
green dotted frame depicts the energy-level diagram of a
single FWM process in a hot Rb vapor, in which two pumped
photons can convert into one probe photon and one conjugate
photon, or vice versa. As shown in Fig. 1(a), a strong pump
beam (P1) and a weak coherent probe beam (â1) intersect at
the center of the first hot Rb vapor cell with a slight angle.
After the first FWM process, the output probe beam (â2) is
amplified and a conjugate beam (b̂2) is generated on the other
side of the pump beam simultaneously [9]. The probe beam
and the conjugate beam have different frequencies. We then
construct the cascaded FWM processes by taking the probe
beam (â2) as the seed for the second FWM process while a
pump beam (P2) enters along the central axis of the second
Rb cell. After the FWM process in the second cell, the probe
beam is amplified (â3) and a new conjugate beam (b̂4) is
generated at the same time. The input-output relationship of
the two FWM processes can be expressed as

â2 = √
G1â1 +

√
G1 − 1b̂†

1,

b̂†
2 =

√
G1 − 1â1 + √

G1b̂†
1,

â3 = √
G2â2 +

√
G2 − 1b̂†

3,

b̂†
4 =

√
G2 − 1â2 + √

G2b̂†
3,

(1)

where G1 and G2 are the intensity gains of the first and second
FWM processes, respectively. Then, we introduce a linear
beam splitter to construct a controllable coherent feedback
structure based on the cascaded FWM processes. As shown in
the Fig. 1(a), the conjugate beam (b̂2) is injected into the BS,
and the BS as the feedback controller controls the feedback
loop by feeding the output field ĉ2 back to the other input
port of the first FWM process in the cascaded FWM system.
The annihilation operator is denoted as b̂1. The input-output
relationship of the BS can be written as

ĉ1 = √
1 − kb̂2 +

√
kν̂1,

ĉ2 = −
√

kb̂2 + √
1 − kν̂1,

b̂1 = eiφ ĉ2,

(2)

where k is the reflectivity of the BS controller and φ is the
phase delay introduced by the feedback path. Similarly, as
shown in Fig. 1(b), system B constructs the controllable CFC
structure by injecting the conjugate beam b̂4 into the BS and
then the output beam ĉ2 into the other input port of the second
FWM process. The annihilation operator is denoted as b̂3.
As shown in Fig. 1(c), system C injects the conjugate beam
b̂4 into the BS and the output beam ĉ2 into the other input
port of the first FWM process, and the annihilation operator
is denoted as b̂1. After that, through the use of Eqs. (1) and
(2), the relation between the three input fields (â1, b̂†

3, and ν̂
†
1 )

and three output fields (â3, b̂†
4, and ĉ†

1) of system A can be
obtained by eliminating the intermediate operators b̂†

1, â2, b̂†
2,

and ĉ†
2. The input-output relation can be expressed as⎛

⎜⎝
â3

b̂†
4

ĉ†
1

⎞
⎟⎠ = 1

1 + e−iφ
√

G1k
A

⎛
⎜⎝

â1

b̂†
3

ν̂
†
1

⎞
⎟⎠. (3)

Similarly, we can obtain the relation between the input
fields (â1, b̂†

1, and ν̂
†
1 ) and output fields (â3, b̂†

2, and ĉ†
1) of
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system B as ⎛
⎜⎝

â3

b̂†
2

ĉ†
1

⎞
⎟⎠ = 1

1 + e−iφ
√

G2k
B

⎛
⎜⎝

â1

b̂†
1

ν̂
†
1

⎞
⎟⎠. (4)

The input-output relation of system C can also be calculated and expressed as⎛
⎜⎝

â3

b̂†
2

ĉ†
1

⎞
⎟⎠ = 1

1 + e−iφ
√

(G1 − 1)(G2 − 1)k
C

⎛
⎜⎝

â1

b̂†
3

ν̂
†
1

⎞
⎟⎠. (5)

Here,

A =

⎛
⎜⎝

√
G1G2 + e−iφ

√
G2k

√
G2 − 1 + e−iφ

√
G1(G2 − 1)k e−iφ

√
(G1 − 1)G2(1 − k)√

G1(G2 − 1) + e−iφ
√

(G2 − 1)k
√

G2 + e−iφ
√

G1G2k e−iφ
√

(G1 − 1)(G2 − 1)(1 − k)
√

(G1 − 1)(1 − k) 0
√

k + e−iφ
√

G1

⎞
⎟⎠, (6)

B =

⎛
⎜⎝

√
G1G2 + e−iφ

√
G1k

√
(G1 − 1)G2 + e−iφ

√
(G1 − 1)k e−iφ

√
(G2 − 1)(1 − k)√

G1 − 1 + e−iφ
√

G2(G1 − 1)k
√

G1 + e−iφ
√

G1G2k 0
√

G1(G2 − 1)(1 − k)
√

(G1 − 1)(G2 − 1)(1 − k)
√

k + e−iφ
√

G2

⎞
⎟⎠, (7)

C =

⎛
⎜⎝

√
G1G2

√
G2 − 1 − e−iφ

√
(G1 − 1)k e−iφ

√
(G1 − 1)G2(1 − k)√

G1 − 1 − e−iφ
√

(G2 − 1)k −e−iφ
√

G1G2k e−iφ
√

G1(1 − k)
√

G1(G2 − 1)(1 − k)
√

G2(1 − k)
√

k + e−iφ√
(G1 − 1)(G2 − 1)

⎞
⎟⎠. (8)

Since there are unavoidable losses in any real experi-
ment, we take two types of losses into consideration, namely,
the FWM vapor cell’s absorption effect (atomic absorption)
[50,51] and the propagation loss of the light beam in the
feedback loop. We model the propagation loss in the free
space on the feedback path by inserting a BS shown as the
gray block in Fig. 2(a), where one input is the feedback beam
and the other is a vacuum state [52]. The scattering matrix is
given by

L =
( √

η
√

1 − η

−√
1 − η

√
η

)
, (9)

where η represents the optical transmission efficiency in the
feedback loop due to the imperfect optical transmission. As
shown in Fig. 2(b), the absorption effect in the FWM can be
modeled by distributed gain and loss [50,53]. For the sake
of simplicity of calculation, the loss from atomic absorption
in the hot Rb vapor cell is also considered as a fictitious
beam splitter introducing a vacuum state into each probe beam
and conjugate beam. Therefore, for system A described in
Fig. 1(a), the annihilation operators of the vacuum modes
introduced by the losses are denoted as ν̂i (i = 2, 3, 4, 5, 6),
and the standard beam splitter relations give

â2(t ) →
√

ζ1â2 +
√

1 − ζ1ν̂2,

b̂2(t ) →
√

ζ2b̂2 +
√

1 − ζ2ν̂3,

â3(t ) →
√

ζ3â3 +
√

1 − ζ3ν̂4,

b̂4(t ) →
√

ζ4b̂4 +
√

1 − ζ4ν̂5,

ĉ2(t ) → √
ηĉ2 +

√
1 − ην̂6,

(10)

where ζ1, ζ2, ζ3, and ζ4 represent the internal optical transmis-
sion efficiencies in the two Rb vapor cells for probe and con-
jugate fields. For simplicity, we consider all the transmission

FIG. 2. (a) Model for propagation loss in the feedback loop: ν̂k

is the vacuum mode introduced by the propagation loss. (b) The gain
and loss model of the single FWM process: ν̂i and ν̂ j are the vacuum
modes introduced by the loss from atomic absorption in a hot Rb
vapor cell. Pr, probe beam; Conj, conjugate beam.
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efficiencies ζ1, ζ2, ζ3, and ζ4 in two Rb cells as ζ . Then we can easily calculate the expressions of the output fields generated
from the three CFC structures followed by optical losses. After eliminating intermediate variables, by using Eqs. (1), (2), and
(10), we obtain the relation between the input fields (â1, b̂†

3, ν̂
†
1 , ν̂2, ν̂

†
3 , ν̂4, ν̂

†
5 , and ν̂

†
6 ) and the output fields (â3, b̂†

4, and ĉ†
1) of

system A. The input-output relation can be shown as

⎛
⎜⎝

â3

b̂†
4

ĉ†
1

⎞
⎟⎠ = 1

1 + e−iφ
√

G1ηζk

⎛
⎜⎝

A11 A12 · · · A18

A21 A22 · · · A28

A31 A32 · · · A38

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â1

b̂†
3

ν̂
†
1

ν̂2

ν̂
†
3

ν̂4

ν̂
†
5

ν̂
†
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Similarly, for system B described in Fig. 1(b), the relation between the input fields (â1, b̂†
1, ν̂

†
1 , ν̂2, ν̂

†
3 , ν̂4, ν̂

†
5 , and ν̂

†
6 ) and the

output fields (â3, b̂†
2, and ĉ†

1) can be shown as

⎛
⎜⎝

â3

b̂†
2

ĉ†
1

⎞
⎟⎠ = 1

1 + e−iφ
√

G2ηζk

⎛
⎝B11 B12 · · · B18

B21 B22 · · · B28

B31 B32 · · · B38

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â1

b̂†
1

ν̂
†
1

ν̂2

ν̂
†
3

ν̂4

ν̂
†
5

ν̂
†
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The input-output relation of system C can also be calculated and shown as

⎛
⎜⎝

â3

b̂†
2

ĉ†
1

⎞
⎟⎠ = 1

ε

⎛
⎝C11 C12 · · · C18

C21 C22 · · · C28

C31 C32 · · · C38

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â1

b̂†
3

ν̂
†
1

ν̂2

ν̂
†
3

ν̂4

ν̂
†
5

ν̂
†
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Here,

ε = 1 + e−iφ
√

(G1 − 1)(G2 − 1)ηkζ , (14)

A11 = √
G1G2ζ + e−iφ

√
G2ηkζ 3/2, A21 =

√
G2 − 1√

G2
A11, A31 =

√
(G1 − 1)(1 − k)ζ ,

A12 =
√

(G2 − 1)ζ + e−iφ
√

G1(G2 − 1)ηkζ , A22 =
√

G2√
G2 − 1

A12, A32 = 0,

A13 = e−iφ
√

(G1 − 1)G2η(1 − k)ζ , A23 =
√

G2 − 1√
G2

A13, A33 =
√

k + e−iφ
√

G1ηζ ,

A14 =
√

G2(1 − ζ )ζ + e−iφ
√

G1G2ηk(1 − ζ )ζ , A24 =
√

G2 − 1√
G2

A14, A34 = 0,

A15 = −e−iφ
√

(G1 − 1)G2ηk(1 − ζ )ζ , A25 =
√

G2 − 1√
G2

A15, A35 =
√

(1 − k)(1 − ζ ),

A16 =
√

1 − ζ + e−iφ
√

G1ηk(1 − ζ )ζ , A26 = 0, A36 = 0,
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A17 = 0, A27 = A16, A37 = 0,

A18 = e−iφ
√

(G1 − 1)G2(1 − η)ζ , A28 =
√

G2 − 1√
G2

A18, A38 = e−iφ
√

G1(1 − η)(1 − k)ζ , (15)

B11 = √
G1G2ζ + e−iφ

√
G1ηkζ 3/2, B21 =

√
(G1 − 1)ζ + e−iφ

√
(G1 − 1)G2ηkζ , B31 =

√
G1(G2 − 1)(1 − k)ζ ,

B12 =
√

G1 − 1√
G1

B11, B22 =
√

G1√
G1 − 1

B21, B32 =
√

G1 − 1√
G1

B31,

B13 = e−iφ
√

(G2 − 1)ηζ (1 − k), B23 = 0, B33 =
√

k + e−iφ
√

G2ηζ ,

B14 =
√

G2(1 − ζ )ζ + e−iφ
√

ηk(1 − ζ )ζ , B24 = 0, B34 =
√

(G2 − 1)(1 − k)(1 − ζ )ζ ,

B15 = 0, B25 =
√

1 − ζ + e−iφ
√

G2ηkζ (1 − ζ ), B35 = 0,

B16 = B25, B26 = 0, B36 = 0,

B17 = −e−iφ
√

(G2 − 1)ηkζ (1 − ζ ), B27 = 0, B37 =
√

(1 − k)(1 − ζ ),

B18 = e−iφ
√

(G2 − 1)(1 − η)ζ , B28 = 0, B38 = e−iφ
√

G2(1 − η)(1 − k)ζ ,

(16)

C11 = √
G1G2ζ , C21 =

√
(G1 − 1)ζ − e−iφ

√
(G2 − 1)ηkζ 3/2, C31 =

√
G1(G2 − 1)(1 − k)ζ ,

C12 =
√

(G2 − 1)ζ − e−iφ
√

(G1 − 1)ηkζ 3/2, C22 = −e−iφ
√

G1G2ηkζ , C32 =
√

G2(1 − k)ζ ,

C13 = e−iφ
√

(G1 − 1)G2η(1 − k)ζ , C23 = e−iφ
√

G1η(1 − k)ζ , C33 =
√

k + e−iφ
√

(G1 − 1)(G2 − 1)ηζ ,

C14 =
√

G2(1 − ζ )ζ , C24 = −e−iφ
√

G1(G2 − 1)ηk(1 − ζ )ζ , C34 =
√

(G2 − 1)(1 − k)(1 − ζ )ζ ,

C15 = 0, C25 =
√

1 − ζ + e−iφ
√

(G1 − 1)(G2 − 1)ηk(1 − ζ )ζ , C35 = 0,

C16 = C25, C26 = 0, C36 = 0,

C17 = −e−iφ
√

(G1 − 1)G2ηk(1 − ζ )ζ , C27 = −e−iφ
√

G1ηk(1 − ζ )ζ , C37 =
√

(1 − k)(1 − ζ ),

C18 = e−iφ
√

(G1 − 1)G2(1 − η)ζ , C28 = e−iφ
√

G1(1 − η)ζ , C38 = e−iφ
√

(G1 − 1)(G2 − 1)(1 − η)(1 − k)ζ .

(17)

III. TRIPARTITE QUANTUM CORRELATION

In this section, we focus on the performance of the tripartite
correlation potentially existing in the three CFC systems.
We characterize the quantum correlation between the three
output fields by the degree of relative intensity squeezing
(DS), which is the ratio of the quantum noise of the linear
combination of the photon number operators of the three
output beams to the variance at the standard quantum limit
(SQL). For convenience, we record the amplified probe beam
of systems A, B, and C as number 1, the beam from the BS
as number 3, and the remaining output conjugate beam as
number 2. For example, for system A in Fig. 1(a), the annihi-
lation operator of beam 1 corresponds to â3, the annihilation
operator of beam 2 corresponds to b̂4, and the annihilation
operator of beam 3 corresponds to ĉ1. Accordingly, the photon
number operator can be expressed as N̂1 = â†

3â3, N̂2 = b̂†
4b̂4,

N̂3 = ĉ†
1ĉ1. Therefore, the DS of the triple beams is given by

DS123 = 10 log10
Var(N̂1 − N̂2 − N̂3)

Var(N̂1 − N̂2 − N̂3)SQL
, (18)

where Var(N̂ ) = 〈N̂2〉 − 〈N̂〉2 denotes the variance of N̂ ,
and Var(N̂1 − N̂2 − N̂3)SQL = 〈N̂1 + N̂2 + N̂3〉. We calculate
DS123 according to Eqs. (11)–(18) and get the relationship
between DS123 and the feedback ratio k, phase φ, gains G1 and

G2, and transmission efficiencies ζ and η. It has been shown
that there are strong quantum correlations between the three
beams generated by a cascaded FWM system in hot Rb vapor
cells when G1G2 > 1, and the tripartite correlation increases
as the values of G1 and G2 increase [5,6].

To show how the tripartite correlation is affected when the
conjugate beam is fed back to the cascaded FWM system
via a BS, we set the transmission efficiencies of the probe
and conjugate beams ζ to 0.95 and the optical transmission
efficiency in feedback loop η to 0.98. Figure 3 describes the
dependence of DS123 on k and φ. For each CFC structure, we
take G1 = G2 = 1.5, 2, 3, and 5, respectively. For the DS123

of system A, as shown in Figs. 3(a)–3(d), when k = 0, the
values of DS123 are less than zero, which is consistent with
the previous results of no-feedback cases [5,6]. Additionally,
it can be seen that when the phase φ takes the value of π and
k is within a suitable range, the color of all graphics is darker
than that of the case with k = 0 (no feedback), which indicates
the enhancement of the tripartite quantum correlation by CFC.
However, when further increasing the value of k, we observe
the disappearance of tripartite quantum correlation caused by
excessive feedback. As shown in Fig. 3(a), when k is between
0.6 and 0.8, a peak of antisqueezing appears at the π phase,
which is mainly due to the superstrong intensity gains induced
by the giant gain feedback at the π phase. According to
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FIG. 3. The squeezing levels of N̂1 − N̂2 − N̂3 vary with k and φ when η = 0.98, ζ = 0.95. System A: (a) G1 = G2 = 1.5. The squeezing
level becomes maximum when k = 0.48 and φ = π . (b) G1 = G2 = 2. The squeezing level becomes maximum when k = 0.40 and φ =
π . (c) G1 = G2 = 3. The squeezing level becomes maximum when k = 0.17 and φ = π . (d) G1 = G2 = 5. The squeezing level becomes
maximum when k = 0.05 and φ = π . System B: (e) G1 = G2 = 1.5. The squeezing level becomes maximum when k = 0.35 and φ = π . (f)
G1 = G2 = 2. The squeezing level becomes maximum when k = 0.21 and φ = π . (g) G1 = G2 = 3. The squeezing level becomes maximum
when k = 0.10 and φ = π . (h) G1 = G2 = 5. The squeezing level becomes maximum when k = 0.04 and φ = π . System C: (i) G1 = G2 =
1.5. The squeezing level becomes maximum when k = 1 and φ = π . (j) G1 = G2 = 2. The squeezing level becomes maximum when k = 0.58
and φ = π . (k) G1 = G2 = 3. The squeezing level becomes maximum when k = 0.11 and φ = π . (l) G1 = G2 = 5. The squeezing level
becomes maximum when k = 0.01 and φ = π .

Eq. (11), the denominators of the photon number expressions
of three output beams approach zero when k = 0.72 with
φ = π and G1 = G2 = 1.5, which induces the superstrong
intensities of output fields. Such superstrong output intensities
indicate the giant gain feedback. And the giant gain feedback
leads to the vacuum noise (ν̂1) introduced into the system
being greatly amplified, which strongly deteriorates the quan-
tum correlation of the system. When k = 1, all the vacuum
noise from the feedback controller enters into the output field
ĉ1, and the degree of relative intensity squeezing becomes
the quantum correlation between the two beams generated by
such a full feedback case. The peaks in Figs. 3(b)–3(h), 3(k),
and 3(l) can also be explained in the similar way as mentioned
above. Besides, as shown in Figs. 3(a)–3(d), with the increase
of G1 and G2, the range of tripartite quantum correlation shifts
towards small k. This indicates that the gains of the two FWM
processes can also affect the range of the disappearance of
tripartite quantum correlation and change the range of k that
enhances the squeezing level. For system B and system C,
we can see that the quantum correlation of the three output
fields can also be enhanced as shown in Figs. 3(e)–3(h) and
3(i)–3(l), respectively. Similarly, the correlation decreases by
excessive feedback.

Based on the above discussions, in order to give the opti-
mal feedback ratio k∗ that maximizes the tripartite quantum
correlation and compare the maximal enhancement of the
tripartite quantum correlation of each system under different

gains conditions, we plot the DS123 within suitable feedback
ratio ranges with φ = π . The giant gain-feedback-induced
peaks as mentioned above and their subsequent changes with
feedback ratio are not shown in Figs. 4(a)–4(c) in order to

FIG. 4. The degree of relative intensity difference squeezing of
the triple beams produced by (a) system A, (b) system B, and
(c) system C, varying with the feedback ratio k, respectively. Here,
η = 0.98 and ζ = 0.95. The phase of the three systems is set to π .
The dotted horizontal lines represent the value of DS123 when k = 0.
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avoid confusion. As shown in Fig. 4, traces in different colors
represent different values of G1 and G2, and the dotted hor-
izontal lines represent the degree of relative intensity differ-
ence squeezing of the triple beams when k = 0 (no feedback).
We can see that there always exists an optimal feedback ratio
k∗ to maximize the squeezing enhancement under different
gain conditions. As shown in Fig. 4(a), for the DS123 of
system A, when G1 = G2 = 1.5, 2, 3, and 5, k∗ = 0.48, 0.40,
0.17, and 0.05, respectively. The maximal enhancement of
intensity difference squeezing levels are equal to 4.0, 3.7,
2.0, and 0.6 dB, respectively. For the DS123 of system B
which is described in Fig. 4(b), when G1 = G2 = 1.5, 2,
3, and 5, k∗ = 0.35, 0.21, 0.10, and 0.04, respectively. The
corresponding maximal enhancements of intensity difference
squeezing levels are equal to 2.66, 2.13, 1.26, and 0.5 dB. For
the DS123 of system C as shown in Fig. 4(c), when G1 = G2 =
1.5, 2, 3, and 5, k∗ = 1, 0.58, 0.11, and 0.01, respectively. The
corresponding maximal enhancements of intensity difference
squeezing levels are equal to 3.69, 3.65, 2.04, and 0.64 dB.
In other words, the lower the intensity gains are, the higher
the squeezing enhancement will be. Here, the existence of
the optimal feedback ratio can be explained by the compe-
tition between two mechanisms. The first one is the feedback
mechanism that comes from the recycling of the conjugate
beam on the feedback path and thus enhances the quantum
properties of the three constructed systems as shown in Fig. 1.
The other one is the vacuum noise mechanism that comes
from the unused port of the feedback controller (ν̂1), which
deteriorates the quantum properties of the output states. The
feedback mechanism dominates and the quantum correlation
degradation caused by vacuum noise is not significant when k
is small. Therefore, the total quantum correlation between the
output fields produced by system A is increased. With further
increasing of k, the effect of the vacuum noise mechanism
becomes significant, and the quantum correlation is reduced.
In general, when the effects of the two mechanisms balance
with each other, the optimal feedback ratio is achieved and the
quantum correlation enhancement is maximized. Moreover,
based on the above analysis, we can see that the gains of
the two FWM processes affect not only the value of the
optimal feedback ratio but also the amount of enhancement
of tripartite correlation.

The extra vacuum noise introduced by the losses cannot
be eliminated in the real feedback control systems, which
destroy the quantum property of the CFC structures. Here,
we study the effect of the losses on the enhancement of
tripartite quantum correlations with the constant gains for
each system. As shown in Figs. 5(a)–5(c), we find that
with the increasing of the values of transmission efficiencies
(ζ , η), the amount of maximal enhancement of the tripartite
quantum correlation induced by the CFC will increase. For
the trace of η = ζ = 0.99, which is plotted as the blue curve in
Figs. 5(a)–5(c), the optimal feedback ratios k∗ = 0.42, 0.33,
and 0.71, respectively, and the corresponding enhancement of
squeezing levels are equal to 8.30, 5.72, and 8.24 dB. When
η = 0.86 and ζ = 0.83, the value of k∗ of system A is equal
to 0.23, and the enhancement of squeezing level is only about
0.65 dB. The value of k∗ of systems B and C are equal to
0.07 and 0.19, respectively. The corresponding enhancement
of squeezing levels are equal to 0.37 and 0.70 dB, respectively.

FIG. 5. The degree of relative intensity difference squeezing of
the triple beams produced by (a) system A, (b) system B, and
(c) system C varying with the feedback ratio k, respectively. Here,
G1 = G2 = 2. The phase of the three systems is set to π .

IV. PAIRWISE CORRELATION

In this section, we study the enhancement of the pairwise
correlations from the triple quantum correlated beams gener-
ated by system A, system B, and system C. The multipartite
correlation shows the quantum property of the whole system
while the pairwise correlations involved in the multiple quan-
tum correlated beams provide a greatly simplified description
of complex systems [54]. Therefore, the quantum correlation
of any two of the multiple quantum correlated beams is also
worth studying. Figure 6 depicts the quantum correlation
between any two of the beams produced by the cascaded
FWM system (as shown in Fig. 1) without introducing the
CFC scheme. Both theoretical and experimental results [6]
show that two of the three pairwise correlations can be in the
quantum regime while the other pairwise correlation is always
in the classical regime. Here, we study how to preserve or even
enhance the quantum correlation for any bipartite group of the
tripartite quantum correlated beams under the introduction of
the CFC scheme. The pairwise correlations between beam i

FIG. 6. The structure of pairwise correlation from triple quantum
correlated beams generated by cascaded FWM processes.
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FIG. 7. The degree of relative intensity difference squeezing of
beam 1 and beam 2 produced by (a) system A, (b) system B, and
(c) system C varying with the feedback ratio k, respectively. Here,
η = 0.98, ζ = 0.95, the phase of systems A and C is set to π , and
the phase of system B is set to 2π .

and beam j (i, j = 1, 2, 3 and i �= j) can be quantified by

DS12 = 10 log10
Var(N̂1 − N̂2)

Var(N̂1 − N̂2)SQL
,

DS13 = 10 log10
Var(N̂1 − N̂3)

Var(N̂1 − N̂3)SQL
,

DS23 = 10 log10
Var(N̂2 − N̂3)

Var(N̂2 − N̂3)SQL
.

(19)

We can calculate DSi j by Eqs. (11)–(17) and Eq. (19). When
DSi j is negative and decreases as the change of feedback ratio
k, we could claim that the pairwise quantum correlation exists
and can be enhanced by the CFC scheme.

We plot DS12 versus feedback ratio k as shown in Fig. 7. It
should be noted that for each system, we take the appropriate
phase value to maximize the squeezing degree. We take the
value of G2 of the three systems as 1.2. Figures 7(a)–7(c)
show that the value of DS12 of systems A, B, and C vary with
k, respectively. When k = 0, it corresponds to the cascaded
FWM processes without feedback. We can see that the quan-
tum correlation between beam 1 and beam 2 produced by the
three systems exists. Moreover, for each trace, there always
exists an optimal feedback ratio k∗ to maximize the squeezing
enhancement. As shown in Fig. 7(a), we can see that the
quantum correlation between beam 1 and beam 2 can be
further enhanced when G1 is smaller. When G1 = 1.4, 2, and
3, k∗ = 0.35, 0.15, and 0.04, respectively. The correspond-
ing maximal enhancements of intensity difference squeezing
levels are about 1.7, 1.12, and 0.46 dB. When G1 = 5, k∗
is close to zero, and the corresponding maximal squeezing
enhancement is only about 0.03 dB. And then the pairwise
correlation between beam 1 and beam 2 decreases with further
increase of feedback ratio k due to the excessive feedback. The
DS12 of system B versus feedback ratio k is shown in Fig. 7(b).
We can see that the squeezing enhancement reaches its

FIG. 8. The degree of relative intensity difference squeezing
of beams 1 and 3 produced by (a) system A, (b) system B, and
(c) system C varying with the feedback ratio k, respectively. Here,
η = 0.98, ζ = 0.95, the phase of system A and system C is set to
2π , and the phase of system B is set to π .

maximum at k = 1. When G1 = 1.4, the maximal enhance-
ment of squeezing level is about 2.16 dB. When G1 = 5, the
maximal enhancement is about 5.5 dB. As shown in Fig. 7(c),
for values of G1 from 1.4 to 3, the squeezing enhancement of
system C reaches the maximum at k = 1, and the correspond-
ing maximal enhancements of squeezing levels are equal to
6.0, 7.6, and 8.4 dB. However, when G1 = 5, the optimal
feedback ratio k∗ is equal to 0.85, and the enhancement of the
pairwise correlation between beam 1 and beam 2 produced by
system C decreases by excessive feedback. The corresponding
maximal enhancement of squeezing level is about 7.6 dB.

As shown in Fig. 8, the quantum correlation between beam
1 and beam 3 exists and can also be enhanced by varying the
value of k. For the DS13 of system A as shown in Fig. 8(a),
when G1 = 1.8 and G2 = 2, the optimal feedback ratio k∗
to maximize the squeezing enhancement is equal to 1 and
the corresponding value of DS13 is −4.3 dB; about 3.6 dB
enhancement of the squeezing level is obtained. When G1 =
3.6 and G2 = 5, k∗ = 1 and the corresponding value of DS13

is −8 dB; about 6.3 dB enhancement of the squeezing level
is obtained. For the DS13 of system B, as shown in Fig. 8(b),
when G1 = 1.8 and G2 = 2, k∗ = 0.31 and the corresponding
DS13 is −6.08 dB; about 5.4 dB enhancement of the squeezing
level is obtained. When G1 = 3.6 and G2 = 5, k∗ = 0.12 and
the corresponding DS13 is −7.6 dB; about 5.9 dB enhance-
ment of the squeezing level is obtained. For the DS13 of
system C as shown in Fig. 8(c), when G1 = 1.8 and G2 = 2,
k∗ = 0.17 and the corresponding value of DS13 is −2.6 dB;
about 1.9 dB enhancement of the squeezing level is obtained.
When G1 = 3.6 and G2 = 5, k∗ = 0.10 and the corresponding
value of DS13 is −5.4 dB; about 3.7 dB enhancement of the
squeezing level is obtained. As shown in Fig. 9, the DS23

of the three systems is always positive, meaning that the
pairwise correlation between beam 2 and beam 3 is always
in the classical regime. This is consistent with the theoretical
predictions in Fig. 6.
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FIG. 9. The degree of relative intensity difference squeezing
of beams 2 and 3 produced by (a) system A, (b) system B, and
(c) system C varying with the feedback ratio k, respectively. Here,
η = 0.98, ζ = 0.95, the phase of system A is set to 2π , the phase of
system B is set to 1.11π , and the phase of system C is set to 0.08π .

V. CONCLUSION

In this paper, we have theoretically constructed three CFC
structures and each structure consists of a cascaded FWM
system and a BS as the controller. We find that the tripartite

correlation and two of the three pairwise correlations in the
quantum regime can be enhanced by tuning the strength of the
feedback. The other pairwise correlation is always in the clas-
sical regime. Moreover, we find the optimal feedback ratios
that maximize the quantum correlation enhancement for both
tripartite correlation and pairwise correlations. Our results
show that the maximal quantum correlation enhancement is
also affected by the losses in the system and the intensity
gains of the two FWM processes. Our work paves the way for
the implementation of the enhancement of tripartite quantum
correlation by using the strategy of CFC.
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