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Magnetically controllable photon blockade under a weak quantum-dot–cavity coupling condition
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Quantum control of photons has become an area of great interest in the development of quantum technology.
Here we explore how an external magnetic field can be exploited to control the statistical properties of photons
in a bimodal cavity quantum electrodynamics (CQED) system. Our CQED system is composed of a bimodal
micropillar Fabry-Pérot cavity containing a single V -level quantum dot (QD) involving fine-structure-splitting
neutral exciton transitions under the effect of the applied magnetic field in the presence of an incident pump laser
field driving one cavity mode. With the introduction of the external magnetic field, not only is the conversion
of polarization characteristics of photons achieved, but the statistics properties of photons are well engineered
and the switching between photon bunching and antibunching is realized in the weak-coupling regime of CQED.
The superiority of our system is manifested in the following aspects. (i) Using experimental parameters, we
can manipulate the statistical properties of photons by appropriately tuning the strength of the magnetic field
under the weak-coupling CQED condition, accompanied by either enhanced antibunching or a transition from
antibunching to strong bunching of the light and vice versa. So we can arrive at selective photon statistics. (ii)
The strong photon antibunching effect, under nonresonant scenarios but without the need to match the resonant
or near-resonant conditions for the cavity and QD, can appear. Furthermore, we find that the multifrequency
photon blockade can be generated in the present system, which is different from previous studies about photon
blockade only for specific optical detuning. (iii) The high photon occupations or transmissions, simultaneously
accompanied by strong photon antibunching in the system, are beneficial to the correlation measurement in
practical experiments. This process works with a high quality of photon antibunching and bunching over a wide
range of parameters and has potential applications in on-chip quantum information processing. It is hoped that
the proposed scheme provides a possibility for the generation of tunable single-photon sources or controllable
photon quantum gates.
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I. INTRODUCTION

In recent decades, cavity quantum electrodynamics
(CQED) of solid-state systems [1,2] consisting of a single
neutral or charged semiconductor quantum dot (QD) and an
optical microcavity have attracted considerable attention due
to their broad application prospects in, e.g., quantum light
sources [3,4], quantum communication, and quantum comput-
ing [5,6]. A substantial number of works have been focused on
achieving fundamental CQED effects in solid-state systems,
including the Purcell effect [7], vacuum Rabi splitting, and
the Jaynes-Cummings (JC) ladder effect in a variety of cou-
pled QD-cavity systems. According to the coupling strength
between the emitter and the cavity, the coupled QD-cavity
systems can be classified into two different regions: One is
the weak-coupling CQED regime and the other is the strong-
coupling CQED regime. Specifically, in the weak-coupling
CQED regime where the coupling strength between the emit-
ter and the cavity mode is much lower than the dissipation
rate, the system can exhibit the Purcell effect, namely, the
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spontaneous emission rate of the QD can be modified due to
the exciton-photon interaction [8]. Contrarily, in the strong-
coupling CQED regime where the coupling strength between
the QD and the cavity mode is greater than the dissipation
rate, a reversible exchange of energy between the QD and the
cavity mode gives rise to Rabi oscillations and Rabi splittings
[1,2,9,10]. Among them, a two-level QD-cavity coupling sys-
tem constitutes the JC model. Interestingly, the anharmonic
JC ladder leads to attractive optical phenomena [11–13], for
example, photon antibunching and photon bunching, which
have important applications in the generation of nonclassical
light [14]. In photon antibunching, the coupling between a
single photon and a system impedes the coupling of subse-
quent photons [15]. On the contrary, in photon bunching, the
coupling of initial photons is beneficial to the coupling of
subsequent photons. In the strong-coupling regime of CQED,
photon antibunching has been illustrated in various of optical
systems, such as CQED systems [14,16–20], circuit quantum
electrodynamics systems [21–24], waveguide QED systems
[25–27], optomechanical systems [28–38], spinning or gain
resonator systems [39–41], and so on.

Following the photon antibunching effect in the strong-
coupling region, the photon antibunching effect based on the
destructive quantum interference between different excitation
paths arises, which greatly reduces the requirement of strong
nonlinearity of the system. This phenomenon is called un-
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conventional photon antibunching, which has been studied
in, e.g., two directly coupled cavities with second-order or
third-order (Kerr) optical nonlinearity [42–53], two coupled
superconducting circuit resonators [54], coupled cavity op-
tomechanical systems [55–59], and CQED systems [60–64].
More recently, a scheme to enhance photon antibunching by
the quantum interference effect in a three-level � configu-
ration has been proposed [65], which provides a possibility
for single-photon generation by unconventional photon anti-
bunching.

With further studies of solid-state CQED systems, it was
gradually found that the interaction between the QD and the
cavity can be controlled not only by the electric field or
temperature [66–68], but also by the magnetic field [69–71].
The magnetic field can be introduced to manipulate the QD
exciton states, which lifts the degeneracy of exciton states of
the QD due to the Zeeman effect [72,73]. Under an external
magnetic field, high-fidelity and high-speed spin initialization
and manipulation have been studied in a coupled QD bimodal
cavity [74] and the interaction between exciton spin states
and photon modes has been experimentally realized [75].
However, in the QD-cavity architectures there have been few
demonstrations of an external magnetic field being introduced
to control the photon statistics characteristics.

Since the applied magnetic field can affect the interaction
between the QD exciton transitions and the cavity modes in
CQED, a natural question to ask, then, is whether the magnetic
field will affect the statistical properties of photons in the cav-
ity. This question arouses our great interest. For this reason,
on the basis of the experiments mentioned above [69–75],
here we propose a CQED scheme in which a coupled V -level
neutral QD–bimodal micropillar cavity system is pumped by
an incident laser field under the effect of an external magnetic
field. Starting from the expressions of two spin exciton states,
i.e., |σ+〉 and |σ−〉 (see Fig. 2 below), of the neutral V -level
QD, the expressions of two eigenstates, i.e., |X 〉 and |Y 〉, of the
neutral V -level QD as well as two orthogonally and linearly
polarized exciton states, i.e., |H〉 and |V 〉, are given step by
step, in which the directions of two orthogonally and linearly
polarized exciton states |H〉 and |V 〉 are identical to those of
two orthogonally and linearly polarized cavity modes, i.e.,
aH and aV . The orthogonally and linearly polarized exciton
states |H〉 and |V 〉 are respectively coupled to the orthogonal
cavity modes aH and aV of the bimodal micropillar cavity
according to selection rules. Then a quantum master equation
is introduced to simulate the intracavity photon response of
the CQED system including photon occupations and statistics.
It is found that by tuning the magnetic field appropriately, the
photon statistics properties of the system can be well con-
trolled in the weak-coupling “bad cavity” regime. In particu-
lar, the photon statistics is revealed to be capable of switching
from antibunched photons to bunched photons or vice versa
by tuning the external magnetic field. Thus we can achieve
selective photon statistics. Our in-depth results indicate that
introducing an external magnetic field offers a highly sensi-
tive method (or a new degree of freedom) for manipulating
quantum states. We also find that the V -polarized photons
produced by the intermediate modulation of the magnetic field
and the coherent coupling via the terms iβ(|H〉〈V | − |V 〉〈H |)
and �FSS sin θ cos θ (|H〉〈V | + |V 〉〈H |) [see Eq. (14) below]

have the characteristics of high photon occupations or trans-
missions, simultaneously accompanied by strong photon anti-
bunching. This can be achieved in our system without needing
to construct the cavity-coupling-cavity protocol presented in
previous works [76–81]. In addition, our system reduces the
requirement of resonance or near resonance between the QD
exciton transitions and the cavity modes [61], making it
possible to generate strong antibunching in the presence of
detuning or out of resonance. At the same time, we observe
that the multifrequency photon blockade can be achieved in
the present system, which is different from previous studies
on photon blockade only for specific laser detuning [42,43].
Also, we explore the dependence of photon antibunching on
the other system parameters and the results show that our
approach works with high-quality photon antibunching and
bunching for a large range of parameters, which increase the
feasibility of the experiment.

We note that the photon statistics of the field emitted from
a semiconductor optical microcavity containing a solid-state
quantum well have been systematically investigated for differ-
ent scenarios [82,83], for example, in the quantum trajectory
approach, in the linear regime, in the nonlinear regime, and in
the nonstationary regime. Reference [82] revealed interesting
dynamical behaviors of the autocorrelation function depend-
ing on the system parameters. In Ref. [83] the analytical
expressions of the light-emitting autocorrelation function in
the weak pumping field were derived for the two coupling
regimes (the weak-coupling regime and the strong-coupling
regime) and statistical similarities of the photon to an atomic
cavity were discussed. To date, studies of the photon statistics
in a bimodal CQED system with a three-level QD and an
external magnetic field are lacking.

The remainder of the paper is organized as follows. In
Sec. II we describe the physical model of the CQED system
under consideration and gradually give the total Hamiltonian
in terms of both the linearly polarized exciton states and
the linearly polarized cavity modes (Sec. II A). Subsequently,
the quantum master equation governing the CQED system
is yielded (Sec. II B). We further introduce the second-order
intensity correlation function which provides key information
on the photon statistics (Sec. II C). In Sec. III, starting from a
Schrödinger equation approach, an analytical discussion for
the second-order correlation function of the CQED system
is presented. In Sec. IV we discuss and analyze the sta-
tistical properties of the V -polarized photons as a example
by varying the strength of the external magnetic field under
the weak-coupling condition, where the requirement for a
perfectly matched QD cavity can be relaxed in favor of
photon-blockade optimization. After this, we look into the
dependence of the photon antibunching characteristics on the
other system parameters. Finally, we summarize our results in
Sec. V.

II. BASIC FRAMEWORK OF THE SYSTEM

A. Model and Hamiltonian

As depicted schematically in Fig. 1, the CQED system
considered here is composed of a bimodal cavity containing
a single self-assembled neutral QD under the effect of an
external magnetic field in the Faraday configuration, where
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FIG. 1. Schematic of the cavity-QD system under consideration.
A single self-assembled neutral QD is coupled to a elliptical mi-
cropillar cavity with two linearly polarized modes, i.e., the H and
V modes, at coupling rates gH and gV under the effect of an external
magnetic field B applied in the growth direction of the embedded
QD, i.e., the Faraday geometry. An incident pump laser field � is
polarized along the H -polarized cavity mode axis. Here κ top is the
top-mirror damping rate, corresponding to the cavity photons, to
escape the cavity through the top port and κ side is the side-leakage
damping rate induced by the micropillar sidewall roughness. The
total cavity damping rate is given by the sum κ = κ top + κ side.
Here γ sp and γ d p are the spontaneous emission decay rate and the
pure dephasing rate of the QD excitons, respectively.

the magnetic field is applied parallel to the growth direction
of the embedded QD. The bimodal cavity considered in our
system is an elliptical micropillar Fabry-Pérot cavity which
has the same function as the photonic crystal cavity and which
can support two orthogonally and linearly polarized cavity
modes due to a small ellipticity of the cavity cross section and
the material birefringence [84]: One is the H-polarized cavity
mode (denoted by aH ) and the other is the V -polarized cavity
mode (denoted by aV ). The cavity modes are not directly cou-
pled to each other due to their orthogonal polarizations, and
only one cavity mode is driven by an external monochromatic
continuous-wave (cw) pump laser field (denoted by �) via
setting the input polarization. The QD is coherently coupled
to these two linearly polarized cavity modes aH and aV .

On the other hand, in semiconductor neutral QD systems,
one electron in the conduction band and one hole in the
valence band bind to form exciton through their mutual
Coulombic interaction. Because the energy splitting between
the heavy-hole and light-hole states caused by the strain in
self-assembled QDs is much larger than the interaction energy
of fine structures, it is safe to consider only heavy-hole states
and neglect light-hole states [73]. Under the premise of single
occupation of each band, four exciton states are constructed
on the basis of a heavy-hole valence band with Jh = 3/2 and

Jh,z = ±3/2 and an electron conduction band with Se = 1/2
and Se,z = ±1/2. Here Jh = 3/2 (Se = 1/2) represents the
spin angular momentum of the heavy-hole valence band (the
electron conduction band) and Jh,z = ±3/2 (Se,z = ±1/2)
represents the projection of the angular momentum in the z
direction of the heavy-hole valence band (the electron con-
duction band). These states are classified by the total angular
momentum projection along the z axis, namely, Jz = Jh,z +
Se,z. Two of the four exciton states with Jz = ±1 are bright
exciton states that are optically active and can couple to the
laser field; the other two with Jz = ±2 are dark exciton states
that are optically inactive and cannot couple to the laser field.
The magnetic field introduced in our CQED system is in a
Faraday configuration with the orientation of the magnetic
field along the heterostructure growth direction (z) rather than
in a Voigt configuration with the orientation of the magnetic
field perpendicular to the growth direction (in-plane), which
results in just opening but not coupling dark and bright exciton
states. Therefore, the interaction between the bright exciton
states and the cavity modes is considered in our work, which
constitutes a V -type three-level QD structure involving the
two neutral exciton transitions (referred to as a V -level QD).
A detailed discussion of the dark exciton states, where the
magnetic field is in a Voigt configuration, was presented in
Ref. [85].

More specifically, as shown in Fig. 2(a), the exciton spin
state |σ+〉 is the bright exciton state with Jz = +1, which
has right circular polarization. Similarly, the exciton spin
state |σ−〉 is the bright exciton state with Jz = −1, which
has left circular polarization, and |G〉 is the neutral ground
state with zero energy. The degeneracy of the two exciton
spin states is lifted by the anisotropic confinement potential
of the QD and its zinc-blende crystal structure, resulting in
the fine-structure exchange interaction. Obviously, the exciton
spin states |σ+〉 and |σ−〉 are not the eigenstates of the QD
system in the anisotropic neutral excitons; therefore we need
to introduce the two linearly polarized exciton states |X 〉 =
(|σ+〉 + |σ−〉)/

√
2 and |Y 〉 = i(|σ+〉 − |σ−〉)/

√
2, which are

the eigenstates of the QD without an external magnetic field
[86] and are split between these linearly polarized excitons,
known as a fine-structure splitting (denoted by �FSS). Since
the transitions |X 〉 ⇔ |G〉 and |Y 〉 ⇔ |G〉 can be optically ad-
dressed with the corresponding X -polarized and Y -polarized
light, respectively, the states |X 〉 and |Y 〉 are called the linearly
X -polarized and the Y -polarized exciton states. Here X and Y
are the eigenaxes of the QD. The interaction between the exci-
ton spin states and the bimodal cavity can be transformed into
the interaction between the linearly polarized exciton states
and the linearly polarized cavity modes [87]. The specific
procedures are as follows.

First, in the basis of the two σ exciton spin states |σ+〉 and
|σ−〉, the QD Hamiltonian can be written as (assuming h̄ = 1
hereafter) [73]

HQD = ω(|σ+〉〈σ+| + |σ−〉〈σ−|)

+ �FSS

2
(|σ+〉〈σ−| + |σ−〉〈σ+|), (1)

where the energy of the ground state |G〉 is set as zero for
the sake of simplicity. In addition, | j〉〈k| is the dipole raising
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FIG. 2. Energy-level and polarized transition schematic of the
ground-state and lowest-energy excited states for the neutral QD
inserted in the micropillar cavity (see Fig. 1). (a) The degenerate
exciton spin states |σ+〉 and |σ−〉 have right and left circular po-
larizations, |G〉 is the neutral ground state with zero energy, i.e.,
the empty QD state, and ω is the transition frequency from the
QD exciton spin state to the ground state |σ+〉 ⇔ |G〉 (|σ−〉 ⇔ |G〉).
The fine-structure exchange coupling between the exciton spin states
|σ+〉 and |σ−〉 is represented by the purple solid line, showing that
the cylindrical symmetry of the QD is broken in general. (b) The
nondegenerate linearly polarized exciton states |X 〉 and |Y 〉 have
the corresponding X polarization and Y polarization characteristics
induced by the fine-structure exchange interaction. Here ω

QD
X (ωQD

Y )
is the transition frequency from the QD exciton state to the ground
state |X 〉 ⇔ |G〉 (|Y 〉 ⇔ |G〉) and �FSS represents the exciton fine-
structure splitting between the two linearly polarized exciton states
|X 〉 and |Y 〉. (c) Relative orientation of the cavity and QD eigenaxes.
Here θ is the relative angle between the H -polarized cavity mode
and the X QD transition. (d) Transformed linearly polarized QD
exciton states. Here |H〉 and |V 〉 are the two orthogonally and linearly
polarized exciton states: a horizontal polarization state |H〉 and a
vertical polarization state |V 〉. In addition, ωQD

H (ωQD
V ) is the transition

frequency between the QD exciton state and the ground state |H〉 ⇔
|G〉 (|V 〉 ⇔ |G〉). The coupling between |H〉 and |V 〉 is proportional
to the fine-structure splitting of excitons �FSS .

or lowering transition operator between the QD exciton states
| j〉 and |k〉 (here j, k = σ−, σ+ and in the following j, k =
G, X,Y, H,V ), while | j〉〈 j| represents the dipole population
operator of the QD exciton. The σ exciton spin states with left
circular polarization and right circular polarization have de-
generate energy ω; the exchange interaction in the asymmetric
QD mixes these two states with the coupling strength �FSS/2.
It should be noted that the states with double occupation are
ignored since we use a low-power laser excitation.

When we take into account the QD Hamiltonian in the
basis of the two linearly polarized exciton states |X 〉 and |Y 〉,
Eq. (1) can be converted to the form

HQD = ω
QD
X |X 〉〈X | + ω

QD
Y |Y 〉〈Y |. (2)

Here the degeneracy of the excitons is lifted owing to the
imperfect QD circular symmetry, as shown in Fig. 2(b), and
the frequencies of the two linearly polarized excitons are

ω
QD
X = ω + �FSS/2 with the X polarization and ω

QD
Y = ω −

�FSS/2 with the Y polarization.
Second, in the presence of an external magnetic field B

in the Faraday configuration, the magnetic-field-dependent
Hamiltonian for the Zeeman interaction of the electron and
hole spins can be written in the basis of the two σ exciton
spin states |σ+〉 and |σ−〉 as [73]

Hmag = β(|σ+〉〈σ+| − |σ−〉〈σ−|)
+αB2(|σ+〉〈σ+| + |σ−〉〈σ−|), (3)

where β = μBB(ge,z + gh,z )/2, with μB = 57.9 μeV/T the
Bohr magneton and ge,z = −0.8 and gh,z = −2.2 the electron
and hole effective Landé factors, respectively, in the growth
direction (z) according to Refs. [73,85]. The spin splitting of
the exciton spin states caused by the Zeeman effect increases
linearly with the increase of the magnetic field B. The last term
stands for the diamagnetic shift [69] and α = 20 μeV/T2 is
the diamagnetic shift coefficient [88].

We consider that in the basis of two linearly polarized
exciton states |X 〉 and |Y 〉 the magnetic field applied in the
growth direction will mix the two exciton states and lead
to diamagnetic shifts. After some calculation, the magnetic-
field-dependent Hamiltonian can be transformed into the form

Hmag = iβ(|X 〉〈Y | − |Y 〉〈X |)
+αB2(|X 〉〈X | + |Y 〉〈Y |). (4)

Third, we focus primarily on the interaction between the
three-level QD and the bimodal micropillar cavity. It should
be noted that the micropillar cavity considered here has a
pair of quasiresonant modes with H and V polarization,
respectively. In general, the eigenaxes H and V of the bimodal
micropillar cavity differ from the eigenaxes X and Y of the QD
by an angle θ , as shown in Fig. 2(c). In order to describe this
coupled QD-cavity system more intuitively, we thus replace
the exciton eigenstates |X 〉 and |Y 〉 with the orthogonally
polarized exciton states |H〉 and |V 〉 by the transformations
[76–78,89]

|H〉 = cos θ |X 〉 − sin θ |Y 〉, (5)

|V 〉 = sin θ |X 〉 + cos θ |Y 〉. (6)

In order to explicitly express the physical quantities ω
QD
H

and ω
QD
V that represent the transition frequencies between

|H〉 ⇔ |G〉 and |V 〉 ⇔ |G〉 as shown in Fig. 2(d), based on
the above-mentioned transformations (5) and (6), the useful
relationships can be derived as

ω
QD
H = ω

QD
X cos2 θ + ω

QD
Y sin2 θ, (7)

ω
QD
V = ω

QD
X sin2 θ + ω

QD
Y cos2 θ. (8)

Making good use of Eqs. (5) and (6) again, we can ac-
quire the relationships |X 〉 = cos θ |H〉 + sin θ |V 〉 and |Y 〉 =
cos θ |V 〉 − sin θ |H〉. Substituting them into Eqs. (2) and (4),
both the QD and magnetic-field-dependent Hamiltonians can
be reexpressed in terms of the new orthogonally and linearly

023805-4



MAGNETICALLY CONTROLLABLE PHOTON BLOCKADE … PHYSICAL REVIEW A 101, 023805 (2020)

polarized exciton states |H〉 and |V 〉 as

HQD = ω
QD
H |H〉〈H | + ω

QD
V |V 〉〈V |

+�FSS sin θ cos θ (|H〉〈V | + |V 〉〈H |), (9)

Hmag = iβ(|H〉〈V | − |V 〉〈H |)
+αB2(|H〉〈H | + |V 〉〈V |). (10)

Next, under the above transformations, the polarization
direction of the new linearly polarized exciton states |H〉
and |V 〉 are consistent with that of the H- and V -cavity
polarization axes and therefore can be optically coupled with
the H-polarized and V -polarized cavity modes according to
the selection rules [90]. To this end, in the basis of the new
linearly polarized exciton states |H〉 and |V 〉, the cavity-QD
interaction Hamiltonian can be written within the rotating-
wave and electric dipole approximations as [78]

Hcav = ωcav
H a†

H aH + gH (|G〉〈H |a†
H + |H〉〈G|aH )

+ωcav
V a†

V aV + gV (|G〉〈V |a†
V + |V 〉〈G|aV ). (11)

In the above Hamiltonian (11), the first term is the energy
of the unperturbed H-polarized cavity mode. In addition, ωcav

j

and a†
j (a j) are the cavity resonance frequency and the photon

creation (annihilation) operator for the j-polarized cavity
mode ( j = H,V ), respectively. For clarity, we have omitted
the circumflex for the operators. The second term describes
the scenario that the H-polarized cavity mode couples the
ground state |G〉 to the horizontal polarization state |H〉 of the
QD exciton with the coupling strength gH , where the rotating-
wave and electric dipole approximations have been made.
Here | j〉〈G| (|G〉〈 j|) is the dipole raising (lowering) flip oper-
ator for the QD exciton transition |G〉 ⇔ | j〉 (| j〉 ⇔ |G〉), also
called the exciton creation (annihilation) operator. The third
term represents the energy of the unperturbed V -polarized
cavity mode. For the first and third terms, we have neglected
the zero-point energy, which is allowed since it only gives a
relative shift and does not affect the dynamics under study.
Finally, the fourth term accounts for the situation that the
V -polarized cavity mode couples the ground state |G〉 to the
vertical polarization state |V 〉 with the coupling strength gV

under the rotating-wave and electric dipole approximations. In
the above derivation of the Hamiltonian operator, the energy
of the ground state |G〉 is set as zero for the sake of simplicity.
Technical details of the associated derivation for Eq. (11) can
be easily found in Refs. [11,91].

For notational convenience, we define the quantity ωc

as the central frequency in between the two cavity modes,
i.e., ωc = (ωcav

H + ωcav
V )/2, and the quantity �c as the mode

splitting frequency of the bimodal micropillar cavity, i.e.,
�c = ωcav

H − ωcav
V . The cavity resonance frequencies of the

H- and V -polarized cavity modes can be expressed as ωcav
H =

ωc + �c/2 and ωcav
V = ωc − �c/2 [84,87], respectively. On

the other hand, the linearly polarized exciton states |H〉 and
|V 〉 are coupled to the cavity modes aH and aV with the same
polarization and the coupling strengths are gH and gV , respec-
tively. Here we take into account the case that gH = gV = g,
which means the coupling strengths between the cavity modes
and the exciton transitions are independent of the polarization
[78].

Along the lines of Ref. [79], the cavity is pumped by an
input cw laser field along the H-polarized cavity mode axis.
In this case, the pump-field-dependent Hamiltonian can be
expressed as

Hpump = �(aH eiωLt + a†
H e−iωLt ), (12)

where � and ωL are the strength and frequency of the pump
laser field, respectively.

Finally, the total Hamiltonian of our CQED system in-
cludes four items [see Eqs. (9)–(12)] discussed above, i.e.,

Htot = HQD + Hmag + Hcav + Hpump. (13)

In a frame rotating at the frequency ωL of the pump laser field,
the resulting Hamiltonian of the whole CQED system in the
basis of the two linearly polarized exciton states |H〉 and |V 〉
can be explicitly written as

Htot = δ
QD
H |H〉〈H | + δ

QD
V |V 〉〈V |

+�FSS sin θ cos θ (|H〉〈V | + |V 〉〈H |)
+ iβ(|H〉〈V | − |V 〉〈H |) + αB2(|H〉〈H | + |V 〉〈V |)

+
(

�CL + �c

2

)
a†

H aH + g(|G〉〈H |a†
H + |H〉〈G|aH )

+
(

�CL − �c

2

)
a†

V aV + g(|G〉〈V |a†
V + |V 〉〈G|aV )

+�(aH + a†
H ), (14)

with

δ
QD
H = δ

QD
X cos2 θ + δ

QD
Y sin2 θ, (15)

δ
QD
V = δ

QD
X sin2 θ + δ

QD
Y cos2 θ, (16)

where δ
QD
X = ω

QD
X − ωL = �CL + δ + �FSS/2 and δ

QD
Y =

ω
QD
Y − ωL = �CL + δ − �FSS/2 are the detunings of the two

exciton transition frequencies ω
QD
X and ω

QD
Y from the fre-

quency ωL of the external pump laser field, respectively. Also,
�CL = ωc − ωL is the detuning between the central frequency
ωc [ωc ≡ (ωcav

H + ωcav
V )/2] of the micropillar cavity modes

and the frequency ωL of the external pump laser field. In
addition, δ = ω − ωc is the center detuning between the cen-
tral frequency ω [ω ≡ (ωQD

H + ω
QD
V )/2 = (ωQD

X + ω
QD
Y )/2] of

the linearly polarized excitons and the central frequency ωc

of the micropillar cavity modes. It should be noted that the
third and fourth terms on the right-hand side of Eq. (14)
are the coupling terms, which manipulate the oscillation rate
between the two exciton states |H〉 and |V 〉 and thus affect
the generation of the V -polarized photons. Evidently, the third
term on the right-hand side of Eq. (14) is closely related to the
fine-structure splitting �FSS and the direction angle θ , and the
fourth term is associated with the external magnetic field B,
whose role is detailed afterward. Under the special conditions
that both there is no external magnetic field, e.g., B = 0, and
the eigenaxes of the excitons coincide with the eigenaxes of
the cavity modes, e.g., θ = 0 or θ = π/2, there will be no
V -polarized photons generated in the cavity.
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B. Lindblad master equation governing the dissipative dynamics

To solve incoherent processes and study the dynamics of
the CQED system with density matrix operator ρ, we utilize
the Lindblad master equation [11,91]

dρ

dt
= −i[Htot, ρ] + Lcav

H [ρ] + Lcav
V [ρ]

+ Lsp
H [ρ] + Lsp

V [ρ] + Ldeph[ρ]. (17)

Here the superoperator of our system is in the form L[ρ] =
AρA† − AA†ρ/2 − ρA†A/2, where A is a collapse operator
describing the dissipative processes. To be specific, the second
and third terms represent the decays of the two linearly
polarized cavity modes, and the cavity dampings associated
with the cavity optical losses are described by the collapse
operators Acav

H = √
κH aH and Acav

V = √
κV aV . Here κH and κV

are the cavity decay rates of the H-polarized and V -polarized
cavity modes, respectively. The fourth and fifth terms repre-
sent the spontaneous emission processes of a photon into the
external environment and are described by the collapse oper-
ators AQD

H = √
γ

sp
H |G〉〈H | and AQD

V = √
γ

sp
V |G〉〈V |, where γ

sp
H

and γ
sp

V are the spontaneous emission rates of the three-level
QD. The last term represents the exciton pure dephasing
associated with the QD decoherence processes, which are
described by the collapse operators Ad p

H =
√

2γ
d p
H |H〉〈H | and

Ad p
V =

√
2γ

d p
V |V 〉〈V |, where γ

d p
H and γ

d p
V are the exciton

pure dephasing rates. We can numerically solve Eq. (17)
by expressing the operators on an occupation number Fock
basis, truncated to the most suitable photon number previously
checked for convergence.

C. Second-order intensity correlation function providing
information on photon (anti)bunching

In order to better describe the statistical properties of the
photons in the cavity, the equal-time second-order intensity
correlation function is introduced, with the form

g(2)
O (0) = Tr(ρssO†O†OO)

[Tr(ρssO†O)]2
, (18)

where ρss is the steady-state solution corresponding to
dρ/dt = 0 in Eq. (17). The symbol O denotes the photon
annihilation operator for the cavity mode with H polarization,
i.e., O = aH , or for the cavity mode with V polarization, i.e.,
O = aV .

The equal-time second-order intensity correlation function
g(2)

O (0) can be used as an important index to evaluate the
statistical properties of the photons. More specifically, a value
of g(2)

O (0) > 1 corresponds to the photon bunching effect;
in other words, photons are in a super-Poisson distribution,
which is a classical effect. A value of g(2)

O (0) = 1 corresponds
to the coherent-state photons that are in a Poissonian distri-
bution, which is a quasiclassical effect. A value of g(2)

O (0) < 1
corresponds to the photon antibunching effect; in other words,
photons are in a sub-Poisson distribution, which is a quantum
effect. The smaller the value of g(2)

O (0) is, the better the
quantum properties of photons are. A value of g(2)

O (0) → 0

suggests that the system can be used to produce the complete
photon blockade phenomenon [92], which is a candidate for
an ideal single-photon source. The single-photon regime is
usually characterized by g(2)

O (0) < 0.5. Finally, it should be
pointed out that in the following discussion the input pump
laser field is set such that the H-polarized cavity mode is
excited but the photons emitted from the V -polarized cav-
ity mode are detected, i.e., in a cross-polarized detection
scheme like Ref. [79]. For a detailed description of this
V -level QD–micropillar cavity system, we refer the reader to
Refs. [76–81].

III. APPROXIMATE SOLUTIONS OF THE
SECOND-ORDER CORRELATION FUNCTION VIA THE
SCHRÖDINGER EQUATION APPROACH UNDER THE

WEAK-PUMP CONDITION

Before proceeding, we want to supply an approximately
analytical expression for the equal-time second-order in-
tensity correlation function as an alternative method to
characterize the photon statistical properties of the present
CQED system [82,83]. Adopting the techniques introduced in
Refs. [42,43,45], in the weak-pump limit (� � κH and κV ),
the time-dependent state of the system is well approximated
in the two-excitation manifold as

|�(t )〉 = C00G|0, 0, G〉 + C10G|1, 0, G〉 + C01G|0, 1, G〉
+C00H |0, 0, H〉 + C00V |0, 0,V 〉 + C20G|2, 0, G〉
+C02G|0, 2, G〉 + C11G|1, 1, G〉 + C10H |1, 0, H〉
+C10V |1, 0,V 〉 + C01H |0, 1, H〉 + C01V |0, 1,V 〉.

(19)

Here |m, n, j〉 = |m〉 ⊗ |n〉 ⊗ | j〉 defines a state with m pho-
tons in the H-polarized cavity mode, n photons in the V -
polarized cavity mode, and the QD exciton in the state of | j〉
( j = G, H,V ). The coefficient Cmn j stands for the probability
amplitude of the corresponding state |m, n, j〉. Taking into
account the decays of the two cavity modes and the dampings
of the QD excitons, the dynamical evolution of the above
coefficients Cmn j can be derived from the solution of the
Schrödinger equation i∂|�(t )〉/∂t = H̃ |�(t )〉, written for the
non-Hermitian Hamiltonian

H̃ = Htot − i
κH

2
a†

H aH − i
κV

2
a†

V aV

− i
γ

sp
H

2
|G〉〈H | − i

γ
sp

V

2
|G〉〈V |

− iγ d p
H |H〉〈H | − iγ d p

V |V 〉〈V |, (20)

with Htot given in Eq. (14).
Inserting the wave function [Eq. (19)] and Hamiltonian

[Eq. (20)] into the Schrödinger equation, the coefficients Cmn j

satisfy the equations of motion

i
∂C10G

∂t
=

(
�CL + �c

2
− i

κH

2

)
C10G + gC00H

+
√

2�C20G − i
γ

sp
H

2
C10H − i

γ
sp

V

2
C10V

+�C00G, (21)
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i
∂C01G

∂t
=

(
�CL − �c

2
− i

κV

2

)
C01G + gC00V

− i
γ

sp
H

2
C01H − i

γ
sp

V

2
C01V + �C11G, (22)

i
∂C00H

∂t
= (�FSS sin θ cos θ + iβ )C00V + �C10H

+ gC10G + (
δ

QD
H + αB2 − iγ d p

H

)
C00H , (23)

i
∂C00V

∂t
= (�FSS sin θ cos θ − iβ )C00H + �C10V

+ gC01G + (
δ

QD
V + αB2 − iγ d p

V

)
C00V , (24)

i
∂C20G

∂t
=

√
2�C10G + 2

(
�CL + �c

2
− i

κH

2

)
C20G

+
√

2gC10H , (25)

i
∂C02G

∂t
= 2

(
�CL − �c

2
− i

κV

2

)
C02G +

√
2gC01V , (26)

i
∂C11G

∂t
=

(
�CL + �c

2
− i

κH

2

)
C11G + �C01G

+
(

�CL − �c

2
− i

κV

2

)
C11G + gC01H

+ gC10V , (27)

i
∂C10H

∂t
= (�FSS sin θ cos θ + iβ )C10V +

√
2gC20G

+ (
δ

QD
H + αB2 − iγ d p

H

)
C10H + �C00H

+
(

�CL + �c

2
− i

κH

2

)
C10H , (28)

i
∂C10V

∂t
= (�FSS sin θ cos θ − iβ )C10H + gC11G

+ (
δ

QD
V + αB2 − iγ d p

V

)
C10V + �C00V

+
(

�CL + �c

2
− i

κH

2

)
C10V , (29)

i
∂C01H

∂t
= (

δ
QD
H + αB2 − iγ d p

H

)
C01H + gC11G

+ (�FSS sin θ cos θ + iβ )C01V

+
(

�CL − �c

2
− i

κV

2

)
C01H , (30)

i
∂C01V

∂t
= (

δ
QD
V + αB2 − iγ d p

V

)
C01V +

√
2gC02G

+ (�FSS sin θ cos θ − iβ )C01H

+
(

�CL − �c

2
− i

κV

2

)
C01V . (31)

In the steady state ∂Cmn j/∂t = 0, the equations for the coeffi-
cients Cmn j are given as

0 =
(

�CL + �c

2
− i

κH

2

)
C10G + gC00H

+
√

2�C20G − i
γ

sp
H

2
C10H − i

γ
sp

V

2
C10V + �C00G, (32)

0 =
(

�CL − �c

2
− i

κV

2

)
C01G + gC00V

− i
γ

sp
H

2
C01H − i

γ
sp

V

2
C01V + �C11G, (33)

0 = (�FSS sin θ cos θ + iβ )C00V + �C10H

+ gC10G + (
δ

QD
H + αB2 − iγ d p

H

)
C00H , (34)

0 = (�FSS sin θ cos θ − iβ )C00H + �C10V

+ gC01G + (
δ

QD
V + αB2 − iγ d p

V

)
C00V , (35)

0 =
√

2�C10G + 2

(
�CL + �c

2
− i

κH

2

)
C20G

+
√

2gC10H , (36)

0 = 2

(
�CL − �c

2
− i

κV

2

)
C02G +

√
2gC01V , (37)

0 =
(

�CL + �c

2
− i

κH

2

)
C11G + �C01G

+
(

�CL − �c

2
− i

κV

2

)
C11G + gC01H

+ gC10V , (38)

0 = (�FSS sin θ cos θ + iβ )C10V +
√

2gC20G

+ (
δ

QD
H + αB2 − iγ d p

H

)
C10H + �C00H

+
(

�CL + �c

2
− i

κH

2

)
C10H , (39)

0 = (�FSS sin θ cos θ − iβ )C10H + gC11G

+ (
δ

QD
V + αB2 − iγ d p

V

)
C10V + �C00V

+
(

�CL + �c

2
− i

κH

2

)
C10V , (40)

0 = (
δ

QD
H + αB2 − iγ d p

H

)
C01H + gC11G

+ (�FSS sin θ cos θ + iβ )C01V

+
(

�CL − �c

2
− i

κV

2

)
C01H , (41)

0 = (
δ

QD
V + αB2 − iγ d p

V

)
C01V +

√
2gC02G

+ (�FSS sin θ cos θ − iβ )C01H

+
(

�CL − �c

2
− i

κV

2

)
C01V . (42)

According to Eqs. (32)–(42), we can outline the energy
levels showing the zero-, one-, and two-photon states (hori-
zontal gray lines without arrows) and the excitation pathways
(colored lines with arrows) in the two-photon manifold, as
displayed in Fig. 3. Remarkably, the quantum interference
can happen between different two-photon excitation pathways
due mainly to the unique V -level configuration of the QD
exciton. This is equivalent to the cavity-coupling-cavity in-
duced quantum interference, as in Refs. [42,43,45,49,51]. As
a final remark we point out that the physics behind the photon
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FIG. 3. Energy-level diagram in the two-photon manifold and the corresponding transition pathways. States are labeled by |m, n, j〉 with
the first number representing the Fock state for the H -polarized cavity mode with the photon number m, the second number representing the
Fock state for the V -polarized cavity mode with the photon number n, and the third number being the exciton state of the QD.

statistical properties is the effect of quantum interference
between different excitation pathways.

Alternatively, under the weak-pump condition, we have the
relationship

C00G 
 {C10G,C01G,C00H ,C00V }

 {C20G,C02G,C11G,C10H ,C10V ,C01H ,C01V }

 · · · . (43)

In this circumstance given by Eq. (43), by utilizing the for-
mula a†

V aV |m, n, j〉 = n|m, n, j〉 for the V polarization and
the expression of the wave function |�(t )〉 from Eq. (19), the
average number of photons nV with the V polarization and the
normalized zero-time-delay second-order correlation function
g(2)

V (0) can thus be expressed in terms of the coefficients Cmn j

as [49,51]

A = 〈a†
V a†

V aV aV 〉 = 〈(a†
V aV )2〉 − 〈a†

V aV 〉
=

∑
m,n, j

n(n − 1)|Cmn j |2 = 2|C02G|2 + · · · � 2|C02G|2,

(44)

NV = 〈a†
V aV 〉 =

∑
m,n, j

n|Cmn j |2

= |C01G|2 + |C01H |2 + |C01V |2 + |C11G|2
+ 2|C02G|2 + · · · � |C01G|2, (45)

g(2)
V (0) = 〈a†

V a†
V aV aV 〉

(〈a†
V aV 〉)2

= A

N2
V

� 2|C02G|2
|C01G|4 , (46)

with the sum indices m, n, j being m, n = 0, 1, 2, . . . and
j = G, H,V in the expressions (44) and (45) and with the

abbreviation 〈•〉 denoting 〈•〉 ≡ 〈�(t )| • |�(t )〉, where |�(t )〉
is yielded by Eq. (19).

It is obvious that the above coupled algebraic equations
(32)–(42) are closed, i.e., 11 equations for 11 unknown co-
efficients. As a result, from a mathematical point of view,
a complete solution for the coefficients Cmn j and further for
the second-order correlation function g(2)

V (0) is attainable by
directly solving the above coupled algebraic equations (32)–
(42). Unfortunately, the expression of the analytical solution
is very lengthy and it is very difficult to see the physics (not
shown). The analytical solution obtained here is validated
by the numerical calculation based on the master equation.
From the detailed derivation processes and Fig. 3 it turns out
that the second-order correlation function g(2)

V (0) is closely
related to the coupling strength between the cavity modes and
the exciton transitions g, the applied magnetic field B (β ∝ B),
and also the exciton fine-structure splitting �FFS . In what
follows we are more interested in the influence of the tunable
magnetic field and the exciton fine-structure splitting on the
photon statistics of the CQED system.

In Fig. 4, the numerical results of the equal-time second-
order intensity correlation function g(2)

V (0) given by the master
equation are compared with the analytical results given by
the Schrödinger equation in the steady state. We plot the
equal-time second-order intensity correlation function g(2)

V (0)
as a function of the external magnetic field B in Fig. 4(a). The
purple solid line corresponds to the numerical solution, while
the blue-circle line corresponds to the analytical solution. We
also display the equal-time second-order intensity correlation
function g(2)

V (0) varying with the QD-cavity coupling strength
g in Fig. 4(b). The yellow solid line represents the numerical
result and the green-triangle line represents the analytical re-
sult. Whether in Fig. 4(a) or 4(b), it is revealed that the results
of both the numerical solution and the analytical solution are
in good agreement. In other words, the analytical solution
obtained by the Schrödinger equation in the steady state
can be faithfully reproduced by the full numerical solution
obtained by the master equation.
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FIG. 4. Comparison between the numerical and analytical results of the equal-time second-order intensity correlation function g(2)
V (0) for

the V -polarized photons. (a) Equal-time second-order intensity correlation function g(2)
V (0) varying with the external magnetic field B for both

the numerical result (purple solid line) and the analytical result (blue-circle line). The relevant parameters used in this plot are borrowed from
recent state-of-the-art experiments [76–78]: κH = 100 μeV, κV = 100 μeV, γ

sp
H = 0.6 μeV, γ

sp
V = 0.6 μeV, g = 20 μeV, �FSS = 10 μeV,

�c = 70 μeV, θ = 45◦, δ = 0, and � = 10 μeV, respectively. (b) Equal-time second-order intensity correlation function g(2)
V (0) of the V -

polarized photons as a function of the QD-cavity coupling strength g for both the numerical result (yellow solid line) and the analytical result
(green-triangle line). The system parameters used here are κH = 100 μeV, κV = 100 μeV, γ

sp
H = 0.6 μeV, γ

sp
V = 0.6 μeV, B = 3 T , �FSS =

10 μeV, �c = 70 μeV, θ = 45◦, δ = 0, and � = 10 μeV, respectively. Here, the dephasing of the QD has been neglected for convenience of
the analytical calculations and, in Sec. IV, it will be included.

IV. NUMERICAL RESULTS ABOUT STEADY-STATE
PHOTON OCCUPATION AND CORRELATION

In order to evaluate our proposed scheme, the following
experimental parameters of the QD-cavity system are used in
the numerical simulations unless noted otherwise: the cavity
decay rates of the H-polarized and V -polarized cavity modes
κH = κV = κ = 100 μeV, the spontaneous emission rates of
the QD excitons γ

sp
H = γ

sp
V = γ = 0.6 μeV, the pure dephas-

ing rates of the QD excitons γ
d p
H = 3 μeV and γ

d p
V = 3 μeV,

the exciton fine-structure splitting of the QD �FSS = 10 μeV,
the mode splitting frequency of the H and V polarizations
�c = 70 μeV, the relative orientation of the QD and cavity
axes θ = 20◦, and the strength of the pump laser field � =
10 μeV. Typical values of these experimental parameters are
taken from Refs. [76–78]. Detailed results in the steady state
are presented in Figs. 5–10 by directly solving the master
equation.

Figure 5 shows the equal-time second-order intensity cor-
relation function g(2)

V (0) and the photon occupation (also
called the cavity average photon number) 〈a†

V aV 〉, with the
V polarization as a function of the frequency detuning �CL

between the center frequency (ωc) of the micropillar cavity
modes and the frequency (ωL) of the pump laser field under
the condition of weak coupling between the QD and the cav-
ity. Here we set the QD-cavity coupling strength g = 20 μeV,
which is taken from experimental works [76–78] and satisfies
the weak-coupling CQED regime. It is clearly shown in the
figure that the main peak of the V -polarized photon number
appears near the point �CL = 85 μeV, where the value of the
second-order correlation function is g(2)

V (0) = 3.6 × 10−3. At
the same time, the secondary peak of the V -polarized photon

number appears near the point �CL = −440 μeV, where
the value of the second-order correlation function reaches
g(2)

V (0) = 4.7 × 10−4.

FIG. 5. Equal-time second-order intensity correlation function
g(2)

V (0) and photon occupation, i.e., cavity average photon number,
〈a†

V aV 〉, with the V polarization in the steady state, varying with the
detuning �CL between the center frequency ωc of the cavity modes
and the frequency ωL of the pump laser field. The system parameters
used here are κ = 100 μeV, γ = 0.6 μeV, γ

d p
H = 3 μeV, γ

d p
V =

3 μeV, g = 20 μeV, B = 3 T , �FSS = 10 μeV, �c = 70 μeV,
θ = 20◦, δ = 0, and � = 10 μeV. The upper curve with two sharp
dips corresponds to the left vertical coordinate-axis and the value of
g(2)

V (0), while the lower curve with two sharp peaks corresponds to
the right vertical coordinate-axis and the value of 〈a†

V aV 〉.
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FIG. 6. Photon occupations 〈a†
V aV 〉 and 〈a†

H aH 〉, with the H and
V polarizations in the steady state, as a function of the detuning �CL

between the center frequency ωc of the two cavity modes and the
frequency ωL of the pump laser field. The system parameters used
here are κ = 100 μeV, γ = 0.6 μeV, γ

d p
H = 3 μeV, γ

d p
V = 3 μeV,

g = 140 μeV, B = 3 T , �FSS = 10 μeV, �c = 70 μeV, θ = 20◦,
δ = 0, and � = 10 μeV. The highest peak curve corresponds to the
value of 〈a†

H aH 〉, while the other corresponds to the value of 〈a†
V aV 〉.

Using the input-output formalism [11], we define the op-
erator f (out)

V describing the V -polarized transmission field and
yield the continuity relation f (out)

V = √
κ topaV , with κ top the

cavity damping rate through the top mirror. In the previous
scheme proposed by Zhang et al. [93], the photon statistics
in the CQED system consisting of a single two-level QD
coupled to a two-mode cavity are explored in the absence
of the external magnetic field. In that system the region with
an equal-time second-order intensity correlation function less
than unity corresponds to the dip region of the average photon
number, where the average photon number exhibits a peak-
dip-peak symmetric structure, that is to say, the photons with
strong antibunching but with low transmission are produced
[93]. Contrary to Ref. [93], in our system, the phenomenon
in which the point of the maximum average photon number
corresponds to the point of the minimum of the second-order
correlation function g(2)

V (0) implies a meaningful result: It is
possible to obtain high transmission photons with a strong
antibunching effect in our CQED system under consideration,
which is not only useful for related measurements [19], but
also meaningful for designing practical experiments. In ad-
dition, the photon antibunching effect in a large frequency
detuning range makes it possible to prepare more feasible
single-photon sources with multiple frequencies, which is dif-
ferent from previous studies [42,43] on the photon blockade
only for specific optical detuning, which further increases the
possibility of experimental realization.

The occupations of the two linearly polarized cavity modes
under strong coupling are plotted in Fig. 6 as a function of
the frequency detuning �CL between the center frequency
(ωc) of the cavity modes and the center frequency (ωL) of
the pump laser field. The part of the figure that is framed
by the dashed-line box emphasizes the fact that the number
of V -polarized photons exceeds the number of H-polarized

FIG. 7. Semilogarithmic plot of the equal-time second-order in-
tensity correlation function g(2)

V (0) of the V -polarized photons as a
function of the external magnetic field B. The other parameters of
the CQED system are κ = 100 μeV, γ = 0.6 μeV, γ

d p
H = 3 μeV,

γ
d p

V = 3 μeV, g = 20 μeV, �CL = −440 μeV, �FSS = 10 μeV,
�c = 70 μeV, θ = 20◦, δ = 0, and � = 10 μeV.

photons under certain detuning. In other words, the cavity
mode with the V polarization is more populated, which can
be used as a photon polarization switch [88].

This naturally raises the question of what causes the gener-
ation of the V -polarized photons. As we discussed in Sec. II A,
the physical reason for generating the V -polarized photons
in the micropillar cavity is the Rabi oscillation between the
QD and the cavity modes under the external driving laser
field � and the coherent interaction between the exciton
states |H〉 and |V 〉 under the external magnetic field B. More
specifically, when an external driving laser field � pumps the
H-polarized cavity mode, the linearly polarized exciton state
with the H polarization |H〉 is excited due to the coherent
coupling between the QD and the cavity. The exciton states
|H〉 and |V 〉 will be mixed because of the existence of the
applied magnetic field and the coherent coupling via the terms
iβ(|H〉〈V | − |V 〉〈H |) and �FSS sin θ cos θ (|H〉〈V | + |V 〉〈H |)
[cf. Eq. (14)], resulting in the interaction between the linearly
polarized exciton states. This eventually leads to the indirect
excitation of the linearly polarized exciton state with the
V polarization and then the emergence of the V -polarized
photons in the CQED system.

For the purpose of exploring the influence of the applied
magnetic field B on the photon statistical properties of the
CQED system, the equal-time second-order intensity corre-
lation function of the V -polarized photons g(2)

V (0) versus the
strength of the magnetic field B is plotted in Fig. 7. It is worth
emphasizing that only when both the cavity and the QD are
weakly coupled do we consider the impact of the magnetic
field B on the V -polarized photons. It can be seen more clearly
from Fig. 7 that when the strength of the magnetic field is not
very large, the statistical properties of the V -polarized photons
in the cavity are in the sub-Poisson distribution, that is to
say, in the state of photon antibunching. With the increase
of the applied magnetic field B, the bunching effect of the
V -polarized photons gradually appears. Within the range of
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FIG. 8. Semilogarithmic plot of the equal-time second-order in-
tensity correlation functions g(2)

H (0) of the H -polarized photons (up-
per curve) and g(2)

V (0) of the V -polarized photons (lower curve) as a
function of the QD-cavity coupling strength g. The other parameters
of the CQED system are κ = 100 μeV, γ = 0.6 μeV, γ

d p
H = 3

μeV, γ
d p

V = 3 μeV, B = 3 T , �CL = −460 μeV, �FSS = 10 μeV,
�c = 70 μeV, θ = 20◦, δ = 0, and � = 10 μeV.

the magnetic field considered in this paper, a strong photon
antibunching effect can be observed in a large part of the
region. On the one hand, the minimum value of the second-
order intensity correlation function g(2)

V (0) corresponding to
the photon blockade can be obtained near B = 7.3 T, where
the order of magnitude of the g(2)

V (0) function is approximately
10−4. On the other hand, the maximum value of the second-
order intensity correlation function g(2)

V (0) corresponding to
photon-induced tunneling can be obtained near B = 9.3 T,
where the order of magnitude of the V -polarized photon corre-
lation function g(2)

V (0) reaches 10. Based on the above results,
we can draw the conclusion that the statistical properties
of the V -polarized photons can be manipulated by properly
adjusting the external magnetic field B: Not only can photons
with an enhanced antibunching effect be obtained, but photons
with a strong bunching effect can also be harvested. By tuning
the magnetic field we can achieve selective photon blockade
statistics. The enhanced photon antibunching effect can be
used to generate single-photon sources, which has potential
applications in quantum information processing and quantum
communication. The photon bunching effect also has potential
application prospects in multiphoton lasers [94,95], quantum
biology [96,97], metrology [98], and so on. Controllable
switching from antibunched to bunched light (or vice versa)
can be achieved in such a CQED system, which offers a highly
sensitive method to tune photon statistics.

Next, in order to clearly indicate how the QD-cavity
coupling strength g affects the photon antibunching for the
H-polarized and V -polarized photons, the equal-time second-
order intensity correlation functions g(2)

H (0) and g(2)
V (0) versus

the QD-cavity coupling strength g are plotted in Fig. 8, respec-
tively. As shown in this figure, the change of the second-order
correlation functions g(2)

H (0) and g(2)
V (0) with respect to the

coupling strength g exhibits a nonmonotonic behavior. More

FIG. 9. Semilogarithmic plot of the equal-time second-order in-
tensity correlation function g(2)

V (0) of the V -polarized photons as a
function of the detuning δ between the central frequency ω of the
two linearly polarized excitons and the central frequency ωc of the
two cavity modes. The other parameters of the CQED system are
κ = 100 μeV, γ = 0.6 μeV, γ

d p
H = 3 μeV, γ

d p
V = 3 μeV, B = 3 T ,

�CL = −440 μeV, �FSS = 10 μeV, �c = 70 μeV, θ = 20◦, g =
20 μeV, and � = 10 μeV.

specifically, for the H-polarized photons, we find that the
photons tend to be coherent for the coupling strength g → 0,
whereas for the V -polarized photons, we observe that the
photons tend to be strongly antibunching. The H-polarized
photon correlation function g(2)

H (0) decreases with increasing
g and arrives at the minimum around the value of g(opt) =
90 μeV, corresponding to the minimal value g(2)

H (0) � 0.49.
With the increase of the QD-cavity coupling strength g above
the optimal value g(opt), the value of g(2)

H (0) first increases and
then decreases, but it still tends to bunch. The more surprising
result, however, is that for the V -polarized photons, the value
of the second-order correlation function g(2)

V (0) increases with
increasing g in the range of g ∈ (0.01, 45) μeV. Subsequently,
the value of g(2)

V (0) decreases first and then increases. It is
worth emphasizing that strong photon antibunching effect
of the V -polarized photons can be realized effectively in
the entire range of g. Based on the above results, we can
arrive at the conclusion that for the H-polarized photons,
the antibunching effect can only be achieved in the strong-
coupling CQED regime, while for V -polarized photons, the
strong antibunching effect can be achieved even in the very-
weak-coupling CQED regime. The value of the V -polarized
photon correlation function g(2)

V (0) has a counterintuitive de-
pendence on the QD-cavity coupling strength g embodied
in the phenomenon in which the quality of the photon anti-
bunching is upgraded with decreasing g, which reduces the
constraint for a strong interaction between the QD and the
cavity. Consequently, the cavity with a high-quality factor is
not a necessary precondition to achieve a strong antibunch-
ing effect, which increases the possibility of experimental
realization.

In all the discussion above, however, our attention has been
focused on the condition of resonating the center frequency of
the cavity modes with the central frequency of the excitons,
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FIG. 10. Logarithmic plot (of base 10) of the equal-time second-
order intensity correlation function g(2)

V (0) of the V -polarized photons
as a function of the fine-structure splitting of excitons �FSS and
the splitting of orthogonally polarized cavity modes �c. The system
parameters used here are κ = 100 μeV, γ = 0.6 μeV, γ d p

H = 3 μeV,
γ

d p
V = 3 μeV, B = 3 T , �CL = −460 μeV, θ = 20◦, g = 20 μeV,

and � = 10 μeV.

i.e., δ = 0, yet we have not considered the scenario of the
center detuning δ �= 0 so far. In order to clearly illustrate
how the detuning between the cavity modes and the excitons
affects the statistical properties of the V -polarized photons,
the second-order intensity correlation function g(2)

V (0) versus
the center frequency detuning δ is plotted in Fig. 9. It can
be seen from Fig. 9 that when the central frequency of the
cavity modes is blue detuning from the central frequency of
the excitons, the V -polarized photons with bunching effect can
be obtained in the range of δ ∈ (−200,−120) μeV. It is also
shown that whether the central frequency of the cavity modes
is red detuning or blue detuning to that of the excitons, the
strong antibunching effect can be achieved in most regions
δ ∈ (−120, 166) μeV. As a result, the tricky requirement that
the QD and the cavity be in resonance or near resonance has
been alleviated, which reduces the difficulty of experimental
realization.

Finally, to gain further insight, we investigate the con-
tribution of the other system parameters to the statistical
properties of the V -polarized photons in the presence of the
magnetic field, including the fine-structure splitting of the
excitons �FSS and the splitting of the orthogonally polarized
cavity modes �c. The two-dimensional graph of the second-
order intensity correlation function g(2)

V (0) is exhibited on a
logarithmic-scale color plot with the fine-structure splitting
of the excitons �FSS and the splitting of the orthogonally
polarized cavity modes �c in Fig. 10. The general trend is
that the second-order intensity correlation function g(2)

V (0) de-
creases with an increase of the exciton fine-structure splitting
�FSS and the cavity mode splitting �c, which means that the
introduction of both the exciton fine-structure splitting and the
cavity mode splitting will not significantly reduce the quality
of photon antibunching effect. Moreover, it is noteworthy
that the V -polarized photons are antibunching in the whole

parameter region selected, which provides a wide range of
parameters for the actual experimental implementation and
increases the possibility of realizing a single-photon source.

V. CONCLUSION

In summary, we have investigated the possibility of photon
statistical control in the solid-state CQED system consisting
of a V -level QD embedded in a micropillar cavity via adjust-
ing the external magnetic field. On the one hand, we adopted
the quantum master equation approach for numerically
calculating the photon occupation number and the second-
order intensity correlation function and, furthermore, quanti-
fying its statistical content. On the other hand, starting from
a Schrödinger equation approach, an analytical illustration
of the second-order correlation function was provided. We
found that, on the one hand, when the cavity is driven by
the incident H-polarized laser light, the V -polarized pho-
ton emissions can appear in the cavity due to the coherent
coupling via the term �FSS sin θ cos θ (|H〉〈V | + |V 〉〈H |) and
the intermediate modulation of the magnetic field via the
term iβ(|H〉〈V | − |V 〉〈H |). On the other hand, we showed
that the applied magnetic field plays an important role in
modifying the photon statistical properties of the CQED sys-
tem. Our scheme is based on an operation principle different
from previously implemented or proposed photon statistical
methods, with the three following major advantages. First of
all, by tuning the magnetic field appropriately, the photon
statistics properties of the system can be well engineered in
the weak-coupling CQED regime and the switching between
enhanced photon antibunching and strong photon bunch-
ing can be realized. So we can achieve selective photon
statistics. Second, our scheme not only makes it possible
to control the polarization of photons in the cavity under
an external magnetic field, but also enables us to obtain
high-transmission photons with a strong antibunching effect.
Finally, the photon blockade can be efficiently generated
under the nonresonant scenarios but without the need for
resonant or near-resonant conditions between the cavity and
the QD. The multifrequency photon blockade occurs in the
present system, which is different from previous studies on
the photon blockade only for specific optical detuning. With
these, the relaxation of the strong coupling and resonant
or near-resonant conditions between the cavity and the QD
increases the possibility of realizing the single-photon sources
experimentally.

The realization of the single-photon sources is an important
topic in quantum optics because the single-photon sources
are fundamental building blocks for quantum information
science. The photon blockade effect obtained in the present
work offers a possible method to achieve this requirement
for the generation and manipulation of single photons within
the reach of experimental capabilities. It can provide op-
portunities for exploring potential applications in light-based
quantum technologies [5], including quantum communica-
tion, quantum key distribution, quantum networking, and
quantum metrology. On the other hand, the design of the
quantum device, for example, single-photon transistors [99],
crystallization of polaritons [100], all-optical switching [101],
and fermionization of photons [102], also relies mainly on the

023805-12



MAGNETICALLY CONTROLLABLE PHOTON BLOCKADE … PHYSICAL REVIEW A 101, 023805 (2020)

controlled photon blockade effect. Our scheme, which does
not require strong QD-cavity coupling, is a good candidate for
the realization of these quantum devices. The present process
works with high-quality photon antibunching and bunching
over a wide range of parameters, which broadens the realm
of quantum optics. We hope that the proposed scheme can
provide a possibility for the creation and control of quantum
states of electromagnetic radiation.
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Imamoǧlu, Tuning photonic nanocavities by atomic force mi-
croscope nano-oxidation, Appl. Phys. Lett. 89, 041118 (2006).

[85] C. Jiménez-Orjuela, H. Vinck-Posada, and J. M. Villas-Bôas,
Dark excitons in a quantum-dot-cavity system under a tilted
magnetic field, Phys. Rev. B 96, 125303 (2017).

[86] Q. Mermillod, D. Wigger, V. Delmonte, D. E. Reiter, C.
Schneider, M. Kamp, S. Höfling, W. Langbein, T. Kuhn, G.
Nogues, and J. Kasprzak, Dynamics of excitons in individ-
ual InAs quantum dots revealed in four-wave mixing spec-
troscopy, Optica 3, 377 (2016).

[87] W. Zhang, Z. Yu, Y. Liu, and Y. Peng, Optical nonlinearity in
a quantum dot-microcavity system under an external magnetic
field, J. Opt. Soc. Am. B 31, 296 (2014).

[88] C. A. Jiménez-Orjuela, H. Vinck-Posada, and J. M. Villas-
Bôas, Polarization switch in an elliptical micropillar-quantum
dot system induced by a magnetic field in Faraday configura-
tion, Phys. Lett. A 382, 3216 (2018).

[89] J. H. Li, S. T. Shen, Y. Qu, D. Zhang, and Y. Wu, Generating
orthogonally polarized dual frequency combs with slow mega-
hertz repetition rates by a low-nanowatt-level pump, Phys.
Rev. A 98, 023848 (2018).

[90] P. Machnikowski, Theory of two-photon processes in quan-
tum dots: Coherent evolution and phonon-induced dephasing,
Phys. Rev. B 78, 195320 (2008).

[91] G. S. Agarwal, Quantum Optics (Cambridge University Press,
Cambridge, 2013).

[92] J. H. Li and Y. Wu, Quality of photon antibunching in two
cavity-waveguide arrangements on a chip, Phys. Rev. A 98,
053801 (2018).

[93] W. Zhang, Z. Yu, Y. Liu, and Y. Peng, Optimal photon anti-
bunching in a quantum-dot–bimodal-cavity system, Phys. Rev.
A 89, 043832 (2014).

[94] D. J. Gauthier, Q. L. Wu, S. E. Morin, and T. W. Mossberg,
Realization of a Continuous-Wave, Two-Photon Optical Laser,
Phys. Rev. Lett. 68, 464 (1992).

023805-15

https://doi.org/10.1103/PhysRevA.100.033814
https://doi.org/10.1103/PhysRevA.100.033814
https://doi.org/10.1103/PhysRevA.100.033814
https://doi.org/10.1103/PhysRevA.100.033814
https://doi.org/10.1088/1367-2630/11/2/023034
https://doi.org/10.1088/1367-2630/11/2/023034
https://doi.org/10.1088/1367-2630/11/2/023034
https://doi.org/10.1088/1367-2630/11/2/023034
https://doi.org/10.1364/OE.16.015006
https://doi.org/10.1364/OE.16.015006
https://doi.org/10.1364/OE.16.015006
https://doi.org/10.1364/OE.16.015006
https://doi.org/10.1038/nature05586
https://doi.org/10.1038/nature05586
https://doi.org/10.1038/nature05586
https://doi.org/10.1038/nature05586
https://doi.org/10.1103/PhysRevLett.103.127401
https://doi.org/10.1103/PhysRevLett.103.127401
https://doi.org/10.1103/PhysRevLett.103.127401
https://doi.org/10.1103/PhysRevLett.103.127401
https://doi.org/10.1063/1.3562344
https://doi.org/10.1063/1.3562344
https://doi.org/10.1063/1.3562344
https://doi.org/10.1063/1.3562344
https://doi.org/10.1021/nl3008083
https://doi.org/10.1021/nl3008083
https://doi.org/10.1021/nl3008083
https://doi.org/10.1021/nl3008083
https://doi.org/10.1103/PhysRevB.58.R7508
https://doi.org/10.1103/PhysRevB.58.R7508
https://doi.org/10.1103/PhysRevB.58.R7508
https://doi.org/10.1103/PhysRevB.58.R7508
https://doi.org/10.1103/PhysRevB.65.195315
https://doi.org/10.1103/PhysRevB.65.195315
https://doi.org/10.1103/PhysRevB.65.195315
https://doi.org/10.1103/PhysRevB.65.195315
https://doi.org/10.1103/PhysRevLett.111.027402
https://doi.org/10.1103/PhysRevLett.111.027402
https://doi.org/10.1103/PhysRevLett.111.027402
https://doi.org/10.1103/PhysRevLett.111.027402
https://doi.org/10.1103/PhysRevB.82.121306
https://doi.org/10.1103/PhysRevB.82.121306
https://doi.org/10.1103/PhysRevB.82.121306
https://doi.org/10.1103/PhysRevB.82.121306
https://doi.org/10.1038/ncomms11986
https://doi.org/10.1038/ncomms11986
https://doi.org/10.1038/ncomms11986
https://doi.org/10.1038/ncomms11986
https://doi.org/10.1038/nnano.2017.85
https://doi.org/10.1038/nnano.2017.85
https://doi.org/10.1038/nnano.2017.85
https://doi.org/10.1038/nnano.2017.85
https://doi.org/10.1364/OPTICA.4.001326
https://doi.org/10.1364/OPTICA.4.001326
https://doi.org/10.1364/OPTICA.4.001326
https://doi.org/10.1364/OPTICA.4.001326
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1038/ncomms12578
https://doi.org/10.1038/ncomms12578
https://doi.org/10.1038/ncomms12578
https://doi.org/10.1038/ncomms12578
https://doi.org/10.1103/PhysRevB.91.115319
https://doi.org/10.1103/PhysRevB.91.115319
https://doi.org/10.1103/PhysRevB.91.115319
https://doi.org/10.1103/PhysRevB.91.115319
https://doi.org/10.1140/epjd/e2008-00079-1
https://doi.org/10.1140/epjd/e2008-00079-1
https://doi.org/10.1140/epjd/e2008-00079-1
https://doi.org/10.1140/epjd/e2008-00079-1
https://doi.org/10.1140/epjd/e2010-00031-x
https://doi.org/10.1140/epjd/e2010-00031-x
https://doi.org/10.1140/epjd/e2010-00031-x
https://doi.org/10.1140/epjd/e2010-00031-x
https://doi.org/10.1142/S0217979210057511
https://doi.org/10.1142/S0217979210057511
https://doi.org/10.1142/S0217979210057511
https://doi.org/10.1142/S0217979210057511
https://doi.org/10.1088/0953-4075/41/5/055502
https://doi.org/10.1088/0953-4075/41/5/055502
https://doi.org/10.1088/0953-4075/41/5/055502
https://doi.org/10.1088/0953-4075/41/5/055502
https://doi.org/10.1063/1.2236954
https://doi.org/10.1063/1.2236954
https://doi.org/10.1063/1.2236954
https://doi.org/10.1063/1.2236954
https://doi.org/10.1103/PhysRevB.96.125303
https://doi.org/10.1103/PhysRevB.96.125303
https://doi.org/10.1103/PhysRevB.96.125303
https://doi.org/10.1103/PhysRevB.96.125303
https://doi.org/10.1364/OPTICA.3.000377
https://doi.org/10.1364/OPTICA.3.000377
https://doi.org/10.1364/OPTICA.3.000377
https://doi.org/10.1364/OPTICA.3.000377
https://doi.org/10.1364/JOSAB.31.000296
https://doi.org/10.1364/JOSAB.31.000296
https://doi.org/10.1364/JOSAB.31.000296
https://doi.org/10.1364/JOSAB.31.000296
https://doi.org/10.1016/j.physleta.2018.08.029
https://doi.org/10.1016/j.physleta.2018.08.029
https://doi.org/10.1016/j.physleta.2018.08.029
https://doi.org/10.1016/j.physleta.2018.08.029
https://doi.org/10.1103/PhysRevA.98.023848
https://doi.org/10.1103/PhysRevA.98.023848
https://doi.org/10.1103/PhysRevA.98.023848
https://doi.org/10.1103/PhysRevA.98.023848
https://doi.org/10.1103/PhysRevB.78.195320
https://doi.org/10.1103/PhysRevB.78.195320
https://doi.org/10.1103/PhysRevB.78.195320
https://doi.org/10.1103/PhysRevB.78.195320
https://doi.org/10.1103/PhysRevA.98.053801
https://doi.org/10.1103/PhysRevA.98.053801
https://doi.org/10.1103/PhysRevA.98.053801
https://doi.org/10.1103/PhysRevA.98.053801
https://doi.org/10.1103/PhysRevA.89.043832
https://doi.org/10.1103/PhysRevA.89.043832
https://doi.org/10.1103/PhysRevA.89.043832
https://doi.org/10.1103/PhysRevA.89.043832
https://doi.org/10.1103/PhysRevLett.68.464
https://doi.org/10.1103/PhysRevLett.68.464
https://doi.org/10.1103/PhysRevLett.68.464
https://doi.org/10.1103/PhysRevLett.68.464


SHUTING SHEN, JIAHUA LI, AND YING WU PHYSICAL REVIEW A 101, 023805 (2020)

[95] Q. Bin, X.-Y. Lü, F. P. Laussy, F. Nori, and Y. Wu,
N-phonon bundle emission via the anti-Stokes process,
arXiv:1907.12714.

[96] W. Denk, J. Strickler, and W. Webb, Two-photon laser scan-
ning fluorescence microscopy, Science 248, 73 (1990).

[97] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise,
C. B. Schaffer, and C. Xu, In vivo three-photon microscopy
of subcortical structures within an intact mouse brain, Nat.
Photon. 7, 205 (2013).

[98] I. Afek, O. Ambar, and Y. Silberberg, High-NOON states
by mixing quantum and classical light, Science 328, 879
(2010).

[99] F.-Y. Hong and S.-J. Xiong, Single-photon transistor using
microtoroidal resonators, Phys. Rev. A 78, 013812 (2008).

[100] M. J. Hartmann, Polariton Crystallization in Driven Arrays
of Lossy Nonlinear Resonators, Phys. Rev. Lett. 104, 113601
(2010).

[101] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy,
E. L. Hu, and A. Imamoglu, Ultrafast all-optical switching by
single photons, Nat. Photon. 6, 605 (2012).

[102] I. Carusotto, D. Gerace, H. E. Tureci, S. De Liberato, C. Ciuti,
and A. Imamoglu, Fermionized Photons in an Array of Driven
Dissipative Nonlinear Cavities, Phys. Rev. Lett. 103, 033601
(2009).

023805-16

http://arxiv.org/abs/arXiv:1907.12714
https://doi.org/10.1126/science.2321027
https://doi.org/10.1126/science.2321027
https://doi.org/10.1126/science.2321027
https://doi.org/10.1126/science.2321027
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1038/nphoton.2012.336
https://doi.org/10.1126/science.1188172
https://doi.org/10.1126/science.1188172
https://doi.org/10.1126/science.1188172
https://doi.org/10.1126/science.1188172
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevLett.104.113601
https://doi.org/10.1103/PhysRevLett.104.113601
https://doi.org/10.1103/PhysRevLett.104.113601
https://doi.org/10.1103/PhysRevLett.104.113601
https://doi.org/10.1038/nphoton.2012.181
https://doi.org/10.1038/nphoton.2012.181
https://doi.org/10.1038/nphoton.2012.181
https://doi.org/10.1038/nphoton.2012.181
https://doi.org/10.1103/PhysRevLett.103.033601
https://doi.org/10.1103/PhysRevLett.103.033601
https://doi.org/10.1103/PhysRevLett.103.033601
https://doi.org/10.1103/PhysRevLett.103.033601

