
PHYSICAL REVIEW A 101, 023806 (2020)

Transient optical response of cold Rydberg atoms with electromagnetically induced transparency

Ya-Wei Guo,1 Si-Liu Xu ,1,2,* Jun-Rong He,1 Pan Deng,1 Milivoj R. Belić,3 and Yuan Zhao4
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We investigate the linear and nonlinear optical response to an optical pumping of a four-level atomic system
with electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. It is found that the transient
behavior (especially, the third- and fifth-order susceptibilities) of the probe field, and the steady-state EIT
spectrum of the gas, depend crucially on the Rydberg atoms’ interaction. Furthermore, we find that the response
speed of the Rydberg interaction with EIT can be as much as six times faster than the EIT without the Rydberg
interaction, and that the nonlinear response time of the fifth-order optical susceptibility is longer than that of the
third-order susceptibility. It is established that the Rydberg blockade effect plays a significant role in increasing
the response speed of the Rydberg with EIT.
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I. INTRODUCTION

In the past few decades, huge effort has been directed
toward the investigation of electromagnetically induced trans-
parency (EIT) in cold atomic gases [1,2]. Generally, light
propagation in media under EIT possesses many interesting
properties, such as the reduction of group velocity and the
enhancement of Kerr nonlinearity [1–3]. EIT has been utilized
for a number of crucial applications, for example, in optical
clocks, quantum memory, four-wave mixing, and slow light
[4–9]. Nevertheless, the large Kerr nonlinearity found in con-
ventional EIT media [10] is impossible to obtain in nonlinear
optics at the single-photon level [11].

In the last two decades, intense research has been under-
taken on cold Rydberg atomic gases [12–15], operating in an
ultracold environment. Important early theoretical and experi-
mental studies have been performed by Friedler et al. [16] and
Mohapatra et al. [17]. Owing to their interesting properties,
including long lifetimes [18], large electric-dipole moments
[15], and strong atom-atom interactions (e.g., the Rydberg
interaction) [19], Rydberg atoms with EIT have found many
important applications, such as direct and nondestructive co-
herent optical detection [18], precision spectroscopy and mea-
surements [20], quantum computing and information [21],
design of devices in quantum information processing [22–24],
simulation and manipulation of quantum many-body states
[14], and the development of quantum nonlinear optics in
correlated quantum many-body systems [25,26].

On the other hand, the study of the nonlinear optical
response behaviors, especially the third-order and fifth-order
nonlinear optical susceptibilities of the system, is fascinating.
Theoretical [27,28] and experimental [29,30] works showed
that EIT can be used not only for coherent optical detec-
tion of Rydberg atoms, but also for obtaining giant Kerr
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nonlinearity. Different from conventional EIT media, the giant
Kerr nonlinearity in Rydberg-EIT systems comes from the
strong Rydberg-Rydberg interaction between atoms, which
can be many orders of magnitude larger than those obtained
before [31–33]. The third- [31,32] and fifth-order susceptibil-
ities of the probe field in Rydberg-EIT systems [33] have been
studied in these works.

It is noticed that most of the studies on Rydberg EIT
have been focused on the steady-state or long-time behavior
[11,33,34]; the third and fifth order of nonlinear transient
optical responses, which develop when the control and the
assisted field are turned on, were usually not considered. Nev-
ertheless, in many real considerations, like the performance
of quantum devices, the response time of Rydberg EIT is
critical. Thus it is necessary to investigate the transient optical
response of Rydberg EIT, which is crucial not only for the
physical understanding of EIT in Rydberg atoms, but also
for real applications of Rydberg-EIT systems [22–24]. Thus,
Zhang et al. have investigated the transient optical response
properties of EIT in a cold Rydberg atomic gas. They found
that both the transient behavior and the steady-state EIT
spectrum of the three-level atomic system depend strongly on
the Rydberg interaction. The response speed of the Rydberg
EIT can be five times faster than the conventional EIT without
the Rydberg interaction [26].

Before proceeding, we note that this work is different from
that in Ref. [26]. Firstly, this four-level system has more tuned
parameters. The transient optical response of cold Rydberg
atoms depends on the existence of the Rydberg interaction,
the control field, and the assisted laser field. Secondly, in
our work, the linear and the nonlinear transient behavior of
the high-order nonlinear susceptibility of the probe field are
demonstrated, and we find that the response speed of the
Rydberg interaction with EIT can be six times faster than
the EIT without the Rydberg interaction. Thirdly, the stable
values of the third-order and the fifth-order nonlinear optical
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FIG. 1. (a) Level diagram and excitation scheme of the four-
level Rydberg-EIT system. States |1〉, |2〉, |3〉 constitute the standard
�-type EIT configuration, where the probe field (�p) couples the
transition |1〉 → |3〉, the control field (�c) couples the transition
|2〉 → |3〉, � j are the detunings, and � jl are the spontaneous emis-
sion decay rates from |l〉 to | j〉. The �-type EIT is dressed by a high-
lying Rydberg state |4〉, which is far-off-resonantly (�3 + �4 � �a)
coupled to |3〉 through an assisted laser field Ea (�a). An incoherent
population pumping (with pumping rate �21) is coupled to |1〉 and
|2〉, providing a gain for the probe field. (b) Time sequence of the
probe (blue dashed line), assistance (red solid line), and the control
(green solid line) fields. (c) Schematics of the Rydberg blockade (the
orange dashed lines). In each blockade sphere only one Rydberg
atom (the small yellow sphere) is excited, and excitations of other
atoms (small blue spheres) to their Rydberg states are suppressed.

susceptibilities are displayed. Fourthly, there are more energy-
level transition modes in the inverted-Y-type configuration,
the control channels are more than lambda-type configuration,
and the modulations of energy-level transition are easy to
realize, such as the light switch.

The paper is organized as follows. In Sec. II, we describe
the four-level atomic model of the Rydberg EIT and introduce
the many-atom model. We present analytical results on the
transient response by using the reduced density approach. In
Sec. III, we display the transient linear and nonlinear optical
response of the Rydberg EIT. In Sec. IV, we furnish a sum-
mary of the results obtained in this work. The computational
details are provided in the Appendixes.

II. MODEL AND MULTIPLE SCALES METHOD

A cold, lifetime-broadened four-level atomic system
with an inverted-Y-type configuration is constructed, as
shown in Fig. 1(a). The total electric field acting on
the atomic system reads as E = Ep + Ec + Ea, with Eν =
eνεν exp[i(kν · r − ωνt )] (eν are unit polarization vectors; εν

are field amplitudes). Here, a weak, spatially focused probe
laser field Ep (with the wave number kp = ωp/c, angular
frequency ωp, and half Rabi frequency �p) couples the ground
state |1〉 to the intermediate state |3〉; a strong control laser
field Ec (kc, ωc, �c) couples the low-lying state |2〉 and
the state |3〉. Further, �13, �23, and �34 are the spontaneous
emission decay rates from |3〉 to |1〉, |3〉 to |2〉, and |4〉 to |3〉,

respectively. The states |1〉, |2〉, |3〉, and the probe and control
fields constitute a standard �-type EIT configuration, which
here is dressed by a high-lying Rydberg state |4〉, being far off
resonance through an assisted laser field Ea (ka, ωa, �a). In
addition, the incoherent population pumping (�21) is coupled
to the two low-lying states |1〉 and |2〉. It may be realized by
using several techniques, such as intense atomic resonance
spectrum lines emitted from hollow-cathode lamps or from
microwave discharge lamps [35]. In our work, a laser-cooled
strontium ( 88Sr) atomic gas is taken as a realistic candidate
for our theoretical model described above with �21 = 0.2π ×
106 s−1. Here �21 is an excitation, and it provides a gain,
thus suppressing the loss of the probe field. The assigned four
atomic levels are |1〉 = |5S1/2, F = 1〉, |2〉 = |5S1/2, F = 2〉,
|3〉 = |5, F = 2P3/2, F = 3〉, |4〉 = |nS1/2〉. The main quan-
tum number is n = 60.

The dynamics of the system is described by the
Hamiltonian ĤH(t ) = Na

∫ +∞
−∞ d3rĤH(r, t ), where Na is

the atomic density. Under electric-dipole and rotating-wave
approximations, the Hamiltonian density in the interaction
picture reads as

ĤH(r, t ) =
4∑

j=1

h̄� j Ŝ j j (r, t ) − h̄[�pŜ13(r, t ) + �aŜ34(r, t )

+ �cŜ23(r, t ) + H.c.]

+ Na

∫
r′ �=r

d3r′Ŝ44(r′, t )h̄V (r′ − r)Ŝ44(r, t ), (1)

where Ŝ jl = |l〉〈 j| exp i[(kl − k j ) · r − (ωl − ω j + �l −
� j )t] is the transition operator related to the states | j〉 and |l〉,
satisfying the commutation relation [Ŝ jl (r, t ), Ŝμν (r′, t )] =
(1/Na)δ(r′ − r)[δ jv Ŝμl (r′, t ) − δμl Ŝ jv (r′, t )], with Na the
atom density and h̄ω j the eigenenergy of the level
| j〉; �3 = (ω3 − ω1) − ωp is the one photon detuning,
�2 = ωp − ωc − (ω2 − ω1) and �4 = ωp + ωa − (ω4 − ω1)
the two-photon detunings; �p = (ep · p31)εp/h̄, �c =
(ec · p32)εc/h̄, and �a = (ea · p43)εa/h̄ are the half Rabi
frequencies of the probe, control, and assisted fields, with
pl j being the electric-dipole matrix elements associated
with the transition |l〉 → | j〉. The last term in Eq. (1) is the
contribution due to atom-atom interaction. The interaction
between the Rydberg atom at position r and the one at position
r′ is described by the long-range potential h̄V (r − r′), with
V (r − r′) = C6/|r′ − r|6. C6 is the dispersion parameter
(C6 = −2π × 81.6 GHz μm6). Due to Rydberg interaction,
the Rydberg excitation of one atom would block the Rydberg
excitation of all surrounding atoms with the blockade sphere
radius of Rb [36]; see Fig. 1(c). One can see that the system
can be divided into many small blockade spheres, and each
blockade sphere contains only one Rydberg atom.

According to the Heisenberg equation of motion for
Ŝ jl (r, t ), one can obtain the equation of the one-body corre-
lators ρ jl (r, t ) ≡ 〈Ŝ jl (r, t )〉:

i
∂

∂t
ρ11 + i�21ρ11 − i�13ρ33 − �pρ13 + �∗

pρ31 = 0, (2a)

i
∂

∂t
ρ22 − i�21ρ11 − i�23ρ33 − �cρ23 + �∗

cρ32 = 0, (2b)
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i
∂

∂t
ρ33 + i�3ρ33 − i�34ρ44 + �pρ13 − �∗

pρ31 + �cρ23 − �∗
cρ32 − �aρ34 + �∗

aρ43 = 0, (2c)

i
∂

∂t
ρ44 + i�34ρ44 + �aρ34 − �∗

aρ43 = 0, (2d)
(

i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �pρ23 = 0, (2e)

(
i
∂

∂t
+ d31

)
ρ31 + �p(ρ11 − ρ33) + �cρ21 + �∗

aρ41 = 0, (2f)

(
i
∂

∂t
+ d41

)
ρ41 + �aρ31 − �pρ43 − Na

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (2g)

(
i
∂

∂t
+ d32

)
ρ32 + �pρ12 + �c(ρ22 − ρ33) + �∗

aρ42 = 0, (2h)

(
i
∂

∂t
+ d42

)
ρ42 + �aρ32 − �cρ43 − Na

∫
d3r′V (r′ − r)ρ44,42(r′, r, t ) = 0, (2i)

(
i
∂

∂t
+ d43

)
ρ43 + �a(ρ33 − ρ44) − �∗

pρ41 − �∗
cρ42 − Na

∫
d3r′V (r′ − r)ρ44,43(r′, r, t ) = 0, (2j)

where d jl = � j − �l + iγ jl (i, j = 1, 2, 3, 4; i �= j), and
γ jl = (� j + �l )/2 + γ

dep
i j with �l = ∑

j<l � jl . Here � jl de-
notes the spontaneous emission decay rate from the state
of the transition operator to the states | j〉 and |l〉, and γ

dep
i j

denotes the dephasing rate between the states | j〉 and |l〉.
From Eqs. (2a)–(2j), we can see that for solving the

equations of motion of the one-body correlators, one
needs to know the two-body correlators ρ44,4 j (r, r′, t ) ≡
〈Ŝ44(r, t )Ŝ4 j (r′, t )〉 ( j = 1, 2, 3). In the same way, to solve the
equations of motion of the two-body correlators, one needs
to know the three-body correlators ρ jl,μν,ξη(r, r′, r′′, t ) ≡
〈Ŝ jl (r, t )Ŝμν (r′, t )Ŝξη(r′′, t )〉, etc. As a result, one obtains an
infinite hierarchy of equations of motion for the correlators of
one-body, two-body, three-body, and so on. The equations of
motion of the one-body correlators are given by Eqs. (2a)–
(2j). Equations of motion of two-body correlators are not
listed here, since there are 42 independent equations and each
of them is rather long [see Appendix A], with additional
three-body correlators and the corresponding spatial integrals.
Because these equations are nonlinearly coupled with each
other, it is difficult to solve them by using conventional tech-
niques. As the probe-field intensity is relatively small, one can
employ the method of reduction perturbation, widely applied
in the nonlinear oscillation and wave theory [37], to solve the
equations. Because our calculation is exact to fifth order, the
equations of motion for the n-body correlators (n � 5) are not
needed [33].

To obtain divergence-free solutions for the one- and two-
body correlators of the order of magnitude in the equations
for the one-body correlators ρ jl ≡ 〈Ŝ jl〉 and the two-body
ρ jl,μν ≡ 〈Ŝ jl Ŝμν〉 correlators, we make the following expan-
sions: �p = ε�(1)

p , ρ j1=
∑

m=0ε
2m+1ρ

(2m+1)
j1 , ρ jl=

∑
m=1ε

2m

ρ
(2m)
jl , ρ11 = 1 + ∑

m=1ε
2mρ

(2m)
11 , ρ j1,l1 = ∑

m=1ε
2mρ

(2m)
j1,l1,

ρ j1,1l = ∑
m=1ε

2mρ
(2m)
j1,1l , ρ jl,μ1 = ∑

m=1ε
2m+1ρ

(2m+1)
jl,μ1 , and

ρ jl,μυ = ∑
m=2ε

2mρ
(2m)
jl,μυ

( j, l, μ, υ = 2, 3, 4). Here, ε is a
small expansion parameter, characterizing the magnitude of
the amplitude of the probe-field Rabi frequency. All the quan-

tities on the right-hand side of the expansions given above are
considered as functions of the fast time variable t0 = t and
the slow time variable t2 = ε2t [37,38]. Then, we obtain a set
of linear but inhomogeneous differential equations for each
of the equations of the one- and two-body correlators, which
can be solved analytically order by order up to the fifth-order
approximation.

At the first [i.e., O(ε)] order, only the equations for one-
body correlators are to be solved. Using the initial condition
ρ

(1)
21 (0) = 0, ρ

(1)
31 (0) = −�(1)

p /d31, ρ
(1)
41 (0) = 0, we obtain the

solution for ρ
(1)
j1 , which exhibits a damped fast oscillation (as

a function of t0) modulated by two envelopes f (1)
1 and f (1)

2 (as
functions of t2) [see Appendix C]. At the second [i.e., O(ε2)]
order, we obtain the lowest-order solution of the two-body
correlators, with the given set of initial conditions ρ

(2)
31,31(0) =

(�(1)
p /d31)2, ρ

(2)
31,13(0) = |�(1)

p /d31|2, and other ρ
(2)
j1,l1(0) =

ρ
(2)
j1,1l (0) = 0. The second-order solution for the one-body

correlators ρ
(2)
jl can also be gained simultaneously with the

set of initial conditions ρ
(2)
33 (0) = 2γ31|�(1)

p |2/(�13|d31|2) and

other ρ
(2)
jl (0) = 0. With these results, one proceeds to the third

[i.e., O(ε3)] -order approximation. Solutions of ρ
(3)
jl,μ1 and ρ

(3)
j1

at this order are also obtained in Appendix B. A solvability
condition used to get the envelopes f (1)

1 and f (1)
2 appeared

in the first-order solution. Steps for obtaining approximate
solutions up to the fifth order for the equations of one-
and two-body correlators by using the method of multiple
scales are described in detail in Appendix B. Because of the
complexity involved in the formulas, we will not write the
fourth- or fifth-order expansions here.

III. TRANSIENT RESPONSE OF THE RYDBERG EIT

Combining the solutions gained from the first- to the third-
and fifth-order approximations described above, and after
returning to the original variables, we obtain the transient
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FIG. 2. Transient response of the Rydberg EIT as a function of time t with �p = 0.5�13 and �a = 13 MHz. (a,d) Normalized absorption
Im(ρ31). (b,e) Normalized absorption Im(ρ21). (c,f) Normalized absorption Im(ρ41). The black solid line is with Rydberg interaction (i.e., high
atomic density Na = 1.0 × 1012 cm−3); the red dotted line is without Rydberg interaction (low atomic density Na = 1.0 × 108 cm−3). (a–c)
�c = 2π × 4 MHz; (d–f) �c = 2π × 8 MHz. Other parameters are �21 = 0.2π × 106 s−1, �3 = �13 + �23 = 20π × 106 s−1, and �4 = �34 ≈
0.0334π × 106 s−1.

optical response function of the Rydberg EIT:

ρ31(t ) ≈ a(1)
31 (t )�p +

[
a(3),LA

31 (t ) + Na

∫
d3r′V (r′ − r)a(3),RR

31

× (r′ − r, t )

]
|�p|2�p +

[
a(5),LA

31 (t )

+ Na

∫
d3r′V (r′ − r)a(5),RR

31 (r′ − r, t )

]
|�p|4�p.

(3)

Here, the first term on the right-hand side is the linear
description of the complete optical response of the system.
The second and third terms are the third order and fifth
order nonlinear description of the system, respectively.
The nonlinear response includes two parts. One is a
nonlocal nonlinear response, described by Na

∫
d3r′V (r′ −

r)a(3),RR
31 (r′ − r, t )|�p|2�p + Na

∫
d3r′V (r′ − r)a(5),RR

31 (r′ −
r, t )|�p|4�p, which is contributed by the Rydberg interaction;
another one is a local nonlinear response, described by
the term a(3),LA

31 (t )|�p|2�p + a(5),LA
31 (t )|�p|4�p, which is

contributed by the photon-atom interaction (see Appendix B).
In addition, we are interested in the nonlinear optical

effects, especially the third-order and fifth-order nonlinear
optical susceptibilities of the system. To this aim, we
need the relation between the optical susceptibility of the
probe field and the density matrix elements. Since the total
electric polarization intensity of the system is given by
P = Na

∑4
j,l=1 p jlρl j exp{i[(kl − k j ) · r − (ωl − ω j + �l −

� j )t]}, the electric polarization intensity of the probe
field reads as Pp = Na{p13ρ31 exp[i(kp · r − ωpt )] + c.c.},
by which one can obtain the optical susceptibility

χp of the probe field by using the formula Pp =
ε0χpepεp exp[i(kp · r − ωpt )] + c.c., which yields χp =
Na(ep·p13 )ρ31

ε0εp
. Collecting the first-order to the fifth-order

solutions of ρ31 obtained above, we find ρ31 =
a(1)

31 �p + a(3)
31 |�p|2�p + a(5)

31 |�p|4�p + · · · , where ρ
( j)
31 ( j =

1, 3, 5, · · · ) are independent of �p. Using the formula of
susceptibility and the definition �p = (ep · p31)εp/h̄, we have

χp = χ (1)
p + χ (3)

p |εp|2 + χ (5)
p |εp|4, (4)

where χ (1)
p , χ (3)

p , χ (5)
p are, respectively, the first-order

(linear), and the third-order and the fifth-order (nonlinear)
optical susceptibilities of the probe field, defined by χ (1)

p =
Na|p13|2a(1)

31 /ε0 h̄, χ (3)
p = χ

(3)
p1 + χ

(3)
p2 , χ (5)

p = χ
(5)
p1 + χ

(5)
p2 , with

χ
(3)
p1 = Na|p13|4

ε0 h̄3D2
[d21d41(a(2)

33 − a(2)
11 ) − d41�ca(2)

23 − d21�
∗
aa(2)

43 ],

χ
(3)
p2 = −N2

a |p13|4�∗
a

ε0 h̄3D2
[d21

∫
d3r′V (r′ − r)a(3)

44,41], χ
(5)
p1 = Na|p13|6

ε0 h̄5D2

[d21d41(a(4)
33 − a(4)

11 ) − d41�ca(4)
23 − d21�

∗
aa(4)

43 ], χ
(5)
p2 =

−N2
a d21|p13|6�∗

a

ε0 h̄5D2

∫
d3r′V (r′ − r)a(5)

44,41, with D2 = d21d31d41 −
|�c|2d41 − |�a|2d21, where χ

(3)
p1 and χ

(5)
p1 are the third-order

and the fifth-order nonlinear optical susceptibilities arising
from the interaction between the probe field and the atoms;
χ

(3)
p2 and χ

(5)
p2 are the third-order and fifth-order nonlinear

optical susceptibilities arising from the Rydberg-Rydberg
interaction.

Figure 2 shows the normalized absorptions Im(ρ31),
Im(ρ21), and Im(ρ41) as a function of t by taking �p =
0.5�13, �a = 13 MHz, �21 = 0.2π × 106 s−1, �3 = �13 +
�23 = 20π × 106 s−1, �4 = �34 ≈ 0.0334π × 106 s−1. Here,
the normalized absorption coefficient is obtained by
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FIG. 3. Transient response behavior of the Rydberg EIT as a function of the probe-field detuning � (≡ �2=�3 = �4) with �p = 0.08�13,
�a = 23 MHz. (a–e) Normalized absorption spectrum Im(ρ31). (b,c) and (d,e) are without and with the higher-order corrections in Eq. (3),
respectively. (f–h) Normalized dispersion spectrum Re(ρ31). The blue solid line is the EIT spectrum with significant Rydberg interaction
(Na = 1.0 × 1012 cm−3), and the red dashed line is the EIT spectrum without Rydberg interaction (Na = 1.0 × 108 cm−3). (a,f) t = 0 and
�c = 0. (b,d,g) t = 0.12 μs and �c = 2π × 4 MHz. (c,e,h) t = 1.0 μs and �c = 2π × 4 MHz. Other parameters are the same as in Fig. 2.

dividing the actual absorption coefficient by the absorp-
tion peak when the control light is zero [Im(ρ31)]. In
Figs. 2(a)–2(c), the black solid line is with Rydberg inter-
action (i.e., high atomic density Na = 1.0 × 1012 cm−3); the
red dotted line is without Rydberg interaction (low atomic
density Na = 1.0 × 108 cm−3) for �c = 2π × 4 MHz. Due
to the Rydberg interaction, the Rydberg excitation of one
atom would block the Rydberg excitation of all surrounding
atoms for Rb � rAB, here, Rb = (C6/�EIT)1/6 is the blockade
sphere radius [34], �EIT = �2

c/γ31 is the linewidth of the EIT
transmission window. rAB = (5/9)N−1/3

a is the average inter-
atomic separation [39]. When Na = 1.0 × 1012 cm−3, γ31 =
10π MHz, and �c = 2π × 4 MHz, one has Rb ≈ 5.42 μm
and rAB = 0.56 μm, which satisfies Rb � rAB for the case with
the Rydberg interaction [34,40]. On the other hand, when the
system is at low atomic density with Na = 1.0 × 108 cm−3

and �c = 2π × 4 MHz, one can get rAB = 12 μm > Rb for
the case without the Rydberg interaction. Figures 2(d)–2(f)
show the results for a large control field, i.e., �c = 2π ×
8 MHz. The time sequence is shown in Fig. 1(b). From
Figs. 2(a) and 2(d), one can see, firstly, that both the ab-
sorption curves of the EIT with and without the Rydberg
interaction present a damped oscillation, before reaching a
small steady-state value as the control and the assisted field
are switched on. Secondly, the oscillation amplitude for the
case with the Rydberg interaction is smaller (the black solid
line) compared to the case with no Rydberg interaction (the
red dotted line). The transient response time with the Rydberg
interaction is faster than that without Rydberg interaction.
Thirdly, one can see the transient response time increases with
the value of �c for the same atom density. Similar characteris-
tics are displayed in Im(ρ21) [Figs. 2(b) and 2(e)] and Im(ρ41)
[Figs. 2(c) and 2(f)]. However, the oscillation amplitudes of

Im(ρ31) > Im(ρ21) > Im(ρ41). This demonstrates that the
atoms nearly remain as their initial states. Hence, the strong
Rydberg interaction shifts the Rydberg state out of resonance
and then blocks its excitation.

Figures 3(a)–3(e) show the numerical results of normalized
absorption spectrum Im(ρ31) as a function of the probe-field
detuning � (≡ �2=�3 = �4) at �p = 0.08�13 and �a =
23 MHz. Figure 3(a) shows the normalized absorption spec-
trum Im(ρ31) for t = 0 and �c = 0. Figures 3(b)–3(e) show
the absorption spectrum without and with inclusion of higher-
order correction in Eq. (3). One can see that after the control
and the assisted field are switched on, an EIT transparency
window opens near � = 0. The original single-peak absorp-
tion spectrum [Fig. 3(a)] evolves into a structure with two
peaks, and the separation between the two peaks is gradually
increased as t increases [Figs. 3(b)–3(e)]. The depth of the EIT
transparency window for the case of the EIT with the Rydberg
interaction (blue solid line) is shallower than that of the EIT
without Rydberg interaction (red dashed line) [Figs. 3(b)–
3(e)], which means that, comparing with the EIT with no
Rydberg interaction, the final steady-state absorption in the
EIT with the Rydberg interaction is stronger. The absorption
profile in Figs. 3(b) and 3(c) are asymmetric (blue solid lines).
When the time evolution increases, we obtain the approximate
symmetric two-peak structure [blue solid lines in Figs. 3(d)
and 3(e)]. It is shown that the higher-order corrections in Eq.
(3) eliminate the asymmetric profiles presented in Fig. 3.

Figures. 3(f)–3(h) show that the dispersion property of
the system is described by the real part of the atomic co-
herence Re(ρ31) as a function of the probe-field detuning
� (≡ �2=�3 = �4) with �p = 0.08�13 and �a = 23 MHz.
One can see that when the control and the assisted field are
switched on (t > 0) [Fig. 1(b)] in the dispersion spectrum
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TABLE I. Response time TR of the Rydberg EIT for �p = 0.2�13

and �a = 10 MHz.

TR with Rydberg TR with no Rydberg
interaction (high interaction (low
atomic density is atomic density is

�c Na = 1.0 × 1012 cm−3) Na = 1.0 × 108 cm−3)

2π × 4 MHz 0.24 μs 1.45 μs
2π × 6 MHz 0.33 μs 1.56 μs
2π × 8 MHz 0.41 μs 1.67 μs

for t > 0, an anomalous dispersion [Fig. 3(f)] evolves into a
normal dispersion near � = 0 [Figs. 3(g) and 3(h)]. Further,
when t = 0.12 μs, near � = 0, there is almost no difference
of the dispersion behavior between the case with (blue solid
lines) and without (red dashed lines) the Rydberg interaction
[Fig. 3(g)]. If t = 1.0 μs is chosen, a small difference in the
dispersion behavior and a smaller group velocity are displayed
in Fig. 3(h). Thus, by using the Rydberg EIT, one can obtain
slower group velocity, which is useful for the slowdown and
memory of optical pulses.

Based on the above results, one can deduce that the EIT
with Rydberg interaction has a faster response time than the
EIT without Rydberg interaction. To support this conclusion,
we give a qu-antitative estimate on the response time of
the Rydberg EIT [40,41] (see Appendix C). Table I shows
the response time TR of the Rydberg EIT for �a = 10 MHz
and �p = 0.2�13 with different control-field values �c; the
other parameters are the same as in Fig. 2. Here, TR is the
time of Im(ρ31) reaching steady state. It is shown that for a
small control field of �c = 2π × 4 MHz, and a high atomic
density (Na = 1.0 × 1012 cm−3), the response time of the
Rydberg EIT is approximately six times smaller than that of
the EIT without Rydberg interaction (Na = 1.0 × 108 cm−3).
The physical reason is due to the Rydberg blockade in the
Rydberg-EIT system, where the strong Rydberg interaction
shifts the Rydberg state |4〉 out of resonance and then blocks
its excitation. As a result, atoms nearly remain in their initial
three-level atomic states; hence the steady-state EIT can be
achieved at an early time in the Rydberg system, which is also
confirmed in Fig. 2. Further, the larger the value of �c, the

longer the response time of EIT. As to the enhancement of the
coherence of the system, when �c increases, the oscillation
frequency of Im(ρ31) increases as well. Thus, a longer time is
needed for Im(ρ31) to evolve into the steady state. This point
is clearly seen by the black solid line and the red dashed line
in Figs. 2(a) and 2(d).

Figure 4 shows that the response time of the Rydberg
EIT [Im(ρ31)] can change as the probe and the assistant
field Rabi frequencies �p, �a and the average interatomic
separation rAB are varied. Figure 4(a) shows the response
time TR [see Fig. (7) in Appendix C] as a function of �p

with �c = 2π × 4 MHz and �a = 10 MHz. The blue line
and the red dotted line are for the cases with the Rydberg
interaction and without the Rydberg interaction, respectively.
One can see that as �p < 0.01�13, the response time of the
EIT with the Rydberg interaction is almost equal to that of
the EIT without the Rydberg interaction. As the probe-field
Rabi frequency �p increases, the response time of the EIT
with the Rydberg interaction reduces rapidly and it becomes
faster than that without the Rydberg interaction. However,
the response time of the EIT without the Rydberg interaction
goes first down, then up, and finally keeps the same tendency
as �p increases. Figure 4(b) shows the response time TR as
a function of �a with �c = 2π × 4 MHz and �p = 0.2�13.
One can see that TR slowly increases as �a increases both
with and without the Rydberg interaction, and TR with the
Rydberg interaction is shorter than that without the Rydberg
interaction. The physical reason is mainly due to the Rydberg
blockade effect. In each blockade sphere only one atom is
excited to the Rydberg state |4〉; other atoms can be excited
only to the state |3〉. Thus, the Rydberg-EIT system has a
larger relaxation rate compared to the EIT system without
the Rydberg interaction. As a result, the dissipation of the
system is enhanced, giving rise to a decreased response time
for the Rydberg-EIT system. Figure 4(c) shows the response
time TR as a function of the average interatomic separation
rAB with �p = 0.2�13 and �a = 10 MHz. From Fig. 4(c), it
is shown that TR grows with rAB (5.42 μm � rAB � 8.2 μm).
There are two extreme points (dots M and N). When Na =
1.1 × 109 cm−3 (dot M, rAB = 5.42 μm), �c = 2π × 4 MHz,
and γ31 = 10π MHz, one can get TR = 0.24 μs and Rb=rAB,
where the Rydberg excitation tends to saturate. This is due to

FIG. 4. (a) Response time TR of the EIT as a function of the probe-field Rabi frequency �p with the Rydberg interaction (blue solid line)
and without the Rydberg interaction (red dotted line) for �c = 2π × 4 MHz and �a = 10 MHz. (b) Response time TR of the EIT as a function
of the assisted field Rabi frequency �a with the Rydberg interaction (blue) and with no Rydberg interaction (red dotted) for �p = 0.2�13 and
�c = 2π × 4 MHz. (c) The response time TR of the Rydberg EIT vs rAB for �c = 2π × 4 MHz (blue solid line) and �c = 2π × 8 MHz (red
dotted line), with Na = 1.1 × 109 cm−3 (dot M), Na = 3.1 × 108 cm−3 (dot N), �p = 0.2�13, and �a = 10 MHz. Other parameters are the
same as in Fig. 2.
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FIG. 5. Time evolution of the linear susceptibility χ (1)
p and the third-order nonlinear susceptibility of the probe field χ

(3)
p1 and χ

(3)
p2 .

Parameters are �p = 0.05 × �13 s−1, �c = 16π × 106 s−1, �a = 250 MHz, �21 = 0.2π × 106 s−1, �3 = �13 + �23 = 40π × 106 s−1, �4 =
�34 = 10π × 106 s−1, Na = 1.0 × 1012 cm−3, and K = 3.02 × 105 s−1. (a,b) The real part and the imaginary part of the linear susceptibility
χ (1)

p , respectively. (c,d) The real part and the imaginary part of the self-Kerr nonlinear susceptibility of the probe field χ
(3)
p1 , respectively.

(e,f) The real part and the imaginary part of the self-Kerr nonlinear susceptibility of the probe field χ
(3)
p2 , respectively. Red dashed line is the

steady-state value of the susceptibility response function.

the effect of the “soft core,” resulting from a strong Rydberg
blockade effect, where the excitation to Rydberg states is
completely blockaded for very closed atoms. On the other
hand, when Na = 3.1 × 108 cm−3 (dot N, rAB = 8.2 μm), the
Rydberg interaction is completely absent; we get the longest
response time TR = 1.45 μs, which is a critical point for the
existence of Rydberg interactions. Additionally, from Fig. 4(c)
we know that the response time TR increases with the control
field.

Figure 5 shows the evolution of the linear susceptibil-
ity χ (1)

p and the third-order nonlinear susceptibility of the

probe field χ
(3)
p1 and χ

(3)
p2 . Parameters are �p=0.05×�13 s−1,

�c = 16π × 106 s−1, �a = 250 MHz, �21 = 0.2π × 106 s−1,
�3 = �13 + �23 = 40π × 106 s−1, �4=�34 = 10π×106 s−1,
Na = 1.0 × 1012 cm−3, and K = 3.02 × 105 s−1. Figures 5(a)
and 5(b) show the linear transient behavior of the real part
and the imaginary part of susceptibility χ (1)

p . One can see
that χ (1)

p oscillates in the initial time interval of the order of
10−7 s and decays to nearly zero rapidly, as time progresses.
Figures 5(c) and 5(d) show the result of the transient behavior
of the self-Kerr nonlinear susceptibility of the probe field
χ

(3)
p1 . Similarly, one can see that χ

(3)
p1 oscillates in the initial

time interval of the order of 10−7 s and decays to nearly zero
(χ (3)

p = 2.46 × 10−8 m2 V−2) rapidly as time increases; this
happens faster than in the conventional EIT with �2 = �3 =
�4 = 0 [42]. The physical reason of nearly vanishing χ (3)

p
after the transient evolution is due to the EIT-induced quantum
interference effect, which greatly suppresses the absorption of

the probe field. In Figs. 5(e) and 5(f), one can see that the
nonlinear third-order optical susceptibility χ

(3)
p2 performs an

oscillation in the initial time interval of the order of 10−7 s
and decays nearly to zero rapidly, as time increases. How-
ever, the nonlocal optical nonlinearity susceptibility (χ (3)

p2 =
2.46 × 10−8 m2 V−2) with the Rydberg interaction is faster
than the local optical nonlinearity susceptibility (χ (3)

p1 = 1.7 ×
10−11 m2 V−2) [see Figs. 5(c) and 5(e)].

Figure 6 shows the nonlinear transient behavior of the
fifth-order nonlinear susceptibility of the probe field χ

(5)
p1 and

χ
(5)
p2 . The system parameters are the same as in Fig. 5. From

Figures 6(a) and 6(b), one can see that the nonlinear fifth-order
optical susceptibility χ

(5)
p1 performs an oscillation in the initial

time interval of the order of 10−6 s and decays nearly to
zero rapidly, as time increases. Similarly, one can see that for
the fifth-order optical susceptibility χ

(5)
p2 , the nonlocal optical

nonlinearity with the Rydberg interaction possesses a faster
response than the local optical nonlinearity χ

(5)
p1 [see Fig. 6].

Furthermore, it is shown that the nonlinear response time of
the fifth-order optical susceptibility χ (5)

p is longer than that of
the third-order optical susceptibility χ (3)

p .
In order to obtain more information about the character of

the Rydberg EIT, we calculate the stable values of the third-
order and the fifth-order nonlinear optical susceptibilities in
Table II; the system parameters are the same as in Figs. 5 and
6. From Table II, one can see that for the given high atomic
density (i.e., Na = 1.0 × 1012 cm−3), the nonlinear optical
susceptibilities with interaction (i.e., χ

(3)
p2 and χ

(5)
p2 ) are three
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FIG. 6. Time evolution of the fifth-order nonlinear susceptibilities of the probe field χ
(5)
p1 and χ

(5)
p2 . (a,b) The real part and the imaginary

part of the fifth-order nonlinear susceptibility of the probe field χ
(5)
p1 , respectively. (c,d) The real part and the imaginary part of the fifth-order

nonlinear susceptibility of the probe field χ
(5)
p2 , respectively. The system parameters are the same as in Fig. 5.

and six orders of magnitude greater than those contributed by
the photon-atom interaction (i.e., χ

(3)
p1 and χ

(5)
p1 ), respectively.

Thus, at this atomic density the Rydberg-Rydberg interaction
plays a leading role in the contribution of the nonlinear optical
susceptibilities in the system [see Table II, and Figs. 5(c)–5(f)
and 6]. In particular, the fifth-order nonlinear optical suscep-
tibility originating from the Rydberg-Rydberg interaction can
reach the order of magnitude of 10−10 m4 V−4. Furthermore,
it is shown that the imaginary parts of the all nonlinear optical
susceptibilities are much smaller than their corresponding
real parts, which means that the nonlinear absorption can be
suppressed in the nonlinear optical processes of the system.
The physical reason for this suppression of the nonlinear ab-
sorption is the quantum interference effect induced by the con-
trol field. For a low atomic density (Na = 1.0 × 108 cm−3),
Rydberg interaction can be close to zero. From Eq. (4), one
can see that χ

(3)
p1 and χ

(5)
p1 have a linear dependence on the

atomic density Na, which is only 10−4 times the high atom
density.

IV. CONCLUSION

In conclusion, we have studied the transient linear and non-
linear optical response properties of the EIT in a cold Rydberg
atomic gas. We have demonstrated that the transient behavior
(especially, the third- and fifth-order susceptibilities of the
probefield) and the steady-state EIT spectrum of the system
depend strongly on the Rydberg interaction. In particular, the
response speed of the Rydberg EIT can be increased by in-
creasing the probe-field intensity and decreased by increasing
the control-field intensity. Further, the response speed of the
Rydberg-EIT may be six times faster than the conventional
EIT without Rydberg interaction, and the nonlinear response
time of the fifth-order optical susceptibility is longer than
that of the third-order optical susceptibility. The results reveal
that the Rydberg blockade effect plays a significant role
in increasing the response speed of the Rydberg EIT. The
fast-responding Rydberg EIT by using the strong, tunable
Rydberg interaction found here is useful not only for a deeper
understanding of the nonequilibrium many-body dynamics of

TABLE II. Real part Re(χ ( j)
pα ) and imaginary part Im(χ ( j)

pα ) ( j = 3, 5; α = 1, 2) of the third-order and the fifth-order optical susceptibilities
of the Rydberg-EIT system obtained for the realistic system parameters given in the text.

Real part Imaginary part Contributed by

χ
(3)
p1 −1.7 × 10−11 m2 V−2 −3.5 × 10−13 m2 V−2 Photon-atom interaction

χ
(3)
p2 2.46 × 10−8 m2 V−2 5.21 × 10−10 m2 V−2 Rydberg-Rydberg interaction

χ
(5)
p1 7.62 × 10−16 m4 V−4 3.83 × 10−19 m4 V−4 Photon-atom interaction

χ
(5)
p2 2.49 × 10−10 m4 V−4 5.28 × 10−13 m4V −4 Rydberg-Rydberg interaction
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Rydberg atoms, but also for practical applications in quantum
information processing based on the cold Rydberg atoms.
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APPENDIX A: EQUATIONS OF MOTION FOR TWO-BODY
CORRELATORS

The explicit form of equations of motion for two-body
correlators density matrix elements reads as follows:

(
i
∂

∂t
+ 2d21

)
ρ21,21 + 2�∗

cρ31,21 − 2�pρ23,21 = 0, (A1)
(

i
∂

∂t
+ d21+d31

)
ρ21,31 + �p

(
ρ21 − ρ21,22 − 2ρ21,33 − ρ23,31 − ρ21,44

)+�cρ21,21 + �∗
cρ31,31 + �∗

aρ21,41 = 0, (A2)
(

i
∂

∂t
+ d21+d41

)
ρ21,41 − �p

(
ρ23,41 + ρ21,43

) + �∗
cρ31,41 + �aρ21,31 = 0, (A3)

(
i
∂

∂t
+ 2d31

)
ρ31,31 + 2�p(ρ31 − ρ31,22 − 2ρ31,33 − ρ31,44) + 2�cρ21,31 + 2�∗

aρ41,31 = 0, (A4)
(

i
∂

∂t
+ d31 + d41

)
ρ31,41 + �p(ρ41 − ρ22,41 − 2ρ33,41 − ρ44,41 − ρ31,43) + �cρ21,41 + �∗

aρ41,41+�aρ31,31 = 0, (A5)
(

i
∂

∂t
+ 2d41

)
ρ41,41 + 2�aρ31,41 − 2�pρ43,41 − V ρ41,41 = 0, (A6)

(
i
∂

∂t
+ d21+d12

)
ρ21,12 + �∗

pρ21,32 − �pρ23,12 + �∗
cρ31,12 − �cρ21,13 = 0, (A7)

(
i
∂

∂t
+ d21+d13

)
ρ21,13 − �pρ23,13+�∗

p(−ρ21 + 2ρ21,33 + ρ21,22 + ρ21,44) + �∗
c (ρ31,13 − ρ21,12) − �aρ21,14 = 0, (A8)

(
i
∂

∂t
+ d21+d14

)
ρ21,14 + �∗

pρ21,34 − �pρ23,14 + �∗
cρ31,14 − �∗

aρ21,13 = 0, (A9)
(

i
∂

∂t
+ d31 + d12

)
ρ31,12 + �p(ρ12 − 2ρ33,12 − ρ22,12 − ρ44,12) + �c(ρ21,12 − ρ31,13) + �∗

pρ31,32 + �∗
aρ41,12 = 0, (A10)

(
i
∂

∂t
+ d31 + d13

)
ρ31,13 + �p(ρ13 − 2ρ33,13 − ρ22,13 − ρ44,13) + �∗

p(−ρ31 + 2ρ31,33 + ρ31,22 + ρ31,44)

+ �cρ21,13 − �∗
cρ31,12 + �∗

aρ41,13 − �aρ31,14 = 0, (A11)
(

i
∂

∂t
+ d31 + d14

)
ρ31,14 + �p(ρ14 − ρ22,14 − 2ρ33,14 − ρ44,14)+�∗

pρ31,34 + �cρ21,14 + �∗
a(ρ41,14 − ρ31,13) = 0, (A12)

(
i
∂

∂t
+ d41 + d12

)
ρ41,12 − �pρ43,13 + �∗

pρ41,32 − �cρ41,13+�aρ31,12 = 0, (A13)
(

i
∂

∂t
+ d41 + d13

)
ρ41,13 − �pρ43,13 + �∗

p(−ρ41 + 2ρ41,33 + ρ41,22 + ρ41,44) − �∗
cρ41,12+�a(ρ31,13 − ρ41,14) = 0, (A14)

(
i
∂

∂t
+ d41 + d14

)
ρ41,14 − �pρ43,14 + �∗

pρ41,34 + �aρ31,14 − �∗
aρ41,13 = 0, (A15)

(
i
∂

∂t
+ d21

)
ρ22,21 − i�21(ρ21 − ρ22,21 − ρ33,21 − ρ44,21) − i�23ρ33,21 − �pρ22,23 + �∗

c (ρ32,21+ρ22,31) − �cρ23,21 = 0, (A16)
(

i
∂

∂t
+ d31

)
ρ22,31 − i�21(ρ31 − ρ22,31 − ρ33,31 − ρ44,31) − i�23ρ33,31 + �p(ρ22 − ρ22,22 − ρ22,44 − 2ρ22,33)

+ �c(ρ22,21 − ρ23,31) + �∗
cρ32,31 + �∗

aρ22,41 = 0, (A17)
(

i
∂

∂t
+ d41

)
ρ22,41 − i�21(ρ41 − ρ22,41 − ρ33,41 − ρ44,41) − i�23ρ33,41 − �pρ22,43 + �∗

cρ32,41 − �cρ23,41 + �aρ22,31 = 0,

(A18)
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(
i
∂

∂t
+ d23 + d21

)
ρ23,21 − �pρ23,23 − �∗

pρ21,21 + �∗
c (ρ33,21+ρ23,31 − ρ22,21) − �aρ24,21 = 0, (A19)

(
i
∂

∂t
+ d23 + d31

)
ρ23,31 + �p(ρ23 − ρ23,22 − ρ23,44 − 2ρ23,33) − �∗

pρ21,31 + �∗
c (ρ33,31 − ρ22,31) + �cρ23,21

+ �∗
aρ23,41 − �aρ24,31 = 0, (A20)

(
i
∂

∂t
+ d23 + d41

)
ρ23,41 − �pρ23,43 − �∗

pρ21,41 + �∗
c (ρ33,41 − ρ22,41) + �c(ρ23,31 − ρ24,41) = 0, (A21)

(
i
∂

∂t
+ d24 + d21

)
ρ24,21 − �pρ24,23 + �∗

c (ρ34,21 + ρ24,31) − �∗
aρ23,21 = 0, (A22)

(
i
∂

∂t
+ d24 + d31

)
ρ24,31 + �p(ρ24 − ρ24,44 − ρ24,22 − 2ρ24,33) + �cρ24,21+�∗

cρ34,31 + �∗
a(ρ24,41 − ρ23,31) = 0, (A23)

(
i
∂

∂t
+ d24 + d41

)
ρ24,41 − �pρ24,43 + �∗

cρ34,41 + �aρ24,31 − �∗
aρ23,41 = 0, (A24)

(
i
∂

∂t
+ d32 + d21

)
ρ32,21 + �p(ρ12,21 − ρ32,23) + �c(ρ22,21 − ρ33,21)+�∗

cρ32,31 + �∗
aρ42,21 = 0, (A25)

(
i
∂

∂t
+ d32 + d31

)
ρ32,31 + �p(ρ12,31 + ρ32 − 2ρ32,33 − ρ32,22 − ρ32,44) + �c(ρ23,31 + ρ32,21 − ρ33,31) + �∗

a(ρ42,31 + ρ32,41)

= 0, (A26)

(
i
∂

∂t
+ d32 + d41

)
ρ32,41 + �p(ρ12,41 − ρ32,43) + �c(ρ22,41 − ρ33,41) + �aρ32,31 + �∗

aρ42,41 = 0, (A27)

(
i
∂

∂t
+ i�13 + i�23 + d21

)
ρ33,21 − i�34ρ44,21 + �p(ρ13,21 − ρ33,23) − �∗

pρ31,21 + �cρ23,21+�∗
c (ρ33,31 − ρ32,21)

+ �∗
aρ43,21 − �aρ34,21 = 0, (A28)

(
i
∂

∂t
+ i�13 + i�23 + d31

)
ρ33,31 − i�34ρ44,31 + �p(ρ13,31 + ρ33 − 2ρ33,33 − ρ33,22 − ρ33,44) − �∗

pρ31,31 + �c(ρ23,31 + ρ33,21)

− �∗
cρ32,31 + �∗

a(ρ43,31 + ρ33,41) − �aρ34,31 = 0, (A29)

(
i
∂

∂t
+ i�13 + i�23 + d41

)
ρ33,41 − i�34ρ44,41 + �p(ρ13,41 − ρ33,43) − �∗

pρ31,41 + �cρ23,41 − �∗
cρ32,41 + �a(ρ33,31 − ρ34,41)

+ �∗
aρ43,41 = 0, (A30)

(
i
∂

∂t
+ d34 + d21

)
ρ34,21 + �p(ρ14,21 − ρ34,23) + �cρ24,21 + �∗

cρ34,31 + �∗
a(ρ44,21 − ρ33,21) = 0, (A31)

(
i
∂

∂t
+ d34 + d31

)
ρ34,31 + �p(ρ14,31 + ρ34 − 2ρ34,33 − ρ34,22 − ρ34,44) + �c(ρ24,31 + ρ34,21) + �∗

a(ρ44,31 + ρ34,41 − ρ33,31)

= 0, (A32)
(

i
∂

∂t
+ d34 + d41

)
ρ34,41 + �p(ρ14,41 − ρ34,43) + �cρ24,41 + �∗

a(ρ44,41 − ρ33,41) + �aρ34,31 = 0, (A33)

(
i
∂

∂t
+ d42 + d21

)
ρ42,21 − �pρ42,23 − �cρ43,21 + �∗

cρ42,31 + �aρ32,21 = 0, (A34)

(
i
∂

∂t
+ d42 + d31

)
ρ42,31 + �p(ρ42 − 2ρ42,33 − ρ42,22 − ρ42,44) + �c(ρ42,21 − ρ43,31) + �∗

aρ42,41 + �aρ32,31 = 0, (A35)

(
i
∂

∂t
+ d42 + d41 − V

)
ρ42,41 − �pρ42,43 − �cρ43,41 + �a(ρ32,41 + ρ42,31) = 0, (A36)

(
i
∂

∂t
+ d43 + d21

)
ρ43,21 − �pρ43,23 − �∗

pρ41,21 + �∗
c (ρ43,31 − ρ42,21) + �a(ρ33,21 − ρ44,21) = 0, (A37)
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(
i
∂

∂t
+ d43 + d31

)
ρ43,31 + �p(ρ43 − 2ρ43,33 − ρ43,22 − ρ43,44) − �∗

pρ41,31 + �cρ43,21 − �∗
cρ42,31 + �∗

aρ43,41

+ �a(ρ33,31 − ρ44,31) = 0, (A38)
(

i
∂

∂t
+ d43 + d41 − V

)
ρ43,41 − �pρ43,43 − �∗

pρ41,41 − �∗
cρ42,41 + �a(ρ33,41 + ρ43,31 − ρ44,41) = 0, (A39)

(
i
∂

∂t
+ i�34 + d21

)
ρ44,21 − �pρ44,23+�∗

cρ44,31 + �aρ34,21 − �∗
aρ43,21 = 0, (A40)

(
i
∂

∂t
+ i�34 + d31

)
ρ44,31 + �p(ρ44 − 2ρ44,33 − ρ22,44 − ρ44,44) + �cρ44,21 + �∗

a(ρ44,41 − ρ43,31) + �aρ34,31 = 0, (A41)
(

i
∂

∂t
+ i�34 + d41 − V

)
ρ44,41 − �pρ44,43 + �a(ρ44,31 + ρ34,41) − �∗

aρ43,41 = 0, (A42)

APPENDIX B: MANY-ATOM MODEL AND REDUCED DENSITY MATRIX APPROACH

Steps for solving the equations of motion for the one- and two-body correlators in the many-atom model are the following.
First-order approximation: At this order, we need to obtain the one-body correlators ρ

(1)
j1 =a(1)

j1 �p
(1) (α = 2, 3, 4) only, which

satisfy

−i
∂

∂t0

⎡
⎢⎣

a(1)
21

a(1)
31

a(1)
41

⎤
⎥⎦ =

⎡
⎣d21 �∗

c 0
�c d31 �∗

a
0 �a d41

⎤
⎦

⎡
⎢⎣

a(1)
21

a(1)
31

a(1)
41

⎤
⎥⎦ +

⎡
⎣0

1
0

⎤
⎦, (B1)

with the initial condition a(1)
21 (0) = 0, a(1)

31 (0) = −1/d31, a(1)
41 (0) = 0. Here t0 = t is the fast time variable.

Second-order approximation: We will find the lowest-order solution of the two-body correlators that start at this order. The
first set of equations governing the two-body correlators ρ

(2)
j1,l1=a(2)

j1,l1|�p
(1)|2 ( j, l = 2, 3, 4) is given by

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
21,21

a(2)
21,31

a(2)
21,41

a(2)
31,31

a(2)
31,41

a(2)
41,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2d21 2�∗
c 0 0 0 0

�c d21 + d31 �∗
a �∗

c 0 0

0 �a d21 + d41 0 �∗
c 0

0 2�c 0 2d31 2�∗
a 0

0 0 �c �a d31 + d41 �∗
a

0 0 0 0 2�a 2d41 − V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
21,21

a(2)
21,31

a(2)
21,41

a(2)
31,31

a(2)
31,41

a(2)
41,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

a(1)
21

0

2a(1)
31

a(1)
41

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

with the initial conditions a(2)
31,31(0) = 1/d31

2, and other a(2)
j1,l1(0) = 0. The second set of equations governing the two-body

correlators ρ
(2)
j1,1l=a(2)

j1,1l |�p
(1)|2 ( j, l = 2, 3, 4) reads as

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
21,12

a(2)
21,13

a(2)
21,14

a(2)
31,12

a(2)
31,13

a(2)
31,14

a(2)
41,12

a(2)
41,13

a(2)
41,14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 −�c 0 �∗
c 0 0 0 0 0

−�∗
c M12 −�a 0 �∗

c 0 0 0 0

0 −�∗
a M13 0 0 �∗

c 0 0 0

�c 0 0 M14 −�c 0 �∗
a 0 0

0 �c 0 −�∗
c M15 −�a 0 �∗

a 0

0 0 �c 0 −�∗
a M16 0 0 �∗

a

0 0 0 �a 0 0 M17 −�c 0

0 0 0 0 �a 0 −�∗
c M18 −�a

0 0 0 0 0 �a 0 −�∗
a M19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
21,12

a(2)
21,13

a(2)
21,14

a(2)
31,12

a(2)
31,13

a(2)
31,14

a(2)
41,12

a(2)
41,13

a(2)
41,14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−a(1)
21

0

a(1)∗
21

a(1)∗
31 − a(1)

31

a(1)∗
41

0

−a(1)
41

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B3)

where M11 = d21 + d12, M12 = d21 + d13, M13 = d21 + d14, M14 = d31 + d12, M15 = d31 + d13, M16 = d31 + d14, M17 = d41 +
d12, M18 = d41 + d13, and M19 = d41 + d14, and the initial conditions are a(2)

31,13(0) = |�(1)
p /d31|2, and other a(2)

j1,1l (0) = 0. The
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equation of the one-body correlators ρ
(2)
jl =a(2)

jl |�p
(1)|2 ( j, l = 2, 3, 4) at this order is

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
22

a(2)
33

a(2)
44

a(2)
23

a(2)
24

a(2)
32

a(2)
34

a(2)
42

a(2)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −i�23 0 −�c 0 �∗
c 0 0 0

0 i�3 −i�34 �c 0 −�∗
c −�a 0 �∗

a

0 0 i�34 0 0 0 �a 0 −�∗
a

−�∗
c �∗

c 0 d23 −�a 0 0 0 0

0 0 0 −�∗
a d24 0 �∗

c 0 0

�c −�c 0 0 0 d32 0 �∗
a 0

0 −�∗
a �∗

a 0 �c 0 d34 0 0

0 0 0 0 0 �a 0 d42 −�c

0 �a −�a 0 0 0 0 −�∗
c d43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
22

a(2)
33

a(2)
44

a(2)
23

a(2)
24

a(2)
32

a(2)
34

a(2)
42

a(2)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i�21(a(2)
22 + a(2)

33 + a(2)
44 )

a(1)∗
31 − a(1)

31

0

−a(1)
21

0

a(1)∗
21

a(1)∗
41

0

−a(1)
41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B4)

with the initial conditions a(2)
33 (0) = 2γ31|�(1)

p |2/(�13|d31|2) and other a(2)
jl (0) = 0. The solution of ρ

(2)
11 is given by ρ

(2)
11 = −ρ

(2)
22 −

ρ
(2)
33 − ρ

(2)
44 .

Third-order approximation: At this order, equations governing the two-body correlators ρ
(3)
jl,μ1=a(3)

jl,μ1|�p
(1)|2�p

(1) ( j, l, μ =
2, 3, 4) are given by

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(3)
22,21

a(3)
22,31

a(3)
22,41

a(3)
23,21

a(3)
23,31

a(3)
23,41

...

a(3)
43,21

a(3)
43,31

a(3)
43,41

a(3)
44,21

a(3)
44,31

a(3)
44,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M21 �∗
c 0 −�c 0 0 0 0 0 i�21 0 0

�c M22 �∗
a 0 −�c 0 0 0 0 0 i�21 0

0 �a M23 0 0 −�c 0 0 0 0 0 i�21

−�∗
c 0 0 M24 �∗

c 0 · · · 0 0 0 0 0 0
0 −�∗

c 0 �∗
c M25 �∗

a 0 0 0 0 0 0
0 0 −�∗

c 0 �a M26 0 0 0 0 0 0
...

. . .
...

0 0 0 0 0 0 M222 �∗
c 0 −�a 0 0

0 0 0 0 0 0 �c M223 �∗
a 0 −�a 0

0 0 0 0 0 0 · · · 0 �a M224 0 0 −�a

0 0 0 0 0 0 −�∗
a 0 0 M225 �∗

c 0
0 0 0 0 0 0 0 −�∗

a 0 �c M226 �∗
a

0 0 0 0 0 0 0 0 −�∗
a 0 �a M227

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(3)
22,21

a(3)
22,31

a(3)
22,41

a(3)
23,21

a(3)
23,31

a(3)
23,41

...
a(3)

43,21

a(3)
43,31

a(3)
43,41

a(3)
44,21

a(3)
44,31

a(3)
44,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i�21a(3)
21

a(2)
22 − i�21a(3)

31

−i�21a(3)
41

−a(2)
21,21

a(2)
23 − a(2)

21,31

−a(2)
21,41

...

−a(2)
41,21

a(2)
43 − a(2)

41,31

−a(2)
41,41

0
a(2)

44
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B5)
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where M21 = d21 + i�21, M22 = d31 + i�21, M23 = d41 + i�21, M24 = d23 + d21, M25 = d23 + d31, M26 = d23 + d41, M222 =
d43 + d21, M223 = d43 + d31, M224 = d43 + d41 − V , M225 = d21 + i�34, M226 = d31 + i�34, and M227 = d41 + i�34 − V . The
initial conditions are given by a(3)

33,31(0) = a(2)
33 (0)a(1)

31 (0), and other a(3)
jl,μ1(0) = 0. With the solutions obtained at the second-order

approximation, solutions of these equations also can be found analytically.
With the results obtained above, we can proceed to the equations of the one-body correlators at the third-order approximation,

ρ
(3)
j1 = a(3)

j1 |�p
(1)|2�p

(1) ( j = 2, 3, 4), which are given by

−i
∂

∂t0

⎡
⎢⎣

a(3)
21

a(3)
31

a(3)
41

⎤
⎥⎦ =

⎡
⎢⎣

d21 �∗
c 0

�c d31 �∗
a

0 �a d41

⎤
⎥⎦

⎡
⎢⎣

a(3)
21

a(3)
31

a(3)
41

⎤
⎥⎦ + i∣∣�p

(1)
∣∣2

∂

∂t2

⎡
⎢⎣

a(1)
21

a(1)
31

a(1)
41

⎤
⎥⎦ +

⎡
⎢⎣

a(2)
23

a(2)
11 − a(2)

33

−a(2)
43 − Na

∫
d3r′V (r′ − r)a(3)

44,41

⎤
⎥⎦, (B6)

where a(3)
31 ≡ a(3),LA

31 + Na
∫

d3r′V (r′ − r)a(3),RR
31 , with a(3),LA

31 (0) = 4γ31/(�13|d31|2) and a(3),LA
21 (0) = a(4),LA

41 (0) = a(3),RR
21 (0) =

a(3),RR
31 (0) = a(3),RR

41 (0).
Fourth-order approximation: The first set of equations governing the two-body correlators ρ

(4)
j1,l1 = a(4)

j1,l1|�p
(1)|4 ( j, l =

2, 3, 4) is given by

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
21,21

a(4)
21,31

a(4)
21,41

a(4)
31,31

a(4)
31,41

a(4)
41,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

2d21 2�∗
c 0 0 0 0

�c d21 + d31 �∗
a �∗

c 0 0
0 �a d21 + d41 0 �∗

c 0
0 2�c 0 2d31 2�∗

a 0
0 0 �c �a d31 + d41 �∗

a
0 0 0 0 2�a 2d41 − V

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
21,21

a(4)
21,31

a(4)
21,41

a(4)
31,31

a(4)
31,41

a(4)
41,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ i∣∣�p
(1)

∣∣2

∂

∂t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
21,21

a(2)
21,31

a(2)
21,41

a(2)
31,31

a(2)
31,41

a(2)
41,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2a(3)
23,21

a(3)
21 − a(3)

22,21 − 2a(3)
33,21 − a(3)

23,31 − a(3)
44,21

−a(3)
23,41 − a(3)

43,21

2a(3)
31 − 2a(3)

22,31 − 4a(3)
33,31 − a(3)

44,31

a(3)
41 − a(3)

22,41 − a(3)
44,41 − a(3)

43,31

−2a(3)
43,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B7)

The second set of equations governing the two-body correlators ρ
(4)
j1,1l = a(4)

j1,1l |�p
(1)|4 ( j, l = 2, 3, 4) reads as

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
21,12

a(4)
21,13

a(4)
21,14

a(4)
31,12

a(4)
31,13

a(4)
31,14

a(4)
41,12

a(4)
41,13

a(4)
41,14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 −�c 0 �∗
c 0 0 0 0 0

−�∗
c M12 −�a 0 �∗

c 0 0 0 0
0 −�∗

a M13 0 0 �∗
c 0 0 0

�c 0 0 M14 −�c 0 �∗
a 0 0

0 �c 0 −�∗
c M15 −�a 0 �∗

a 0
0 0 �c 0 −�∗

a M16 0 0 �∗
a

0 0 0 �a 0 0 M17 −�c 0
0 0 0 0 �a 0 −�∗

c M18 −�a

0 0 0 0 0 �a 0 −�∗
a M19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
21,12

a(4)
21,13

a(4)
21,14

a(4)
31,12

a(4)
31,13

a(4)
31,14

a(4)
41,12

a(4)
41,13

a(4)
41,14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ i∣∣�p
(1)

∣∣2

∂

∂t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
21,12

a(2)
21,13

a(2)
21,14

a(2)
31,12

a(2)
31,13

a(2)
31,14

a(2)
41,12

a(2)
41,13

a(2)
41,14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(3)
32,21 − a(3)∗

32,21

−a(3)∗
32,31 − a(3)

21 +2a(3)
33,21 + a(3)

22,21 + a(3)
44,21

a(3)
34,21 − a(3)∗

32,41

a(3)
32,31 + a(3)∗

21 − 2a(3)∗
33,21 − a(3)∗

22,21 − a(3)∗
44,21

−a(3)
31 + 2a(3)

33,31 + a(3)
22,31 + a(3)

44,31 + a(3)∗
31 − 2a(3)∗

33,31 − a(3)∗
22,31 − a(3)∗

44,31

a(3)
34,31 + a(3)∗

41 − 2a(3)∗
33,41 − a(3)∗

22,41 − a(3)∗
44,41

a(3)
32,41 − a(3)∗

34,31

−a(3)∗
34,31 − a(3)

41 +2a(3)
33,41 + a(3)

22,41 + a(3)
44,41

a(3)
34,41 − a(3)∗

34,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B8)
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The third set of equations governing the two-body correlators ρ
(4)
jl,μν

= a(4)
jl,μν

|�p
(1)|4 ( j, l, μ, ν = 2, 3, 4) reads as

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
22,22

a(4)
22,23

a(4)
22,24

a(4)
22,32

a(4)
22,33

a(4)
22,34
...

a(4)
44,32

a(4)
44,33

a(4)
44,34

a(4)
44,42

a(4)
44,43

a(4)
44,44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M31 −2�c 0 2�∗
c −2i(�21+�23) 0 0 0 0 0 0 0

−�∗
c M32 −�a 0 �∗

c 0 0 0 0 0 0 0
0 −�∗

a M33 0 0 �∗
c 0 0 0 0 0 0

. . .
�c 0 0 M34 −�c 0 i�21 0 0 0 0 0
0 �c 0 −�∗

c M35 �∗
a 0 i�21 0 0 0 0

0 0 �c 0 −�∗
a M36 0 0 i�21 0 0 0

...
. . .

...
0 0 0 0 0 0 M340 −�c 0 �∗

a 0 0
0 0 0 0 0 0 −�∗

c M341 �a 0 �∗
a 0

0 0 0 0 0 0 0 −�∗
a M342 0 0 0· · ·

0 0 0 0 0 0 �a 0 0 M343 −�c 0
0 0 0 0 0 0 0 �a 0 −�∗

c M344 0
0 0 0 0 0 0 0 0 2�a 0 −2�∗

a M345

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
22,22

a(4)
22,23

a(4)
22,24

a(4)
22,32

a(4)
22,33

a(4)
22,34

...

a(4)
44,32

a(4)
44,33

a(4)
44,34

a(4)
44,42

a(4)
44,43

a(4)
44,44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2i�21a(4)
22

−i�21a(4)
23 − a(3)

22,21

−i�21a(4)
24

a(3)∗
22,21 − i�21a(4)

32

−i�21a(4)
33 − a(3)

22,31

a(3)∗
22,41 − i�21a(4)

34

...

a(3)
44,21

a(3)∗
44,31 − a(3)

44,31

a(3)∗
44,41

0

−a(3)
44,41

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B9)

where M31 = −2i�21, M32 = d23 + i�21, M33 = d24 + i�21, M34 = d32 + i�21, M35 = i(�23 + �13 + �21), M36 = d34 +
i�21, M340 = d32 + i�34, M341 = i(�34 + �23 + �13), M342 = d34 + i�34, M343 = d42 + i�34 − V , M344 = d43 + i�34 − V , and
M345 = 2i�34.

The equation for the one-body correlators ρ
(4)
jl = a(4)

jl |�p
(1)|4 ( j, l = 2, 3, 4) at this order is

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
22

a(4)
33

a(4)
44

a(4)
23

a(4)
24

a(4)
32

a(4)
34

a(4)
42

a(4)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i�21 i�21 − i�23 i�21 −�c 0 �∗
c 0 0 0

0 i�3 −i�34 �c 0 −�∗
c −�a 0 �∗

a

0 0 i�34 0 0 0 �a 0 −�∗
a

−�∗
c �∗

c 0 d23 −�a 0 0 0 0

0 0 0 −�∗
a d24 0 �∗

c 0 0

�c −�c 0 0 0 d32 0 �∗
a 0

0 −�∗
a �∗

a 0 �c 0 d34 0 0

0 0 0 0 0 �a 0 d42 −�c

0 �a −�a 0 0 0 0 −�∗
c d43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(4)
22

a(4)
33

a(4)
44

a(4)
23

a(4)
24

a(4)
32

a(4)
34

a(4)
42

a(4)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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+ i∣∣�p
(1)

∣∣2

∂

∂t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(2)
22

a(2)
33

a(2)
44

a(2)
23

a(2)
24

a(2)
32

a(2)
34

a(2)
42

a(2)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

a(3)∗
31 − a(3)

31

0

−a(3)
21

Na
∫

d3r′V (r′ − r)a(4)
44,24

a(3)∗
21

a(3)∗
41 − Na

∫
d3r′V (r′ − r)a(3)

44,34

−Na
∫

d3r′V (r′ − r)a(3)
44,42

−a(3)
41 − Na

∫
d3r′V (r′ − r)a(3)

44,43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B10)

Fifth-order approximation: The equation of the one-body correlators ρ
(5)
j1 = a(5)

j1 |�p
(1)|4�p

(1) ( j = 2, 3, 4) at this order is

−i
∂

∂t0

⎡
⎢⎣

a(5)
21

a(5)
31

a(5)
41

⎤
⎥⎦ =

⎡
⎢⎣

d21 �∗
c 0

�c d31 �∗
a

0 �a d41

⎤
⎥⎦

⎡
⎢⎣

a(5)
21

a(5)
31

a(5)
41

⎤
⎥⎦ + i∣∣�p

(1)
∣∣2

∂

∂t2

⎡
⎢⎣

a(3)
21

a(3)
31

a(3)
41

⎤
⎥⎦ +

⎡
⎢⎣

a(4)
23

a(4)
11 − a(4)

33

−a(4)
43 − Na

∫
d3r′V (r′ − r)a(5)

44,41

⎤
⎥⎦. (B11)

At this order, equations governing the two-body correlators ρ
(5)
jl,μ1 = a(5)

jl,μ1|�p
(1)|4�p

(1) ( j, l, μ = 2, 3, 4) are given by

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(5)
22,21

a(5)
22,31

a(5)
22,41

a(5)
23,21

a(5)
23,31

a(5)
23,41

...

a(5)
43,21

a(5)
43,31

a(5)
43,41

a(5)
44,21

a(5)
44,31

a(5)
44,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M21 �∗
c 0 −�c 0 0 0 0 0 i�21 0 0

�c M22 �∗
a 0 −�c 0 0 0 0 0 i�21 0

0 �a M23 0 0 −�c 0 0 0 0 0 i�21
. . .−�∗

c 0 0 M24 �∗
c 0 0 0 0 0 0 0

0 −�∗
c 0 �∗

c M25 �∗
a 0 0 0 0 0 0

0 0 −�∗
c 0 �a M26 0 0 0 0 0 0

...
. . .

...
0 0 0 0 0 0 M222 �∗

c 0 −�a 0 0
0 0 0 0 0 0 �c M223 �∗

a 0 −�a 0· · ·
0 0 0 0 0 0 0 �a M224 0 0 −�a

0 0 0 0 0 0 −�∗
a 0 0 M225 �∗

c 0
0 0 0 0 0 0 0 −�∗

a 0 �c M226 −�∗
a

0 0 0 0 0 0 0 0 −�∗
a 0 �a M227

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(5)
22,21

a(5)
22,31

a(5)
22,41

a(5)
23,21

a(5)
23,31

a(5)
23,41

...

a(5)
43,21

a(5)
43,31

a(5)
43,41

a(5)
44,21

a(5)
44,31

a(5)
44,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ i∣∣�p
(1)

∣∣2

∂

∂t2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(3)
22,21

a(3)
22,31

a(3)
22,41

a(3)
23,21

a(3)
23,31

a(3)
23,41

...

a(3)
43,21

a(3)
43,31

a(3)
43,41

a(3)
44,21

a(3)
44,31

a(3)
44,41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a(4)∗
32,22

a(4)
22 − a(4)

22,22 − 2a(4)
33,22 − a(4)

22,44 + i�21a(5)
31

−a(4)
43,22 − i�21a(5)

41

−a(4)
21,21

a(4)
23 − 2a(4)

23,33 − a(4)
23,22 − a(4)

23,44 − a(4)
21,31

−a(4)
43,23 − a(4)

41,21

...

−a(4)
42,23 − a(4)

41,21

a(4)
43 − a(4)

43,22 − 2a(4)
43,33 − a(4)

43,44 − a(4)
41,31

−a(4)
43,43 − a(4)

41,41

−a∗(4)
44,32

a(4)
44 − 2a(4)

44,33 − a(4)
44,22 − a(4)

44,44

−a(4)
43,43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B12)
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FIG. 7. Definition of the response time of a transient response process, described by a response function f (τ ); τ is dimensionless time.
(a) Example: f (τ ) = e−τ cos(5τ + 4π ) + 0.001. The blue rectangle indicates that the variation of f (τ ) reached the range 2�err around the
steady-state value f (∞) = 0.001. The blue point denotes the response time. (b) Amplification of the blue rectangle shown in (a). The marked
region is the error range for defining the response time, bounded by the upper boundary f (∞) + | f (∞)|�err and the lower boundary f (∞) −
| f (∞)|�err , with �err = 0.05. The blue point is the response time of the transient response process.

where ρ jl,μυ ≡ 〈Ŝ jl Ŝμν〉, ρ j1 = ∑
m=0ε

2m+1ρ
(2m+1)
j1 , ρ jl =∑

m=1ε
2mρ

(2m)
jl , ρ11 = 1 + ∑

m=1ε
2mρ

(2m)
11 , ρ j1,l1 = ∑

m=1

ε2mρ
(2m)
j1,l1, ρ j1,1l = ∑

m=1ε
2mρ

(2m)
j1,1l , ρ jl,μ1 = ∑

m=1ε
2m+1

ρ
(2m+1)
jl,μ1 , and ρ jl,μυ = ∑

m=2ε
2mρ

(2m)
jl,μυ

( j, l, μ, υ = 2, 3, 4).

APPENDIX C: DEFINITION OF THE RESPONSE TIME
FOR A TRANSIENT RESPONSE PROCESS

According to the engineering control theory [42], the
response time TR of a transient response process is usu-
ally defined to be the minimum time after which the tem-
poral change of the response function describing the tran-
sient response process always remains within a small error

range 2�err = 0.1 around the steady-state value of the re-
sponse. A simple example is shown in Fig. 7, where the
normalized response function is f (τ ) = e−τ cos(5τ + 4π ) +
0.001, with τ the dimensionless time. The blue rectangle in
Fig. 7(a) means that the variation of f (τ ) has reached the
stage where the variation is within the range 2�err| f (∞)|
around the steady-state value of the response function, i.e.,
f (∞) = 0.001. The blue point indicates the position of the
response time. Figure 7(b) is the amplification of the blue
rectangle shown in Fig. 7(a). The region in green is the
permitted relative error range for determining the response
time, marked by the upper boundary f (∞) + | f (∞)|�err

and the lower boundary f (∞) − | f (∞)|�err. Thus, the
blue point is the response time of the transient response
process.
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