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Quantum trajectory theory of few-photon cavity-QED systems
with a time-delayed coherent feedback
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We describe an efficient approach to modeling cavity quantum electrodynamics (QED) with a time-delayed
coherent feedback using quantum trajectory simulations. An analytical set of equations is derived to exploit
the advantages of trajectories in the presence of the non-Markovian dynamics, where adjustments to the
standard stochastic dynamics are discussed. In the weak excitation regime, we first verify that our approach
recovers known results obtained with other simulation methods and demonstrate how a coherent feedback loop
can increase the photon lifetime in typical cavity-QED systems. We also highlight the underlying stochastic
dynamics. We then explore the nonlinear few-photon regime of cavity QED, under the restriction of at most one
photon at a time in the feedback loop. In particular, we show how feedback affects the cavity photoluminescence
(populations versus laser detuning) and describe how one must account for conditioning in the presence of
feedback; specifically, the system observables must be conditioned on no photon detections at the feedback
output channel occurring.
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I. INTRODUCTION

Cavity quantum electrodynamics (cavity QED), where
two-level systems [TLSs (quantum bits or qubits)] are
strongly coupled to optical cavities, has been studied in many
works, both theoretically [1–3] and experimentally [4–6],
with emerging experiments also using qubits embedded in
integrated semiconductor microcavities [7] or implemented in
superconducting circuits (circuit QED) [8]. These elementary
quantum systems often couple to integrated waveguides to
give greater “on-chip” control, emitting single photons into
a waveguide mode [9], even in only one direction—“chiral
waveguides” [10,11]. Cavity-QED systems can also aid quan-
tum information objectives in other ways, e.g., by generating
squeezed light [12]. Due to their often short photon lifetimes,
however, they can lack the long-term stability required by
certain applications.

Quantum feedback has been proposed as a method to
increase stability (and coherent lifetime) in cavity QED, by
coupling the system to an optical feedback loop that coher-
ently returns photons after a time delay [13]. Other suggested
applications of coherent feedback include stabilization in
optomechanics [14], enhancement of photon entanglement
[15] and squeezing [16,17], enhanced photon bunching and
antibunching, and improved photon distribution in quantum
emitters [18,19].

The most commonly used approach to solve for the evo-
lution of cavity-QED systems employs open-system quan-
tum master equations [20], which readily include dissipation
by tracing over the reservoir [21]. Time-delayed coherent
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feedback, however, contradicts one of the fundamental as-
sumptions of the approach, namely, the assumption of a
Markovian dynamic. Under the Markov approximation, the
system evolution must depend on the present system state
only (local time) and not draw on information from the past.
Time-delayed feedback explicitly violates this requirement
and so a new approach is called for.

Due to complexities arising from the continuum of modes
in the feedback reservoir and the non-Markovian dynamic,
the majority of studies have been limited to the linear regime,
although nonlinearity at the few-quanta level has been treated
by employing fictitious cascading systems [22,23] or ma-
trix product states [19,24–26]. These treatments focus on
particular model systems, however, and they can meet with
severe computational limitations as photon numbers increase.
There is thus reason to develop alternative approaches to
the modeling of time-delayed coherent feedback in quantum
optics, especially ones that offer more physical insight into the
underlying dynamics.

In this paper, we introduce an intuitive approach that ex-
ploits the physical insight and numerical efficiency provided
by quantum trajectory (QT) simulations. It is naturally suited
to the coherent feedback problem, allowing us to incorporate
the non-Markovian effects while preserving the usual benefits
of a QT evolution—in particular, the linear scaling with
the overall size of the Hilbert space, which brings distinct
advantages in the multiphoton regime.

A QT evolves the (not necessarily normalized) ket vector,
|ψ̃ (t )〉, of a cavity-QED system [27–29] according to the
nonunitary Schrödinger equation

d

dt
|ψ̃ (t )〉 = −iHeff |ψ̃ (t )〉 , (1)
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FIG. 1. Schematic representation of one time step in the quantum
trajectory evolution.

where Heff is the effective non-Hermitian Hamiltonian and we
adopt natural units with h̄ = 1. This evolution is augmented
by quantum jumps, at random times, which account for the
dissipation operators, {Ci}, in the master equation; thus, at
each time step, the integrated probability (cumulative distri-
bution to time t) for a jump to occur and no jump to have
occurred since the last jump at time t0 is given by

P(t ) =
∫ t

t0

w(t ′)dt ′, (2)

where w(t ′) = ∑
j 〈ψ̃ (t ′)|C†

j Cj |ψ̃ (t ′)〉 is the waiting-time dis-
tribution; which Cj terminates the no-jump interval is de-
termined randomly, with probabilities in proportion to the
rates summed in w(t ) (see Sec. 17.3.2 of [30]). A schematic
representation of the evolution for one time step is shown
in Fig. 1. The average over many QTs can be shown to
recover the evolution of the density operator of the open
system [28] (if desired), and single trajectories provide unique
insight into the underlying stochastic dynamics. Furthermore,
since each trajectory is independent of the others, numerical
computations can easily be parallelized.

The rest of our paper is organized as follows. In Sec. II,
we present the main model of interest and show how the
feedback loop is added to the QT formalism and treated
in the Hamiltonian; a discussion of the “good” and “bad”
cavity regimes is also presented. In Sec. III, we implement
the proposed approach and highlight the key analytical steps
that are taken to make the evolution under Heff tractable for
this system; we also show how to evaluate the probability of a
quantum jump occurring and how to execute a quantum jump.
To enable the computation of system observable expectations
(e.g., the mean cavity photon number), we also discuss the
need for conditioning in the presence of feedback, and present
a numerical solution to this problem. We then discuss the
numerical algorithm built to sample QTs in Sec. IV. Lastly, in
Sec. V, we run through a variety of results from simulations
made in different parameter regimes: first, previous results
are replicated to confirm the accuracy of the treatment, and
coherent feedback is shown to increase photon lifetimes;
second, multiphoton effects (beyond weak excitation) are then
discussed and examples of possible improvements arising
from coherent feedback are explored. Our conclusions are
presented in Sec. VI. We also derive the feedback coupling

FIG. 2. Schematic of the cavity TLS coupled to a waveguide at
L/2. The system has output channels C0 (decay rate γC), C1 (decay
rate γT), and E+(L/2) (the field propagating to the right out of
the waveguide); has a feedback loop (round-trip length L) with a
perfect mirror at z = 0; and is driven by a cw laser of strength �.
The cavity creation and annihilation operators are c† and c; the TLS
raising and lowering operators are σ+ and σ−; and the feedback loop
creation and annihilation operators are r†(ω) and r(ω). The ground
and excited states for the TLS are denoted by |g〉 and |e〉.

term in Appendix A and some details from Sec. III are moved
to Appendices B and C. An optimized QT technique for a
simplified version of the model is presented in Appendix D.

II. MODEL AND HAMILTONIAN

The cavity-QED feedback model under investigation com-
prises a cavity coupled to a TLS as depicted in Fig. 2. The
TLS has raising and lowering operators σ+ and σ−, and the
creation and annihilation operators for the cavity mode are
c† and c. The system is driven by a continuous-wave (cw)
laser of Rabi frequency � and coupled to three output chan-
nels: C0 representing cavity decay to an open reservoir (no
feedback), C1 representing spontaneous decay from the TLS,
and E+(L/2) representing the field propagating to the right
at z = L/2 in the waveguide (the field leaving the feedback
loop, superposed with the emission from the cavity into the
waveguide traveling to the right). Of particular interest is
the coupling to the feedback reservoir, which takes photons
emitted from the cavity to the left in the waveguide and feeds
them back coherently; as shown in Fig. 2, photons entering the
feedback loop are reflected by a mirror—e.g., a microcavity,
which could introduce additional loss [31]—and returned to
the cavity after a time delay τ = L/c(ω), with L the round-trip
length and c(ω) the speed of photons, of frequency ω, in the
feedback loop. The feedback loop is modeled as a continuum
of photon modes, with creation and annihilation operators
r†(ω) and r(ω). In practice, such schemes can be realized
in solid state circuits, e.g., using quantum dots in photonic
waveguide crystal structures [7,31,32].

The system is investigated in both the good and bad cavity
regimes. In the former case, photons have a non-negligible
lifetime in the cavity and nonvanishing photon populations
accrue; this is usually achieved with g > γC, γL, and γT, where
g is the cavity-TLS coupling rate; γC and γT are the decay rates
of the cavity and TLS to the open reservoir, respectively; and
γL is the decay rate into the waveguide. In the bad cavity case,
the photon population in the cavity should quickly decay to
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zero; different choices of parameters achieve this but there is
no clear bad cavity response: setting γC, γT = 0 and γL � g,
the loop can be engineered such that little population is lost
from the overall system (cavity TLS plus feedback reservoir)
and the feedback loop maintains a photon population in the
TLS; on the other hand, setting γL = 0 and γC, γT � g, the
cavity quickly decays and no photon population is present.
Both parameter choices yield a bad cavity, but the dynamic is
completely different and so care must be taken in this regime.

Our model is captured by the Hamiltonian

H = δaLσ+σ− + δcLc†c +
∫ ∞

−∞
[ω′r†(ω′)r(ω′)]dω′

+ g(σ+c + c†σ−) + �(σ+ + σ−)

+
∫ ∞

−∞
{G(ω′)[c†r(ω′) + r†(ω′)c]} dω′, (3)

where δaL = ωa − ωL and δcL = ωc − ωL are the detunings of
the TLS and cavity, respectively, from the frequency, ωL, of
the laser drive, and G(ω) = √

γL/2π sin[(ωτ + φ)/2] [3,33]
is the frequency dependent coupling between the cavity and
the feedback reservoir, where φ is the overall phase change
around the feedback loop. The form of E+(L/2) is shown in
Appendix A, where it is used to derive G(ω). The Hamiltonian
is written in an interaction picture designed to remove the
oscillation at the frequency of the drive, and we have made
a rotating wave approximation.

III. QUANTUM TRAJECTORY THEORY

In QT theory [27–29], when no quantum jump occurs,
the system evolves coherently according to (1), where the
non-Hermitian Hamiltonian, Heff = H − i

2 (C0
†C0 + C1

†C1),
is the system Hamiltonian augmented by the Lindblad jump
operators that represent cavity decay to the open reservoir and
spontaneous emission. If a quantum jump occurs, then one
of the jump operators, C0, C1, or E+(L/2), is applied to the
system and the state is renormalized.

The challenge in applying this method to our model arises
in the algebraic form of the system state, which must encom-
pass both the cavity TLS and the feedback loop:

|ψ (t )〉 =
N∑

n=0

{
[αn(t )|g〉 + βn(t )|e〉] |{0}〉

+
∫ ∞

−∞
[Rg,n(ω′, t )|g〉+Re,n(ω′, t )|e〉] |1, ω′〉 dω′

}
× |n〉C , (4)

where we restrict the expansion to just one photon in the
feedback loop, though many photons may occupy the cavity
(denoted by the index n in the state |n〉C); α and β represent
the amplitudes of the ground and excited state, respectively, of
the TLS when there is no photon in the feedback loop, while
Rg and Re represent those amplitudes with one photon in the
feedback loop; the frequency of the photon in the feedback
loop is indicated by ω′, and the notation {0} indicates no
photon in every mode of the loop, i.e., the vacuum of the
feedback loop. The restriction to at most one photon in the
feedback loop at any time assumes either γLτ � 1 or � � 1;

thus, it neglects multiphoton interference effects, which will
be incorporated in future work. This is expected to be a rea-
sonable approximation for small feedback loops and low loss.

Since there is a continuum of reservoir modes, Rg,n(ω, t ) or
Re,n(ω, t ) cannot be evolved individually, or at least it would
be numerically cumbersome to do so. For a more efficient
approach, we first find an expression for these amplitudes in
terms of αn(t ) and βn(t ), with the number of photons in the
cavity truncated at nmax = N .

Substituting the expansion of (4) into (1), and employing
the above expression for Heff with C0 = √

γCc and C1 =√
γTσ−, we arrive at a set of 4(N + 1) coupled differential

equations:

dαn

dt
= − Anαn − ig

√
nβn−1

− i�βn − i
∫ ∞

−∞
G(ω′)

√
nRg,n−1(ω′)dω′,

dβn

dt
= − Bnβn − ig

√
n + 1αn+1

− i�αn − i
∫ ∞

−∞
G(ω′)

√
nRe,n−1(ω′)dω′,

dRg,n(ω)

dt
= − (An + iω)Rg,n(ω) − ig

√
nRe,n−1(ω)

− i�Re,n(ω) − iG(ω)
√

n + 1αn+1,

dRe,n(ω)

dt
= − (Bn + iω)Re,n(ω) − ig

√
n + 1Rg,n+1(ω)

− i�Rg,n(ω) − iG(ω)
√

n + 1βn+1, (5)

where An = nγC/2 + inδcL (note A0 = 0) and Bn = (γT +
nγC)/2 + i(δaL + nδcL ); amplitudes indexed by n with n /∈
[0, N] are zero, e.g., Rg,N+1(ω, t ) = 0 at all times.

Keeping our goal in mind, i.e., to obtain a set of easy
to evolve equations for αn(t ) and βn(t ), our task now is to
obtain suitable expressions for Rg,n−1(ω, t ) and Re,n−1(ω, t )
for substitution on the right-hand sides of the first two state
amplitude equations, (5); with the integrals over dω′ evalu-
ated, we aim for a closed set of coupled differential equations.
We show here how to proceed in the N = 1 case, with the
general N case following the same approach but with more
algebraic complexity. This allows for up to two quanta in
the cavity TLS (the cavity and TLS both excited) and goes
beyond the one-quantum treatments commonly encountered
in the literature (e.g., see [3]). We note that the next three
subsections track the evolution from the initial time (t = 0) up
to the time of the first jump, so the lower limit of integration
is zero in (2).

A. Decoupling Rμ,n in the N = 1 case

With the maximum number of photon states in the cavity
set to N = 1, the coupled differential equations for Rμ,n(ω, t )
reduce to

dRg,0(ω)

dt
= − iωRg,0(ω) − i�Re,0(ω) − iG(ω)α1,

dRe,0(ω)

dt
= − (B0 + iω)Re,0(ω) − i�Rg,0(ω)

− igRg,1(ω) − iG(ω)β1,
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dRg,1(ω)

dt
= − (A1 + iω)Rg,1(ω) − i�Re,1(ω)

− igRe,0(ω),

dRe,1(ω)

dt
= −(B1 + iω)Re,1(ω) − i�Rg,1(ω). (6)

If we then define two vectors,

R(ω, t ) ≡

⎛⎜⎜⎜⎝
Rg,0(ω, t )

Re,0(ω, t )

Rg,1(ω, t )

Re,1(ω, t )

⎞⎟⎟⎟⎠, αβ(t ) ≡

⎛⎜⎜⎜⎝
α1(t )

β1(t )

0

0

⎞⎟⎟⎟⎠, (7)

and the matrix

A ≡

⎡⎢⎢⎢⎣
−iω −i� 0 0

−i� −(B0 + iω) −ig 0

0 −ig −(A1 + iω) −i�

0 0 −i� −(B1 + iω)

⎤⎥⎥⎥⎦,

(8)
this system may be written in the simple form

d

dt
R(ω, t ) = AR(ω, t ) − iG(ω)αβ(t ), (9)

with solution

R(ω, t ) = −iG(ω)
∫ t

0
Ee−λ(t ′−t )E−1αβ(t ′)dt ′, (10)

where E is a matrix formed from the eigenvectors of A and λ

is a diagonal matrix of eigenvalues. Clearly, the eigenvalues
take the form λ j = −iω + c j , c j ∈ C. Thus, we may write

R(ω, t ) = −iG(ω)
∫ t

0
eiω(t ′−t )E · n(t, t ′)dt ′, (11)

where E and n(t, t ′) are frequency independent. Further de-
tails are provided in Appendix B, where the explicit expres-
sion for n(t, t ′) appears as (B12).

B. Solving the dynamical evolution equations in the N = 1 case

Often one is interested in just a few quanta, especially
for low loss and good cavity systems; in this case we may
restrict the Hilbert space to N = 1. This recovers all of the
physics in the weak excitation regime—up to one quantum in
the cavity TLS plus feedback loop—and, in addition, some
multiphoton effects, as we demonstrate in Sec. V C. The
coupled differential equations for the α and β amplitudes are
now

dα0

dt
= −i�β0,

dβ0

dt
= −B0β0 − i�α0 − igα1,

dα1

dt
= −A1α1 − i�β1 − igβ0 − i

∫ ∞

−∞
G(ω′)Rg,0(ω′)dω′,

dβ1

dt
= −B1β1 − i�α1 − i

∫ ∞

−∞
G(ω′)Re,0(ω′)dω′, (12)

where the coupling to the feedback loop is made through the
quantities (11):

Rg,0(ω, t ) = − iG(ω)
∫ t

0
eiω(t ′−t )Eg,0 · n(t, t ′)dt ′,

Re,0(ω, t ) = − iG(ω)
∫ t

0
eiω(t ′−t )Ee,0 · n(t, t ′)dt ′, (13)

where Eg,0 and Ee,0 are the first and second rows of E,
respectively. As is shown in Appendix C, the required double
integrals simplify to give

− i
∫ ∞

−∞
G(ω′)Rg,0(ω′, t )dω′

= γL

4
[−Eg,0 · n(t, t ) + eiφθ (t − τ )Eg,0 · n(t, t − τ )]

(14)

and

−i
∫ ∞

−∞
G(ω′)Re,0(ω′, t )dω′

= γL

4
[−Ee,0 · n(t, t ) + eiφθ (t − τ )Ee,0 · n(t, t − τ )],

(15)

where θ (t − τ ) is the Heaviside step function, which is intro-
duced to clarify that the feedback does not affect the system
until t � τ .

The set of equations for α and β amplitudes is now closed
and can be used to evolve the state of the entire system, (4)
with N = 1, between quantum jumps. It is worth noting that
R(ω, t ) can be determined at any time (t) and frequency (ω)
as it only depends on the history of α(t ) and β(t ), which is
known. Thus, expectations relating to the feedback loop can
be calculated, such as the photon population in the loop.

C. Calculating the probability for a quantum jump

Now that the evolution between jumps has been solved,
the integrated probability of a quantum jump occurring after
an interval t with no jump must be determined. To do this we
need to calculate the waiting-time distribution, w(t ), which
is given by a sum of expectation values with respect to the
un-normalized state:

w(t ) =
〈
ψ̃ (t ) | E†

+(L/2)E+(L/2) +
1∑

i=0

C†
i Ci | ψ̃ (t )

〉
, (16)

where C0 = √
γCc, C1 = √

γTσ−, and E+(L/2) =
−i√
2π

∫∞
−∞ eiωτ/2r(ω)dω. Note that the form of E+(L/2)

comes from the spatial representation of the field E (z) as
outlined in Appendix A. We then are interested in the field
propagating to the right at z = L/2 [i.e. E+(L/2)] as this is
where the output from the feedback loop occurs. Only the
evaluation of the C†

0C0 expectation is shown as all three are
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evaluated in a similar way. We have

〈ψ̃ (t )|C†
0C0|ψ̃ (t )〉 = γC

[
|α1(t )|2 + |β1(t )|2 +

∫ ∞

−∞
|Rg,1(ω′, t )|2 + |Re,1(ω′, t )|2dω′

]
, (17)

where, from (11),

Rg,1(ω, t ) = − iG(ω)
∫ t

0
eiω(t ′−t )Eg,1 · n(t, t ′)dt ′,

Re,1(ω, t ) = − iG(ω)
∫ t

0
eiω(t ′−t )Ee,1 · n(t, t ′)dt ′, (18)

where Eg,1 and Ee,1 are the third and fourth rows of E, respectively. Thus, we need the integral

Iμ,1 =
∫ ∞

−∞
R∗

μ,1(ω′, t )Rμ,1(ω′, t )dω′, (19)

where μ = g or e, which expands as

Iμ,1 =
∫ t

0

∫ t

0
[Eμ,1 · n(t, t ′′)]∗[Eμ,1 · n(t, t ′)]

∫ ∞

−∞
G2(ω′)e−iω′(t ′′−t )eiω′(t ′−t )dω′dt ′dt ′′. (20)

Substituting the exponential form of G(ω′), we subsequently carry out the integration over frequency to arrive at

Iμ,1 = γL

4

∫ t

0

∫ t

0
dt ′dt ′′[Eμ,1 · n(t, t ′′)]∗[Eμ,1 · n(t, t ′)][2δ(t ′′ − t ′) − eiφδ(t ′′ − τ − t ′) − e−iφδ(t ′′ + τ − t ′)]. (21)

Finally, the integral with respect to t ′ is carried out to yield a sum of three terms:

Iμ,1 = γL

4

{∫ t

0
2|Eμ,1 · n(t, t ′′)|2dt ′′ − eiφ

∫ t

τ

[Eμ,1 · n(t, t ′′)]∗[Eμ,1 · n(t, t ′′ − τ )]dt ′′

− e−iφ
∫ t−τ

0
[Eμ,1 · n(t, t ′′)]∗[Eμ,1 · n(t, t ′′ + τ )]dt ′′

}
. (22)

It is readily shown that the second and third terms are complex conjugates of one another so there are just two integrals to
compute in a numerical implementation. From (17) and the similar result for the expectation of C†

1C1, we now have

〈ψ̃ (t )|C†
0C0|ψ̃ (t )〉 = γC[|α1(t )|2 + |β1(t )|2 + Ig,1 + Ie,1],

〈ψ̃ (t )|C†
1C1|ψ̃ (t )〉 = γT[|β0(t )|2 + |β1(t )|2 + Ie,0 + Ie,1]. (23)

Although derived in a similar way, the expectation of E†
+(L/2)E+(L/2) does not require integrals over the past time and is

〈ψ̃ (t )|E†
+(L/2)E+(L/2)|ψ̃ (t )〉 = γL

4

∑
μ={g,e}

1∑
n=0

∣∣Eμ,n · n(t, t ) − eiφθ (t − τ )Eμ,n · n(t, t − τ )
∣∣2. (24)

D. Applying the quantum jump operator

Once a jump is determined to occur and the type of
jump chosen using the relative probabilities, one of the jump
operators is applied to the system state. For the purposes
of illustration, let us assume that a cavity jump occurred
and C0 = √

γCc operates on the system state. The new un-
normalized ket vector, at time t0, following the time step in
which the jump occurred, is

|ψ̃ (t0)〉 = √
γC

{
[α1(t̄0) |0〉 + β1(t̄0) |1〉] |{0}〉

+
∫ ∞

−∞
[Rg,1(ω′, t̄0) |0〉

+ Re,1(ω′, t̄0) |1〉] |1, ω′〉 dω′
}

|0〉 , (25)

where t̄0 ≡ t0 − δt ; thus the new nonzero amplitudes are

α0(t0) = √
γCα1(t̄0),

β0(t0) = √
γCβ1(t̄0),

Rg,0(ω, t0) = √
γCRg,1(ω, t̄0),

Re,0(ω, t0) = √
γCRe,1(ω, t̄0), (26)

while, furthermore, for t > t0, the amplitudes Rμ,n(ω, t ) are
given by

iG−1(ω)Rg,0(ω, t ) =
∫ t

t0

eiω(t ′−t )Eg,0 · n(t, t ′)dt ′

+ √
γC

[∫ t̄0

0
eiω(t ′−t )Eg,1 · n(t̄0, t ′)dt ′

]
,
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iG−1(ω)Re,0(ω, t ) =
∫ t

t0

eiω(t ′−t )Ee,0 · n(t, t ′)dt ′

+ √
γC

[∫ t̄0

0
eiω(t ′−t )Ee,1 · n(t̄0, t ′)dt ′

]
,

iG−1(ω)Rg,1(ω, t ) =
∫ t

t0

eiω(t ′−t )Eg,1 · n(t, t ′)dt ′,

iG−1(ω)Re,1(ω, t ) =
∫ t

t0

eiω(t ′−t )Ee,1 · n(t, t ′)dt ′. (27)

Thus, both Rg,1 and Re,1 are reset after the jump, while Rg,0

and Re,0 carry the memory of Rg,1 and Re,1 immediately prior
to the jump through their initial values at time t0.

This suggests a convenient strategy for implementing
−i
∫∞
−∞ G(ω′)Rμ,0(ω′, t )dω′ in the evolution of α and β fol-

lowing a jump. For the time interval of length τ following a
jump, the terms Eg,0 · n(t, t − τ ) and Ee,0 · n(t, t − τ ) are re-
placed by Eg,1 · n(t, t − τ ) and Ee,1 · n(t, t − τ ), respectively.
This occurs because after the jump the value of Rg,0 and Re,0

evaluated at a time τ in the past lands in the integrals from
zero to t̄0 in (27). Care must also be taken when computing
the Ig,0 and Ie,0 integrals to ensure that the nonzero overlap of
the time integrals is considered when numerically evaluating
these quantities.

When a quantum jump down the waveguide is determined
to occur—i.e., when we apply E+(L/2) to the system—a reset
of the memory occurs; that is, the history up to that point
can be thrown away. Specifically, this means that the integrals
over all past time restart and we only need to calculate
them starting from the jump time, t0. We define |ψ̃reset (t0)〉 =
E+(L/2) |ψ̃ (t̄0)〉 to be the un-normalized state of the system
after such a jump, where the label “reset” is used to denote
the memory reset that accompanies this jump. This state
is

|ψ̃reset (t0)〉 = −i
√

γL

2

∑
μ={g,e}

1∑
n=0

{Eμ,n · n(t̄0, t̄0)

− eiφθ (t̄0 − τ )[Eμ,n · n(t̄0, t̄0 − τ )]}|μ〉|n〉C|{0}〉.
(28)

E. Conditioning in the presence of feedback

Due to the non-Markovian nature of the output channel
E+(L/2), the populations of the system must be conditioned
on no jump occurring in a different way to typical Marko-
vian output channels such as C0. Rather than introducing
a nonunitary part to the system Hamiltonian (since photon
loss from the feedback loop is not of Lindblad form), the
conditioning is implemented explicitly by hand. We argue
from the standard theory of photon counting, specifically,
from the conditional probability for a count in the interval
[t, t + δt ), given no count in the interval since the last count,
[t0, t ). This probability is the ratio of two unconditional
probabilities:

P
(
C[t,t+δt )|NC[t0,t )

) = P
(
C[t,t+δt ) ∧ NC[t0,t )

)
P
(
NC[t0,t )

) , (29)

with

P
(
C[t,t+δt ) ∧ NC[t0,t )

)
= trS⊗W

{[
E†

+(L/2)E+(L/2) +
1∑

i=0

C†
i Ci

]
χ̃ (t )

}
δt (30)

the probability for a count in [t, t + δt ) and no count in [t0, t ),
and

P(NC[t0,t ) ) = trS⊗W[χ̃ (t )] (31)

the probability for no count in [t0, t ), where the trace is taken
over the system S and waveguide W, and

χ̃ (t ) = e[L−E+(L/2) · E†
+(L/2)](t−t0 )χ (t0), (32)

with L = −i[Heff , · ] and χ (t0) = |ψ (t0)〉 〈ψ (t0)|; for the ex-
plicit expressions see Appendix A of [34]. We may now
extract the normalized state χ̃ (t )/trS⊗W[χ̃ (t)] from (29)–(31),
and hence the system state conditioned on no count in the
interval [t0, t )

ρ(t ) = trW[χ̃ (t )]

trS⊗W[χ̃ (t )]
, (33)

where, under the approximation of only one photon in the
feedback loop at any time, a first-order Dyson expansion
yields

χ̃ (t ) = |ψ̃ (t )〉 〈ψ̃ (t )| −
∫ t

t0

eL(t−t ′ ) |ψ̃reset (t
′)〉 〈ψ̃reset (t

′)| dt ′.

(34)

Note that ρ(t ) is normalized, so desired observable expecta-
tions can be calculated from this quantity.

This process is computationally demanding and can
quickly cause the trajectories to take significant amounts of
time to run. The interaction with the feedback loop is therefore
dropped from L, which is a good approximation under the
assumption of at most one photon in the loop—i.e., L −→
L0 = −i[H0

eff , · ], where

H0
eff = δaLσ+σ− + δcLc†c + g(σ+c + c†σ−)

+ �(σ+ + σ−) − i

2
[γCa†a + γTσ+σ−]. (35)

After making this approximation, when γC = γT = 0 the de-
nominator of (33) reduces to the probability that no photon
has traveled to the right down the waveguide (left the system)
since the last jump, i.e., to 1 − PE+(L/2)(t ), where PE+(L/2)(t ) is
the integrated probability of jump E+(L/2).

IV. NUMERICAL IMPLEMENTATION

We implemented this algorithm in MATLAB employing the
Parallel Computing Toolbox (though it could readily be imple-
mented in other computational languages such as PYTHON).
The matrices E and λ are first computed from the provided
system parameters, and then passed to a parallelized for-loop
which runs the QT simulations; since each QT is independent
of the others, this calculation is readily parallelized, which
leads to a significant saving in computation time. Once the de-
sired ensemble of expectations has been obtained, it is passed
back to the main program to be averaged. The approach would
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work in a similar way with no parallelization, on a single
processor, although the computation time would more quickly
become prohibitive with increasing complexity of the system.

The QT simulation evolves the provided initial state
through enough time steps of sufficient resolution to reach the
desired end time. At the start of each time step, the waiting-
time distribution, w(t ′), for a jump to occur is evaluated
and the integrated probability, P(t ) = ∫ t

t0
w(t ′)dt ′ where t0

is the time of the last jump, is compared against a uni-
formly distributed random number ε: if ε < P(t ), a jump is
implemented, with the jump operator selected on the basis
of a second uniformly distributed random number and the
relative jump probabilities from the most recent time step;
otherwise the system state is advanced one time step by
a modified fourth-order Runge-Kutta algorithm [35] (RK4)
applied to the equations of motion from Sec. III B—note that
RK4 makes two evaluations of n(t, t − τ + δt/2), which is
unavailable, and we therefore substitute n(t, t − τ ) for the
first evaluation and n(t, t − τ + δt ) for the second. Since we
are using the integrated probability for a jump at time t ′ and
no jump prior to t ′ (waiting-time distribution), the state is
only renormalized after a jump occurs. After the trajectory
has completed, the conditioning is done on the system and
any desired expectations—e.g., the population in the TLS,
or photon population in the cavity or feedback loop—can be
calculated.

The integrals Iμ,n, for μ = {g, e} and n = 0, 1, must be
evaluated once each time step. As they extend over the entire
past, they make the largest demand on computation time,
which scales quadratically, as a result, with the number of time
steps. Since the algorithm scales linearly with the number of
QTs, it is more efficient to average many QTs with coarse time
resolution than fewer with fine time resolution. An optimized
numerical technique for QTs when our system is simplified is
presented in Appendix D.

V. RESULTS

Throughout the results section, we will refer to the
TLS population and the cavity population, defined ex-
plicitly through the quantities na = 〈ψ (t )|σ+σ−|ψ (t )〉 and
nc = 〈ψ (t )|c†c|ψ (t )〉, respectively.

A. Replication of previous results and
quantum trajectory insights

To first demonstrate the accuracy of this approach, the
numerical model was tested under regimes where the response
of the system is already known, or studied elsewhere using
different approaches (not QT). Figure 3(a) shows the model as
an isolated cavity-TLS system (i.e., γL = γT = γC = � = 0)
and everything is on resonance, while Fig. 3(b) adds in the
waveguide without feedback (i.e., the long loop limit when
τ → ∞) and with γL = g. Note that Fig. 3(b) is created by
averaging 1000 trajectories, while Fig. 3(a) is created with a
single trajectory. This is because without a stochastic decay
channel all trajectories will be identical, and so Fig. 3(a)
can be created with one trajectory. Since Fig. 3(b) does
include a decay channel, an average must be taken in order
to recover the ensemble behavior of the system. These results

0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

0 10 20
0

0.2

0.4

0.6

0.8

1

FIG. 3. Evolution of the cavity TLS using the derived QT ap-
proach with no feedback loop or drive. The TLS is initially in its
excited state so that β0(t = 0) = 1. In (a), there is no output and
vacuum Rabi oscillations occur, while in (b) there is a nonzero output
rate (γL = g) and decaying Rabi oscillations are produced.

indeed replicate this relatively simple aspect of cavity-TLS
systems [36].

Furthermore, the cavity was removed from the model and
the TLS coupled directly to the waveguide in order to recover
previously studied results [19,37–39]. As shown in Fig. 4(a),
by tuning the phase of the feedback loop the system can
be made to exhibit enhanced spontaneous emission, when
φ = π , or trap the excitation, when φ = 0, as long as there
are no other loses, γT = γC = 0. Before t = τ = g−1, the time
delay introduced by the feedback, the dynamics are identical
in all three cases shown as the TLS simply decays. However,
as soon as the feedback is first introduced, the dynamics com-
pletely change due to interference between the departing and
returning fields emitted by the TLS. The same phenomenon
can be seen when the cavity is replaced as part of the system,
shown in Fig. 4(b); however, rather than stabilizing either the
TLS or cavity population, the Rabi oscillations are stabilized.

For both of the trapping regimes presented in Fig. 4 there
are two types of trajectories that are being averaged together
as shown in Figs. 5(a) and 5(b). The individual trajectories for
each case are overlaid in gray in the figures; either the system
decays and the jump E+(L/2) would occur or the jump does

0 5
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0.5

1

0 10 20
0

0.5

1

FIG. 4. Population dynamics showing the effect of feedback with
different φ, when (a) the system consists of a TLS and (b) the system
is a cavity-TLS setup discussed in Sec. II. Everything is on resonance
and there is no drive or Lindblad decay channels; in (a) τ = g−1 and
γL = 2g while in (b) τ = 2πg−1 and γL = g. Each set of results is an
average of 2000 QTs.
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FIG. 5. Sample trajectories for the trapping regimes, φ = 0, of
Figs. 4(a) and 4(b). The averaged TLS population is given in black
while the individual trajectories are in gray. Note that if the system
does not emit a photon to the right (shown by a jump of na to zero)
before the feedback returns then the excitation becomes trapped in
the system.

not occur and we are left with a trapped excitation. Note that
the jump only occurs before the feedback has returned from
its first round trip, after this time the excitation is trapped if
the jump has not occurred. The final average, shown in black,
is the average of the trajectories sitting in the ground state and
the trajectories with a trapped excitation.

Lastly, the recent results by Német et al. [33] are also
recovered by this approach as shown in Fig. 6. In this setup,
the effects of a very short or very long feedback loop were
investigated. When the delay time is very small compared
to the lifetime of the system, the phase change, φ, from the
loop has an immediate and significant effect on the system
as shown in Fig. 6(a). Figure 6(b) shows the dynamics for a
delay time which is longer than the lifetime of the system. In
this case the feedback acts to reintroduce the excitation to the
system, in a short pulse, rather than to stabilize or enhance
the decay. The phase also becomes much less important and
has little effect on the system. This is because the cavity TLS
is essentially in the ground state when the feedback returns;
there is no emission for the returning pulse to interfere with.

By replicating these previously studied results—each ad-
dressing its own solution space—in our QT formalism, we

50
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0.6
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1

0 50 100
0

0.02

0.04

0.06

FIG. 6. Population dynamics of (a) a short delay time (τ =
0.1g−1) and (b) a long delay time (τ = 20g−1). Both sets of results
are the average of 2000 QTs with everything on resonance and no
drive or Lindblad decay channels. The decay rate into the waveguide
is (a) γL = 0.2g and (b) γL = 5πg.
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FIG. 7. Mean populations of the cavity and TLS at finite t , as a
function of phase, for (a) t = 30g−1 and (b) t = 1000g−1, averaged
over 10 000 QTs. These QTs were calculated using the optimized
technique outlined in Appendix D. By varying the phase change, φ,
of the feedback loop, the optimized phase to improve the lifetime
of the system excitation can be found and is different for each loop
length. Three example loop lengths are plotted in the figures, defined
by the values of gτ in the legend. The output to the waveguide for
each loop length is γL = 2g with everything on resonance, no drive,
and no other Lindblad outputs.

validate the method for the study of feedback effects in cavity-
QED systems, at least within the scope of the stated approxi-
mations. We have also added extra insight into these regimes
by showing example QT graphs and stochastic dynamics.

B. Investigation of the effect of the feedback
loop on excitation trapping

In the previous section, enhanced spontaneous emission
was shown to occur when φ = π and stabilized populations
were shown when φ = 0. Which behavior occurs is not only
dependent on the phase, but also the length of the loop, as
shown in Fig. 7. The peaks in each curve represent the phase at
which stabilized populations occur at the chosen loop length.
Conversely the troughs of the curve represent regions where
enhanced spontaneous emission can be found. Note that the
height of the peaks of each curve is dependent on the length
of the loop as well. Since the system is an initially excited
TLS allowed to decay with no drive, the longer loop lengths
essentially “store” population so the stabilized values are
lower. Furthermore, the longer feedback time creates more
time for the system to decay to the right (and thus out of the
system) before the feedback returns.

The location of the peaks in Fig. 7 is dependent on the
phase required to return the reflected field out of phase with
the field emitted by the system in order to suppress net
emission down the waveguide to the right—the field E+(L/2)
in Fig. 2. When gτ = π or 2π , this only occurs at one phase,
φ = π or zero, respectively, and leads to stabilized Rabi
oscillations as shown in Figs. 8(a) and 8(b). However, when
gτ = π/2, this stabilization happens at two different phases,
φ = π/2 and 3π/2. This is because when τ = π/2 there is
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FIG. 8. Populations dynamics showing the excitation trapping
for different delay times and the required respective phases: (a) τ =
πg−1, φ = π , (b) τ = 2πg−1, φ = 0, (c) τ = (π/2)g−1, φ = π/2,
and (d) τ = (π/2)g−1, φ = 3π/2. Each example is an average of
1000 QTs with γL = 2g, everything is on resonance, there is no drive,
and there are no other Lindblad output channels.

both a real and imaginary component to α1(t ) and so the two
phases act to match—and stabilize—their respective compo-
nent. However, since only one component can be matched
for each φ, the coherence of the Rabi oscillations is lost and
a steady-state population—trapped superposition of the TLS
and cavity—is reached as shown in Figs. 8(c) and 8(d). The
general condition to achieve excitation trapping, derived in
Appendix D, is given by ±gτ − φ = 2πk for k ∈ Z. Note
that when there is only one unique solution for φ, as is the
case when gτ = πn or 2πn for n ∈ Z, then stabilized Rabi
oscillations occur. If there is more than one unique solution,
then the coherent oscillation is lost and a steady-state popu-
lation is reached. Also, when φ is moved off of the perfect
condition for a trapped excitation, the system excitation will
decay away at a rate dependent on how close the parameters
are to perfect trapping. In Fig. 7(a), the system evolution is
truncated at t = 30g−1 while in Fig. 7(b) it is truncated after
a longer time, at t = 1000g−1, and the width of the peaks
decreases while the heights remain the same. If t → ∞, we
would be left with a series of delta functions rather than peaks
of finite width when we truncate at finite t .

Figure 9 shows this relationship when we fix the phase
and allow the delay time to vary. The system oscillates be-
tween periods of stabilized Rabi oscillations and enhanced
spontaneous emission as the loop length increases. The height
of each peak is also decreasing as the delay time grows
due to more population being held in the loop rather than
in the system and increased time for the system to decay
before the feedback returns. As discussed with Fig. 6, when
the loop length is increasing the effect of the phase on the
system becomes less pronounced. This is seen here through
the broadening of each peak as coherence is lost due to the
longer round-trip time.

0 5 10 15
0

0.5

1

FIG. 9. Average populations at time t = 20g−1 for different delay
times, τ . As the delay time is longer, less population is held in
the cavity TLS as it spends more time in the loop. The output to
the waveguide for each loop length is γL = 0.5g with everything on
resonance, no drive, and no other Lindblad outputs. Each point is the
population in the cavity TLS (at t = 20g−1) averaged over 10 000
QTs generated using the technique outlined in Appendix D.

C. Nonlinear cavity-QED effects

So far, all of these results have been simulated by setting
an initial condition of an excited TLS in vacuum. Since the
pump has been turned off, � = 0, effectively the system has
only had one quanta in it (maximum). Thus the system is
essentially linear, and the solution can usually always be
solved trivially using frequency-space techniques (e.g., see
[31]) or using an analysis of the delay differential equations
(e.g., see [40]). By turning on the pump beyond a weak exci-
tation, the higher-order states of the system can be populated.
For example, the |e〉 |1〉C |{0}〉 state (i.e., an excited TLS and
one photon in the cavity with no photon in the loop) or the
|e〉 |0〉C |1, ω〉 state (i.e., an excited TLS and one photon in
the feedback with the cavity in the vacuum state) will be
populated. Therefore, by turning on the pump we can begin
to look at multiquanta effects in this system, which cannot be
modeled semiclassically, or using the usual weak-excitation
approximations.

The system is driven at moderate field strength, � = 0.1g,
in order to remain within the one photon in the loop approxi-
mation while also beginning to see nonlinear effects in the sys-
tem. Figure 10 shows the cavity photoluminescence spectrum
(proportional to the cavity population) of the system with and
without feedback when the cavity and TLS have a detuning
of g. Without feedback, there are only two peaks present, the
stronger peak on the left coming from the resonance of the
TLS and the weaker peak on the right coming from the cavity
resonance. When the feedback is added to the system there
is significant enhancement of the two peaks, especially of the
cavity resonance due to the feedback returning and stabilizing
the cavity population rather than it decaying away.

There are also new peaks that arise from the inclusion
of feedback-induced dressed states, which cause additional
resonances near δaL ∼ −0.5g. These additional peaks are not
seen without feedback and are due to the nonlinear behav-
ior introduced and enhanced by the feedback loop. With
a stronger pump these nonlinear effects will be easier to
identify; however, in order to use a stronger pump, higher
orders of quanta will need to be allowed in the feedback
loop, which will be addressed in future work. There are also
peaks introduced by the feedback state, |g〉 |0〉C |1, ω〉, shown
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FIG. 10. By scanning the detuning from the laser, of strength
� = 0.1g, the cavity photoluminescence spectrum (proportional to
the cavity population) is found by plotting the steady-state population
of the cavity as a function of detuning. The decay channels have rates
γL = 2g, γC = 0.05g, and γT = 0.01g. The delay time is τ = g−1

and there is no phase introduced by the loop, φ = 0. The detuning
between the cavity and TLS is g, so that δaL = δcL + g. Each point is
the average of 1500 QTs. The peak introduced by the feedback state
is highlighted in the inset at higher detuning resolution.

in the inset of Fig. 10. These peaks occur because of round-
trip resonances in the feedback loop [41], which appear at
±1/τ = ±ng (with n ∈ Z), and we see some signatures of
such a retardation peak near δaL ∼ 0.5g.

It is also important to recognize the importance of correctly
conditioning the populations in the presence of the feedback
loop. Figure 11 compares the technique of conditioning out-
lined in Sec. III E with the typical renormalization used in
Markovian QT theory. In Fig. 11(a) the damping of the Rabi
oscillations without conditioning is much faster than when the
populations are properly conditioned. Indeed, without condi-
tioning it seems as if there is negligible population left in the
system at t = 30g−1, but when calculated properly there are
still significant Rabi oscillations occurring with the system.
When a drive is introduced to the system as in Fig. 11(b), if
conditioning is not done properly then not only the incorrect
dynamics but also the incorrect steady-state population will
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FIG. 11. A comparison of the system dynamics with and without
conditioning. (a) Decaying Rabi oscillations when γL = 2g, with no
other Lindblad output channels or drive and everything on resonance.
The delay time is τ = g−1 without a phase change, φ = 0. (b) The
system driven by a weak pump, � = 0.1g, with decay rates of γL =
2g, γC = 0.05g, γL = 0.01g, and a detuning of δaL = δcL + g. The
delay time is τ = πg−1 and has an overall phase change of φ = π .
Both figures are an average of 1000 QTs.

be found. This is important in order to calculate the correct
spectra for the system.

VI. CONCLUSIONS

We have presented a QT formalism for simulating the evo-
lution of cavity-QED systems with coherent optical feedback.
The equations of motion required to evolve such a system
under QT theory are developed and the key quantities required
in the numerical simulation are derived. Previous results are
recovered using these equations of motion to confirm the
accuracy of our derived approach, with QT insights into the
stochastic dynamics. Results in the single quanta regime and
few quanta nonlinear regime are then presented to show the
potential of coherent optical feedback to stabilize nonlinear
cavity-QED systems and increase their coherent lifetimes.
Possible areas of future work for developing this approach
with coherent feedback include extending our model to allow
for more than one photon in the loop and computing nonlinear
spectra produced from the system.
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APPENDIX A: DERIVING THE FEEDBACK
COUPLING TERM

As denoted in Fig. 2 we set the location of the mirror to
be z = 0, and so the free field in the waveguide at a point z is
given by

E (z) = E−(z) + E+(z), (A1)

where E−(z) and E+(z) are the left and right propagating
waves, respectively. The form of these fields is given by

E±(z) = ∓ i√
2π

∫ ∞

∞
e±iωz/cr(ω)dω. (A2)

Then since the cavity couples to the waveguide at z = L/2 we
are interested in

E±(L/2) = ∓ i√
2π

∫ ∞

∞
e±iωτ/2r(ω)dω, (A3)

where we introduce τ = L/c. The interaction between the
cavity and this field at z = L/2 is thus given by

Hint = √
γL

(
c† E−(L/2) + E+(L/2)

2
+ H.c.

)
, (A4)

where H.c. is the Hermitian conjugate. Now plugging in
the form of E±(L/2) from (A3) and converting the sum of
exponentials into the sine function we have

Hint =
√

γL

2π

∫ ∞

∞
{sin(ωτ/2)[c†r(ω) + H.c.]}dω. (A5)
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Lastly we need to move into the interaction picture and so we
write ω = ω′ + ωL and let r(ω′ + ωL) → r(ω′), to get

Hint =
√

γL

2π

∫ ∞

∞
{sin[(ω′τ + φ)/2][c†r(ω′) + H.c.]}dω′,

(A6)
where φ = ωLτ/2, and the frequency dependent coupling
constant is G(ω′) = √

γL/2π sin[(ω′τ + φ)/2].

APPENDIX B: DERIVING (11)

We begin deriving (11) from the differential equa-
tion presented in (9). It is clear from the structure of
A that it is diagonalizable and more importantly that A
has four eigenvalues. These eigenvalues are labeled as
λ1, λ2, λ3, and λ4 and their corresponding eigenvectors are
labeled as �1,�2,�3, and �4. Then

A�k = λk�k = �kλk, k = 1, 2, 3, 4. (B1)

Now define a new matrix E where each column is an
eigenvector of A,

E = [�1,�2,�3,�4], (B2)

so then

AE = E

⎡⎢⎢⎢⎣
λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

⎤⎥⎥⎥⎦ = Eλ. (B3)

The decoupled variables are thus u = E−1R so that R =
Eu. Substituting this into (9) gives

d

dt
Eu = AEu − iG(ω)αβ, (B4)

and since E is time independent (because all entries of A are
time independent) both sides can be multiplied by E−1 to get

d

dt
u = E−1AEu − iG(ω)E−1αβ. (B5)

Furthermore, by substituting (B3), this simplifies to

d

dt
u = λu − iG(ω)E−1αβ. (B6)

Now since λ is a diagonal matrix this can be solved to give an
expression for u:

u = −iG(ω)
∫ t

0
e−λ(t ′−t )E−1αβdt ′. (B7)

Lastly, we can multiply both sides by E and substitute
R = Eu to get our final expression for R:

R(ω, t ) = −iG(ω)
∫ t

0
Ee−λ(t ′−t )E−1αβdt ′. (B8)

When the eigenvalues are computed they are all of the form
λ j = −iω + c j where c j ∈ C is some constant dependent
on the parameters in the Hamiltonian, i.e., �, g, δaL, etc.
Furthermore, the eigenvectors are frequency independent so

they can be written as

� j =

⎡⎢⎢⎢⎣
a1, j

a2, j

a3, j

a4, j

⎤⎥⎥⎥⎦, ai, j ∈ C. (B9)

Then E and E−1 are just two matrices of complex numbers:

E = [ai, j]i, j, E−1 = [bi, j]i, j, i, j ∈ {1, 2, 3, 4}. (B10)

Then, using this new representation for E−1, E−1αβ(t ′) is

E−1αβ(t ′) =

⎡⎢⎢⎢⎢⎣
b1,1α1(t ′) + b1,2β1(t ′)

b2,1α1(t ′) + b2,2β1(t ′)

b3,1α1(t ′) + b3,2β1(t ′)

b4,1α1(t ′) + b4,2β1(t ′)

⎤⎥⎥⎥⎥⎦. (B11)

Also, because λ is a diagonal matrix, then e−λ(t ′−t ) is a
diagonal matrix as well and using the form of each λ j a
factor of eiω(t ′−t ) can be taken out of e−λ(t ′−t )E−1αβ(t ′) =
eiω(t ′−t )n(t, t ′) and the vector n is

n(t, t ′) =

⎡⎢⎢⎢⎢⎢⎣
e−c1(t ′−t )[b1,1α1(t ′) + b1,2β1(t ′)]

e−c2(t ′−t )[b2,1α1(t ′) + b2,2β1(t ′)]

e−c3(t ′−t )[b3,1α1(t ′) + b3,2β1(t ′)]

e−c4(t ′−t )[b4,1α1(t ′) + b4,2β1(t ′)]

⎤⎥⎥⎥⎥⎥⎦. (B12)

The important thing to note is that n(t, t ′) is only a function
of t and t ′ but not ω. Using this expression in the solution for
R(ω, t ) gives

R(ω, t ) = −iG(ω)
∫ t

0
eiω(t ′−t )E · n(t, t ′)dt ′. (B13)

APPENDIX C: DERIVING (14) AND (15)

In the equations of motion, the Rg,0(ω, t ) and Re,0(ω, t )
terms come in as frequency integrals over all possible fre-
quencies. The form of these two coefficients, shown in (11),
already contains a time integral over all past time so we focus
on simplifying this double integral for the differential equation
of α1(t ), which we call I , as both double integrals simplify
similarly. Explicitly I has the form

I = −
∫ ∞

−∞

∫ t

0
G(ω′)2eiω′(t ′−t )Eg,0 · n(t, t ′)dt ′dω′. (C1)

Recalling that G(ω) = √
γL/2π sin[(ωτ + φ)/2] and switch-

ing the order of integration this becomes

I = −γL

2π

∫ t

0
Eg,0 · n(t, t ′)

×
[∫ ∞

−∞
sin2

(
ωτ + φ

2

)
eiω′(t ′−t )dω′

]
dt ′. (C2)

Substituting

sin[(ωτ + φ)/2] = [1/2i(ei(ωτ+φ)/2 − e−i(ωτ+φ)/2)] (C3)
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into the equation gives the following integral:

I = −γL

2π

∫ t

0
Eg,0 · n(t, t ′)

[ ∫ ∞

−∞

1

2
e−iω′(t−t ′ )

− 1

4

(
e−iω′(t−t ′−τ )eiφ + e−iω′(t−t ′+τ )e−iφ

)
dω′

]
dt ′. (C4)

Noting that
∫∞
−∞ e−iω′X dω′ = 2πδ(X ) where δ(X ) is the Dirac

delta function, the integration of ω′ can be carried out:

I = −γL

2π

∫ t

0
Eg,0 · n(t, t ′)

{
πδ(t − t ′)

− π

2
[δ(t − t ′ − τ )eiφ + δ(t − t ′ + τ )e−iφ]

}
dt ′. (C5)

Lastly, noting that
∫ t

0 δ(t ′′ − t ′) f (t ′)dt ′ = f (t ′′) as long as
t ′′ ∈ (0, t ) [or

∫ t
0 δ(t ′′ − t ′) f (t ′)dt ′ = 1

2 f (t ′′) if t ′′ ∈ {0, t}] the
integration of t ′ can be completed:

− i
∫ ∞

−∞
G(ω′)Rg,0(ω′, t )dω′

= γL

4
{−[Eg,0 · n(t, t )] + eiφθ (t − τ )[Eg,0 · n(t, t − τ )]},

(C6)

where θ (t − τ ) is the Heaviside step function.

APPENDIX D: OPTIMIZED TECHNIQUE FOR
SIMULATING QUANTUM TRAJECTORIES

WITH NO DRIVE

The general numerical technique outlined in Sec. IV is
unnecessarily complex when there is no drive and only one
quantum present in the system, which is the case for Secs. V A
and V B. Since there is only one quantum, it is only possible
for one jump to occur during a QT, and after such a jump the

system is in the ground state. The only stochastic dynamics
that are present in the QTs are when the quantum jumps
are chosen to occur, which we can exploit to speed up the
computation of our QTs.

By simulating (or solving) the delay differential equation
associated with the system, (12) with (14) and (15) substituted
in, and conditioning the result using Sec. III E, the QT without
any jumps can be computed. Then each individual QT can
be generated by choosing a uniformly distributed random
number ε, and comparing it to the integrated probability P(t )
for a jump to occur. A jump is applied to the system when ε <

P(t ) and the system collapses to the ground state. Therefore,
after the initial QT without jumps is computed, there is no
other significant computation to be done for each subsequent
trajectory. In the case of Figs. 7 and 9, each data point is
simply the ratio of trajectories where ε > P(tend ) to the total
number of trajectories.

Subsequently, by solving the delay differential equation,
there are other insights that can be found. In the case of the
system parameters for Figs. 7 and 9, (12) reduces to

dβ0(t )

dt
= − igα1(t ),

dα1(t )

dt
= − igβ0(t ) − γL

4
α1(t ) + γL

4
eiφα1(t − τ ). (D1)

By seeking solutions of the form α1(t ) = Aei�t and β0(t ) =
Bei�t , we arrive at the characteristic equation

−
{
� − i

γL

4

[
1 − ei(φ−�τ )

]}
� + g2 = 0. (D2)

This equation has the solution � = ±g when

±gτ − φ = 2πk, k ∈ Z, (D3)

which is precisely the condition we use to find the required
phase to trap excitations in Sec. V B.
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