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It has been observed that the asymmetric quantum Rabi model (QRM), which does not possess any obvious
symmetry, exhibits energy level crossings, which are often associated with symmetries. This observation suggests
that there is in fact a symmetry in the asymmetric QRM, even though simple inspection of the model and its
Hamiltonian does not reveal the nature of this symmetry. Here we present the results of numerical calculations
on the energy eigenstates of the asymmetric QRM in an attempt to elucidate the nature of the symmetry. In
particular, we note that the distribution of states in the Hilbert space among different symmetry classes is
normally independent of system parameters and test whether this property holds for the asymmetric QRM. We
find that it does not, which both helps explain why the symmetry is hidden and adds more intrigue as to what its
nature might be.
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I. INTRODUCTION

Symmetry is a fundamental concept in physics [1]. It was
used by the ancient Greeks to explain the balance in states
of equilibrium in nature. In the Middle Ages, scientists for
centuries assumed that the paths of celestial objects must
be circular, because circular paths are the most symmetric
ones possible, and this assumption might have delayed the
discovery of the correct model of planetary motion. In the
second half of the 20th century, the violation of P and CP
symmetries played an important role in the development of
the standard model of particle physics and has been used to
explain the matter-antimatter asymmetry in the universe.

Symmetries are closely related to conservation laws, as
formulated in Noether’s theorem [2]. Identifying a symmetry
can hence be a powerful tool that allows us to infer certain
properties of a physical system even without knowing any of
its quantitative parameters. For example, the laws of momen-
tum and energy conservation can be inferred from the fact
that nature possesses space and time translation symmetries.
Another example of an interesting phenomenon resulting from
symmetry is the phenomenon that has been predicted for Bose
gases that the conservation law associated with spin rotation
symmetry can prevent a cooled gas from reaching its ground
state, which is a single Bose-Einstein condensate, leading
to a situation in which the gas can only reach a double-
condensate state in the spin-constrained ground state [3,4].
In a somewhat opposite sense, the observation of spin-orbit
interactions in a semiconductor material can be used to infer
a lack of inversion (or mirror) symmetry in the material,
because inversion-symmetric systems would not exhibit this
type of spin-orbit coupling.

In the study of quantum systems, it is known that energy
levels generally exhibit the phenomenon of avoided level
crossings. Exceptions to this rule occur when there is a
symmetry in the system under which there is no physical

mechanism that would change the state of the system from
one symmetry class to another symmetry class. In this case,
quantum states that belong to different symmetry classes can
exhibit energy level crossings, i.e., situations in which two or
more quantum states have exactly the same energy [5].

An interesting physical model in relation to symmetry is
the asymmetric quantum Rabi model (QRM) [6–25], which
we describe in more detail below. This model does not
seem to possess any symmetry. Nevertheless, it exhibits the
phenomenon of energy level crossings at certain parameter
values. This fact was conjectured in Ref. [10], was proved at
different levels of generality in Refs. [19,20], and is supported
by the results of numerical studies [14,20]. This situation
raises the question of what symmetry might exist in the system
and hence could explain the observed energy level crossings.
Because its nature is unknown, the hypothesized symmetry
has been referred to as a hidden symmetry.

Here we make an attempt to identify the hidden symmetry
in the asymmetric QRM by numerically evaluating the energy
eigenstates of the system at different parameter values and
looking for a partitioning of the Hilbert space that is inde-
pendent of the exact parameter values. We find that, unlike
the symmetric QRM, no parameter-independent partitioning
of the Hilbert space exists for the asymmetric QRM. These
results can guide future investigations into the nature of the
hidden symmetry in this model.

The remainder of this paper is organized as follows: In
Sec. II we introduce the QRM, including its symmetric
version. In Sec. III we present our results on the energy
eigenstates and draw our main conclusion about the lack of
parameter-independent symmetry operators. In Sec. IV we
discuss additional aspects of our results and, more generally,
of the symmetry in the asymmetric QRM. In Sec. V we
present results on the search for additional cases of hidden
symmetry in the same model. We conclude with some final
remarks in Sec. VI.
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II. QUANTUM RABI MODEL AND ITS SYMMETRY

The QRM describes a system composed of a qubit coupled
to a harmonic oscillator with the Hamiltonian

Ĥ = �

2
σ̂z + ε

2
σ̂x + ω

(
â†â + 1

2

)
+ gσ̂x(â + â†), (1)

where � is the qubit gap, ε is the qubit bias parameter,
ω is the oscillator’s characteristic frequency (meaning that
we set h̄ = 1), g is the qubit-oscillator coupling strength, the
operators σ̂α (with α = x, y, z) are the qubit’s Pauli operators,
and â and â† are, respectively, the annihilation and creation
operators of the harmonic oscillator.

When ε = 0 the Hamiltonian has a symmetry described by
the parity operator

�̂ = exp

[
iπ

(
1 + σ̂z

2
+ â†â

)]
. (2)

The physical effect of this operator is to effect a π rotation
about the z axis in the state of the qubit and at the same time
effect a π rotation about the origin in the position-momentum
phase space of the harmonic oscillator. In other words, it flips
the state of the qubit in the σx basis and at the same time
creates the mirror image of the oscillator’s wave function
about the origin (i.e., about the point x = 0 in the real-space
representation of the harmonic oscillator’s wave function). If
�̂ is applied to any eigenstate of the Hamiltonian, it produces
the same state multiplied by the factor ±1. This property
of the energy eigenstates can be seen straightforwardly in a
standard representation of the corresponding wave functions:
All energy eigenstate wave functions look either perfectly
symmetric or antisymmetric, and the parity value of the state
indicates whether the state belongs to the space of symmetric
or antisymmetric states. This situation represents a Z2 symme-
try of the Hamiltonian.

A result of the symmetry in the Hamiltonian is that one can
obtain energy level crossings when one or more of the system
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FIG. 1. Lowest ten energy levels (measured in units of ω) as functions of coupling strength g/ω for different bias points: (a) ε/ω = 0,
(b) ε/ω = 0.2, (c) ε/ω = 1, and (d) ε/ω = 5. In all panels we measure the energy relative to the ground-state energy, which therefore always
coincides with the x axis. The inset in (d) shows a magnified view of an energy level crossing region: The x-axis range in the inset is xmin =
1.21279135 to xmax = xmin + 10−8, and the y-axis range is ymin = 6.011263858 to ymax = ymin + 6 × 10−9. Each dot in the inset is obtained
from a separate calculation; i.e., the dots are not simply a dotted line. The inset hence shows that the magnified structure is indeed a crossing
and not an avoided crossing with a small gap (because with the parameter values used here we would expect any finite gap to be well above
the 10−9 scale). In all panels we set �/ω = π−1/3, which is chosen because it is an irrational number that is somewhat close to 1.
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parameters are varied. For example, if g is varied from zero
to ∞ while � and ω are kept fixed, the energy levels exhibit
many crossings, as can be seen in Fig. 1(a).

In the asymmetric QRM, i.e., when ε �= 0, the parity
symmetry explained above is lost. In fact, there is no obvious
symmetry remaining in the model. This fact can be seen by
numerically evaluating the energy eigenstates and inspecting
their structure, which would show that they have different
amplitudes for the different σz values and no discernible
symmetry in the harmonic oscillator’s wave function.

At general values of ε, the energy levels exhibit avoided
crossings when plotted as functions of � and/or g, as can
be seen in Fig. 1(b). This result agrees with the expectation
that the energy levels of systems that lack symmetries should
avoid exact crossings. Instead avoided crossing structures are
observed when the energy levels are plotted as functions of
some system parameter.

Interestingly, when ε is taken close to an integer multiple
of ω, the energy gaps at the avoided crossings become small.
When ε is exactly an integer multiple of ω, i.e., ε/ω = n
with any integer number n, the gaps vanish [see Figs. 1(c)
and 1(d)]. This point has already been established in the
literature [10,14,19,20]. Our own numerical calculations [e.g.,
as shown in Fig. 1(d)] show that if there are gaps at the
crossings, they would be upper bounded by a scale that is at
least eight orders of magnitude smaller than the other system
parameters. Taking into consideration that these extremely
small numerical values are obtained even when all the other
parameters are comparable (but not too close) to each other,
the only seemingly reasonable explanation for these numerical
results is that the energy levels are indeed exhibiting crossings
and not avoided crossings with small gaps. Besides, the fact
that there is a large number of these crossings with a steady
pattern indicates that the crossings cannot be attributed to a
coincidence related to the values of the chosen parameters.
The existence of these energy level crossings then suggests
that there is a symmetry in the Hamiltonian, even if it is not
seen as intuitively and clearly as in the case ε = 0. In the
following three sections, we analyze various aspects of the
energy levels and eigenstates and try to gain some insight into
the nature of the symmetry.

III. SEARCHING FOR A SYMMETRY-BASED
PARTITIONING OF THE HILBERT SPACE

We now attempt to identify the symmetry numerically
based on the following argument. Typically, when there is a
symmetry in a quantum system, the full Hilbert space can be
partitioned into smaller subspaces and the matrix elements of
the Hamiltonian connecting states from different subspaces
vanish. For example, if we consider a system composed of
a collection of spins, the Hilbert space can be partitioned into
subspaces, each of which has a well-defined total spin value.
If the system possesses rotational symmetry, each energy
eigenstate will (or at least can always be defined to) have a
well-defined total spin. In other words, each energy eigenstate
will be a superposition of states that all belong to the same
subspace. Although the exact superposition will depend on
the details of the interactions in the system, and different
system Hamiltonians will generally result in different energy

eigenstates, based on the symmetry alone we know that each
energy eigenstate will belong to a subspace of well-defined
total spin. In this sense, the different subspaces do not mix.

Another example of the symmetry-based Hilbert-space
partitioning occurs in the symmetric QRM. In the case ε =
g = 0, the energy eigenstates can be divided into two sub-
spaces that together span the full Hilbert space:

H+ = {|↓, 0〉, |↑, 1〉, |↓, 2〉, . . .},
H− = {|↑, 0〉, |↓, 1〉, |↑, 2〉, . . .}, (3)

where |↑〉 and |↓〉 are the eigenstates of the qubit operator σ̂z

(with σ̂z|↑〉 = |↑〉 and σ̂z|↓〉 = −|↓〉), and the second index
in the ket represents the number of excitation quanta in the
harmonic oscillator. If we now take the Hamiltonian Ĥ for
any values of � and g (keeping ε = 0), and we select any pair
of states |ψ+〉 ∈ H+ and |ψ−〉 ∈ H−, we find that

〈ψ+|Ĥ |ψ−〉 = 0. (4)

In other words, the Hamiltonian does not mix states that
belong to different subspaces. A consequence of this result
is that for any values of � and g each energy eigenstate of the
Hamiltonian will be a superposition of states exclusively in
H+ or exclusively in H−. (In cases of degeneracy the energy
eigenstates do not have to, but can always be chosen to, satisfy
the above statement.) The two subspaces do not mix. They are
spaces of different symmetry, which in this case is the parity,
and the Hamiltonian does not change the parity of a state it
operates on. As a further consequence, if we take a positive-
parity energy eigenstate |ψ+(0,�1/ω, g1/ω)〉 obtained for
parameters ε = 0, �1/ω, and g1/ω and a negative-parity en-
ergy eigenstate |ψ−(0,�2/ω, g2/ω)〉 obtained for parameters
ε = 0, �2/ω, and g2/ω, we find that

〈ψ+(0,�1/ω, g1/ω)|ψ−(0,�2/ω, g2/ω)〉 = 0. (5)

Another, perhaps simpler, way to derive Eq. (5) is to say
that if |ψ1〉 and |ψ2〉 are two eigenstates of a symmetry
operator Ŝ,

Ŝ|ψ1〉 = S1|ψ1〉, Ŝ|ψ2〉 = S2|ψ2〉, (6)

with different eigenvalues S1 and S2, then we have the rela-
tions

〈ψ1|Ŝ|ψ2〉 = S1〈ψ1|ψ2〉, 〈ψ1|Ŝ|ψ2〉 = S2〈ψ1|ψ2〉. (7)

These two equations cannot be simultaneously satisfied unless
〈ψ1|ψ2〉 = 0, which corresponds to Eq. (5) in the present
case.

We can then try to identify two, or possibly a few, sub-
spaces that give the same result in the case ε/ω = n where n
is a finite integer. Let us assume that we have a given value of
n. In order to identify subspaces that the Hamiltonian does not
mix, we start by setting � and g to some arbitrary values �1

and g1. To avoid unrelated degeneracies in the spectrum that
could create unnecessary complications in the calculations,
we specifically avoid the special case g = 0. We diagonalize
the Hamiltonian with the chosen parameters. Thus we obtain
a basis B1 that spans the full Hilbert space. The idea now is
to search for a partitioning of B1 into two (or more) sets that
the Hamiltonian does not mix, regardless of the values of �1

and/or g1. For this purpose we choose different values of �
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FIG. 2. Overlap |〈ψn(0,�/ω, g1/ω)|ψm(0, �/ω, g2/ω)〉| between the energy eigenstates |ψn(0,�/ω, g/ω)〉 obtained with the pa-
rameters (ε/ω,�/ω, g1/ω) = (0, 0.7, 0.5) (with each of these states represented in one row) and those obtained with the parameters
(ε/ω,�/ω, g2/ω) = (0, 0.7, 2.6) (with each one of these states represented in one column). (a) The energy eigenstates are ordered according
to their energies, with the ground states represented at the top left. (b) The states are reordered so as to highlight the partitioning of the states
into two groups based on their symmetry. In constructing the matrix in (b), we take the rows in (a) in the order (1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20), and we take the columns in (a) in the order (1, 3, 6, 7, 10, 11, 14, 16, 17, 20, 2, 4, 5, 8, 9, 12, 13, 15, 18, 19).
In (b) it is shown clearly that the energy eigenstates can be divided into two groups with no overlap between states taken from different groups.

and/or g (to which we refer as �2 and g2), and we diagonalize
the Hamiltonian to find another basis set B2. If we take the
overlap between each state in B1 and all the states in B2, we
would hope that at least for the lowest few hundred energy
levels each state in B1 will have exactly zero overlap with
about half of the lowest energy eigenstates in B2, helping us
identify the natural partitioning of the Hilbert space. (Here
we say “few hundred energy levels” because the overlap
will decrease as a function of basis state index and, using
numerical results of finite accuracy, at some point it becomes
impossible to distinguish between numerical errors and very
small values of the overlap.) The idea would then be that we

can choose any other values of � and g, and the partitioning of
the Hilbert space would remain the same. This procedure for
example works and can be used to partition the Hilbert space
into two subspaces for the well-known symmetric case ε = 0,
as we explain shortly. Establishing such a partitioning of the
Hilbert space for finite values of ε/ω would be helpful in the
search for the hidden symmetry.

First, as a demonstration, we consider the symmetric
case ε = 0. We set (�/ω, g1/ω) = (0.7, 0.5) and
(�/ω, g2/ω) = (0.7, 2.6), and we obtain two sets of
energy eigenstates. We then take the lowest 20 energy
levels from each eigenbasis and calculate the overlaps

TABLE I. Overlap |〈ψn(0, �/ω, g1/ω)|ψm(0, �/ω, g2/ω)〉| between the energy eigenstates |ψn(ε/ω,�/ω, g/ω)〉 obtained with the
parameters (ε/ω, �/ω, g1/ω) = (0, 0.7, 0.5) (with each of these states represented in one row) and those obtained with the parameters
(ε/ω,�/ω, g2/ω) = (0, 0.7, 2.6) (with each of these states represented in one column). The top row and left-most column contain the state
index based on the energy, starting from the ground state and going up in energy. In the tables we keep the lowest ten energy eigenstates in
each eigenbasis. In this table, entries given as “0” indicate that the numerically obtained values were below 10−8 and are hence within the
numerical error range; in the data shown in this table and in Fig. 2, the largest of the ignored values was 1.6 × 10−9, while the smallest of the
retained values was 2.6 × 10−3, meaning that there is a clear separation in scale between the finite values and the essentially vanishing values.

1 2 3 4 5 6 7 8 9 10

1 0.085872 0 0.270998 0 0 0.29969 0.436304 0 0 0.454386
2 0 0.14456 0 0.173241 0.382144 0 0 0.406689 0.424614 0
3 0.188254 0 0.439777 0 0 0.313363 0.32688 0 0 0.03759
4 0 0.291976 0 0.272117 0.457068 0 0 0.226131 0.123849 0
5 0.293962 0 0.461887 0 0 0.116467 0.0143253 0 0 0.328976
6 0 0.412869 0 0.26795 0.274358 0 0 0.13769 0.210023 0
7 0.378705 0 0.329382 0 0 0.140276 0.259821 0 0 0.255201
8 0 0.469615 0 0.160232 0.0225654 0 0 0.330362 0.219467 0
9 0.427926 0 0.103675 0 0 0.298293 0.243356 0 0 0.0772449
10 0 0.452834 0 0.00271208 0.251535 0 0 0.236954 0.0154019 0
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FIG. 3. Overlap |〈ψn(1, �1/ω, g1/ω)|ψm(1,�2/ω, g2/ω)〉| between the energy eigenstates |ψn(1, �/ω, g/ω)〉 obtained with the param-
eters (ε/ω, �1/ω, g1/ω) and those obtained with the parameters (ε/ω,�2/ω, g1/ω). We set (a) (ε/ω,�1/ω, g1/ω) = (1, 0.7, 0.5) and
(ε/ω,�2/ω, g2/ω) = (1, 0.7, 2.6) and (b) (ε/ω,�1/ω, g1/ω) = (1, 0.7, 0.5) and (ε/ω,�2/ω, g2/ω) = (1, 1.8, 0.5). It is clear that neither
case allows a grouping of the energy eigenstates that would result in vanishing overlaps between members of the different groups.

|〈ψn(0,�/ω, g1/ω)|ψm(0,�/ω, g2/ω)〉| between all the
different combinations of energy eigenstates taken from
different eigenbases. The results are shown in Fig. 2 and
Table I. The figure and table show clearly that each eigenbasis
can be divided into two groups, such that the states in each
group in B1 have zero overlap with the states in one group
in B2. The reason is of course that each state in B1 or in B2

has either positive or negative parity, and the overlap between
states of different parity must vanish.

We now follow the same procedure for the case ε/ω = 1.
The results are shown in Fig. 3 and Tables II and III. We show
results in which we take a pair of parameter sets differing in
the g value and a pair of parameter sets differing in the �

value. Clearly there are no zeros in any of these results. It is
therefore impossible to partition each energy eigenbasis into
groups in such a way that certain groups of states have no
overlap with groups of states from other eigenbases (obtained
using different values of � and/or g). It is perhaps worth
noting here that the absence of zero overlaps remains mostly
true even if we choose parameter sets that correspond to

energy level crossings. One complication in such a case is
that the degenerate energy eigenstates can be redefined to
produce alternative energy eigenstates, because any linear
superposition of states that have the same energy will also
have the same energy, and one can always define the basis so
as to eliminate the overlap with any desired energy eigenstate
taken from another eigenbasis. However, all other overlaps
will in general remain finite.

The impossibility of grouping the energy eigenstates in
such a way that the overlap between an energy eigenstate
(which would have a certain symmetry value) taken from
the eigenbasis B1 and an energy eigenstate of a different
symmetry value taken from the eigenbasis B2 has important
implications about the symmetry in the system. For example,
if there is a symmetry operator Ŝ such that

Ŝ|ψn〉 = S+|ψn〉 or Ŝ|ψn〉 = S−|ψn〉, (8)

where for simplicity in appearance we have assumed that
there are only two symmetry values (S+ and S−), then it
must be the case that the operator Ŝ depends on the system

TABLE II. Overlap |〈ψn(1,�/ω, g1/ω)|ψm(1,�/ω, g2/ω)〉| between the energy eigenstates |ψn(ε/ω,�/ω, g/ω)〉 obtained with the
parameters (ε/ω, �/ω, g1/ω) = (1, 0.7, 0.5) and those obtained with the parameters (ε/ω,�/ω, g2/ω) = (1, 0.7, 2.6).

1 2 3 4 5 6 7 8 9 10

1 0.102807 0.165425 0.18125 0.204599 0.28147 0.231363 0.340805 0.354332 0.24836 0.325739
2 0.160805 0.150032 0.263796 0.266683 0.0713559 0.0114136 0.357451 0.200113 0.192774 0.188331
3 0.14731 0.250945 0.123814 0.0842062 0.355356 0.242037 0.0532981 0.290481 0.118781 0.319978
4 0.247986 0.119294 0.321285 0.25689 0.130891 0.152198 0.178257 0.333624 0.00977145 0.115952
5 0.214312 0.336138 0.0412139 0.0397512 0.313538 0.122879 0.287124 0.00929818 0.182471 0.249432
6 0.314164 0.0217168 0.294536 0.148904 0.292471 0.15421 0.0567743 0.126906 0.138425 0.16277
7 0.253239 0.351607 0.0978355 0.157374 0.151457 0.0427969 0.30267 0.176537 0.0202042 0.105306
8 0.348607 0.109879 0.206735 0.00525292 0.315546 0.01923 0.179177 0.164169 0.10805 0.000722655
9 0.256235 0.301374 0.23521 0.195111 0.0254403 0.140025 0.111149 0.143323 0.172429 0.271095
10 0.350104 0.234847 0.097638 0.112868 0.193846 0.149183 0.147824 0.269674 0.00748982 0.13179
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TABLE III. Overlap |〈ψn(1, �1/ω, g/ω)|ψm(1,�2/ω, g/ω)〉| between the energy eigenstates |ψn(ε/ω, �/ω, g/ω)〉 obtained with the
parameters (ε/ω, �1/ω, g/ω) = (1, 0.7, 0.5) and those obtained with the parameters (ε/ω,�2/ω, g/ω) = (1, 1.8, 0.5).

1 2 3 4 5 6 7 8 9 10

1 0.96738 0.199033 0.0915272 0.0903519 0.0648127 0.05268 0.0232236 0.0121967 0.0168617 0.0047086
2 0.175533 0.966042 0.0328179 0.151747 0.0015081 0.0538998 0.0636757 0.0246696 0.0582072 0.0190485
3 0.0216759 0.0541826 0.813775 0.55671 0.0071516 0.115413 0.0358231 0.0618321 0.0311963 0.0239472
4 0.156636 0.119545 0.557076 0.803544 0.047923 0.00235764 0.0423296 0.012997 0.0160923 0.00222915
5 0.0303449 0.0312773 0.000140632 0.0550665 0.914144 0.37283 0.0118446 0.06253 0.0853124 0.0614312
6 0.018286 0.0309794 0.0152981 0.061755 0.0130238 0.0492092 0.949661 0.0243169 0.265606 0.0830394
7 0.077898 0.042829 0.114335 0.0312155 0.376124 0.910667 0.0468325 0.0451187 0.018187 0.00643401
8 0.0129774 0.0160855 0.0304578 0.0233544 0.0480622 0.0628637 0.0235812 0.966699 0.0394558 0.0329615
9 0.0264194 0.0680246 0.036279 0.0161135 0.0891112 0.00691535 0.264711 0.036906 0.952123 0.00493437
10 0.00783376 0.0225809 0.016727 0.00598152 0.0443078 0.0125345 0.0860162 0.0332038 0.0115349 0.976888

parameters �/ω and g/ω. This situation stands in stark con-
trast to conventional symmetries where the symmetry operator
is expected to be independent of system parameters and
should only reflect general properties about the eigenstates
of the symmetry operator. An example is the parity operator
given in Eq. (2).

IV. DISCUSSION

In retrospect, one could say that it is not surprising that
the symmetry operator cannot be independent of system
parameters in the case ε �= 0. This point can be seen by
setting ε = g = 0 and varying �/ω. The energy eigenstates
in this case are given by Eq. (3), which means that the energy
eigenstates are independent of �/ω. When ε is finite (e.g.,
when ε/ω = 1), the energy eigenstates (even when g = 0)
will depend on �/ω. Specifically, the qubit Hamiltonian
eigenstates transform gradually from being eigenstates of σ̂z

to being eigenstates of σ̂x as �/ε is increased from zero to ∞.
The fact that the qubit Hamiltonian eigenstates continuously
transform and essentially cover the full range of qubit bases
means that there cannot be any simple symmetry classification
of the states that is independent of system parameters.

One could also say that, even though we have established
that the symmetry operator cannot be written in simple,
parameter-independent form, such an operator could still be
defined formally once the different relevant subspaces (i.e.,
the groups of quantum states divided based on their symme-
try) are identified. These subspaces can in fact be identified
by inspecting the energy level structure. For example, by
looking at Fig. 1(c), one can say that any two energy levels
that cross each other almost certainly correspond to quantum
states that belong to different symmetry groups. Conversely,
energy levels that exhibit avoided-crossing structures belong
to the same group. One example of such a situation is the
structures that look like typical avoided level crossings in the
range 0.2 < g/ω < 0.4 in Fig. 1(c). Thus the entire Hilbert
space can be partitioned into subspaces

Hi(�/ω, g/ω) = {|ψi,1(�/ω, g/ω)〉, |ψi,2(�/ω, g/ω)〉, . . . }.
(9)

The two indices in the subscript of ψ can be understood as
the quantum numbers that specify the corresponding quantum

state. Importantly, all the states with the same value of i have
the same value of the symmetry operator. As a result, once
the partitioning is established, projection operators can be
defined,

P̂i(�/ω, g/ω) =
∑

j

|ψi, j (�/ω, g/ω)〉〈ψi, j (�/ω, g/ω)|,

(10)
from which the symmetry operator can be defined:

Ŝ(�/ω, g/ω) =
∑

i

SiP̂i(�/ω, g/ω), (11)

where Si can be chosen as any set of distinct numbers that
distinguish the states based on their symmetry properties.
However, since we do not see how this exercise will lead us to
a simple definition of the symmetry operator (i.e., expressed
as a relatively simple function of the basic qubit and harmonic
oscillator operators) or insight into the nature of the symmetry,
we do not pursue this calculation further.

We now consider what we can say about the present prob-
lem from the point of view of the rotating-wave approximation
of Ref. [6]. In the limit where �/ω is small or g/ω is large,
there is a generalized rotating-wave approximation that works
well when ε ≈ nω (including the case of exact equality ε =
nω) [9], which is related to the perturbation-theory approach
of Refs. [12,21]. Under this approximation we can treat the
term �σ̂z/2 in the Hamiltonian as a perturbation. If we ignore
this perturbation, we can easily see that the energy eigenstates
are given by |←〉 ⊗ D̂(α)|m〉 and |→〉 ⊗ D̂(−α)|m〉, where
|←〉 and |→〉 are eigenstates of σ̂x (with σ̂x|→〉 = |→〉 and
σ̂x|←〉 = −|←〉) and D̂ is a displacement operator that trans-
forms the harmonic oscillator’s Fock states |m〉 such that they
are shifted in the positive or negative x direction to account
for the qubit-state-dependent (but otherwise constant) force
imparted by the qubit on the oscillator [D̂(α) = exp{αâ† −
α∗â}]. The displacement is given by α = g/ω. The energies
of these states in the absence of the perturbation are given
by ±ε/2 + nω, up to an overall constant. The Hilbert space
can therefore be partitioned into small subspaces that are one
dimensional for the lowest n energy levels and two dimen-
sional for the higher energy levels (i.e., forming energy level
pairs), with each such subspace being well separated in energy
from the rest of the Hilbert space. The perturbation �σ̂z/2 will
then mix the states within each two-dimensional subspace,
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FIG. 4. The difference between energy levels 4 and 5 (measured in units of ω) as a function of coupling strength g/ω for ε/ω = 1.
(a) �/ω = 0.1 and (b) �/ω = 0.8. The dots are obtained numerically by diagonalizing the Hamiltonian and are therefore essentially exact.
The solid line is given by the analytical formula based on Eq. (14), i.e., E5 − E4 = 2−1/2� exp{−2g2/ω2}(2g/ω)L1

1[(2g/ω)2].

but it will cause little mixing between states from different
subspaces. Within a single two-dimensional subspace, the
effect of the perturbation can be calculated using the effective
Hamiltonian

Ĥeff = 1

2

(
ε − nω �̃mn

�̃mn −(ε − nω)

)
+ const, (12)

with the off-diagonal matrix elements

�̃mn = �〈←| ⊗ 〈m|D̂(−g/ω)σ̂zD̂(−g/ω)|→〉 ⊗ |m − n〉
= �〈m|D̂(−2g/ω)|m − n〉. (13)

These matrix elements (for any integer m with m � n) are
given by [9]

�̃mn = �e−2g2/ω2

(
−2g

ω

)n
√

(m − n)!

m!
Ln

m−n

[
4g2

ω2

]
, (14)

where L j
i (x) are the associated Laguerre polynomials. The

main properties of �̃mn are as follows: They vanish in the
special case g = 0 and n �= 0, they vanish asymptotically
when g/ω → ∞, and they change sign m − n times at finite
values of g, giving rise to m − n energy crossing points.
The effect of coupling to states outside the two-dimensional
subspace under consideration can be included using Van
Vleck perturbation theory, as explained, e.g., in Ref. [26]. This
coupling will modify the values of the matrix elements in
Eq. (12). Importantly, however, because the energy crossing
points at finite values of g occur at points where both the
diagonal and off-diagonal matrix elements in Ĥeff change sign
as functions of the system parameters, small corrections to the
matrix elements can shift the locations of the crossing points
but will not affect the existence of these crossings.

Two examples of the energy level separation between two
neighboring energy levels as a function of g are plotted in
Fig. 4. The figure shows that the perturbation-theory approx-
imation works very well (and becomes exact) in the limits
�/ω → 0 or g/ω → ∞, as mentioned above. Deviations
from the theoretical formula, which result from coupling to

states outside the two-dimensional subspace, become clearly
visible away from these limits. Nevertheless, the existence of
the energy-level crossing is not affected by the perturbation,
even when this perturbation is quite large [Fig. 4(b)].

The perturbation-theory analysis also highlights the fact
that the quantum states of the unperturbed basis (which cap-
ture the symmetry in certain limits) depend on the system
parameters (because the displacement α = g/ω), which sug-
gests that the symmetry in this problem involves basis states
that depend on the system parameters, unlike the usual case
where the symmetry is defined based on the overall form of
the terms in the Hamiltonian but is independent of the values
of the system parameters.

Before concluding this section, we make a final observation
about the degeneracies in the spectrum. The proof of the
existence of degeneracies was made possible because the level
crossings correspond to quasiexact (Juddian) solutions, just
as the degenerate states in the symmetric QRM. They are
therefore always located on the baselines of the model with
energies Eb(n) = nω − g2/ω ± ε/2, i.e., the exceptional spec-
trum. One can prove that the asymmetric QRM cannot possess
any degeneracies in its regular spectrum [10,25]. Therefore,
the search for possible degeneracies away from integer values
of ε/ω could be restricted to the baselines. These facts may
turn out to be related to the hidden symmetry operator (if it
exists).

V. SEARCHING FOR ADDITIONAL POINTS
WITH HIDDEN SYMMETRY

So far we have focused on the case where ε/ω is an
integer, where it has already been established that energy level
crossings exist. In this section we raise the question of whether
there could be other cases with noninteger values of ε/ω

where energy level crossings exist. For this purpose, we scan
the parameters (ε/ω,�/ω, g/ω) in the ranges ε/ω ∈ [0, 2],
�/ω ∈ [0.1, 3.1], and g/ω ∈ [0.1, 3.1] and look for possible
energy level crossings. For each value of ε/ω, we use a mesh
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FIG. 5. Minimum energy gap between any two energy levels
within the ten lowest levels as a function of ε/ω. The minimum gap
is taken over (�/ω, g/ω) values in the range �/ω ∈ [0.1, 3.1] and
g/ω ∈ [0.1, 3.1] with a mesh of spacing 0.01 between neighboring
points in (�/ω, g/ω) parameter space. The minimum gap is effec-
tively zero at integer values of ε/ω but not at any other value of ε/ω.

of 301 × 301 points in the (�/ω, g/ω) space, i.e., using a
spacing of 0.01 in the parameter values, and we calculate
the minimum energy gap within the lowest ten energy levels.
In Fig. 5, we plot the minimum gap as a function of ε/ω,

i.e., taking the minimum over all possible values of �/ω

and g/ω. As expected, the minimum gap vanishes at integer
values of ε/ω. We find no additional values of ε/ω that result
in extremely small energy gaps that could serve as signs of
energy level crossings. We therefore conclude, with a high
degree of confidence, that there are no additional cases of
hidden symmetry in the asymmetric QRM.

VI. CONCLUSION

We have performed numerical calculations that confirm the
existence of energy level crossings in the asymmetric QRM
at integer values of ε/ω. We have further made an attempt
at identifying the hidden symmetry in the asymmetric QRM.
Our results lead to the conclusion that the symmetry operator
must depend on the different system parameters, which means
that it cannot have a simple intuitive interpretation as for
example in the case of the symmetric QRM. We have also
searched and concluded that it is highly unlikely that there
are additional cases of hidden symmetry beyond what has
been established in the literature. Our results shed light on the
nature of the hidden symmetry and could help in the eventual
identification of its full nature.
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