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Generation and manipulation of many-body entangled states is of considerable interest, for applications in
quantum simulation or sensing, for example. Measurement and verification of the resulting many-body state
presents a formidable challenge, however, which can be simplified by multiplexed readout using shared mea-
surement resources. In this work, we analyze and demonstrate state retrodiction for a system of optomechanical
oscillators coupled to a single-mode optical cavity. Coupling to the shared cavity field facilitates simultaneous
optical measurement of the oscillators’ transient dynamics at distinct frequencies. Optimal estimators for the
oscillators’ initial state can be defined as a set of linear matched filters, derived from a detailed model for the
detected homodyne signal. We find that the optimal state estimate for optomechanical retrodiction is obtained
from high-cooperativity measurements, reaching estimate sensitivity at the standard quantum limit (SQL).
Simultaneous estimation of the state of multiple oscillators places additional limits on the estimate precision, due
to the diffusive noise each oscillator adds to the optomechanical signal. However, we show that the sensitivity
of simultaneous multimode state retrodiction reaches the SQL for sufficiently well-resolved oscillators. Finally,
an experimental demonstration of two-mode retrodiction is presented, which requires further accounting for
technical fluctuations of the oscillator frequency.

DOI: 10.1103/PhysRevA.101.023804

I. INTRODUCTION

Building many-body quantum systems by assembling en-
sembles of well-controlled quantum modes with tunable in-
teractions is a promising path toward quantum simulation and
quantum information processing. The increased dimension-
ality of many-body systems, however, makes measurement
of entangled states challenging, because of the large number
of observables required to fully characterize the quantum
state. The physical resources necessary to perform these mea-
surements can be reduced by using a shared measurement
“bus,” coupled to multiple quantum degrees of freedom, fa-
cilitating multiplexed measurement of their quantum states,
such as demonstrated with arrays of superconducting qubits
coupled to a common strip-line resonator [1,2]. Each mode
can be independently measured by being sequentially coupled
to the measurement bus, reading out each of their states
with independent temporal modes of the output field [3].
Alternatively, if the dynamics of each mode are spectrally
resolved at distinct frequencies, the many-body state of a
system can be simultaneously measured through a continuous
weak measurement.

High-finesse optical resonators provide a particularly pow-
erful tool for measuring and controlling the dynamics of
diverse systems, demonstrated in cavity optomechanics [4],
collective atomic spin optodynamics [5–7], and in the emerg-
ing field of cavity optomagnonics [8–12]. Multiple modes of
diverse systems can be simultaneously coupled to a common
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cavity field, facilitating simultaneous optical measurement
[13], in addition to long-range optically mediated interactions
[14–16].

The optical field leaking out of the cavity provides a con-
tinuous measurement of the system dynamics. Retrodiction
of past quantum states from continuous measurements has
been theoretically described through back-propagation of an
effect matrix [17], closely related to the quantum theory of
smoothing [18]. For Gaussian dynamics, these estimates allow
a particularly compact description by evolving the phase-
space mean and covariance [19–22], recently demonstrated on
an optomechanical system [23]. Related analysis employing
linear filters applied to the output of an optical interferometer
has been proposed for conditional quantum state preparation
[24] and verification [25], applicable for tests of macroscopic
quantum mechanics in gravitational-wave detectors such as
LIGO. For a multimode optomechanical system, estimation
of a collective quadrature has also been proposed through
temporal modulation of the measurement strength [26].

In this work, we consider estimation of the initial state,
at time t = 0, of a multimode optomechanical system of
N harmonic oscillators, illustrated in Fig. 1(a), retrodicted
using matched filters applied to continuous measurement of
its subsequent free evolution. The oscillators are dispersively
coupled to a common single-mode optical cavity, which is
driven on resonance with a coherent probe. The reflected
optical field performs a continuous weak measurement of the
sum of oscillator displacements, recorded using a balanced
homodyne detector. Knowledge of the coherent system evo-
lution allows the initial state to be inferred from the observed
transient dynamics. However, measurement backaction, aris-
ing from quantum fluctuations of the cavity field, perturbs
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Ŝ(t)

FIG. 1. (a) Schematic of a multimode optomechanical system,
with a diverse ensemble of harmonic oscillators linearly coupled to
a driven single-mode optical cavity. Simultaneous measurement of
the motion of multiple oscillator modes can be performed through
continuous homodyne measurement of the reflected optical phase
quadrature. (b) Noise power-spectral density (PSD) for measurement
of a two-mode optomechanical system, observed in the reflected
homodyne phase quadrature for a resonantly driven cavity and nor-
malized to the homodyne shot noise PSD. This spectrum reveals the
stationary thermal and backaction-driven response of the mechanical
oscillators, providing experimental calibration of the intrinsic oscil-
lator frequencies ωi, damping rates �i, and coupling strengths gi.
(c) Semiclassically simulated trajectories of a continuously measured
oscillator, sampled from the same initial phase-space coordinates,
illustrating coherent decay of the initial state with an exponen-
tial envelope (black line) and increasing variance (shaded region)
from accumulated diffusion driven by thermal noise and quantum
backaction.

the trajectory of each oscillator’s evolution, adding incoherent
noise to the subsequent measurement record, which must be
considered in obtaining the optimal state estimate. We focus
in particular on the experimentally relevant system of linear
cavity optomechanics, allowing derivation of analytic results
for the optimal state estimators which can be directly applied
to experimental measurements. However, the formalism de-
veloped in this work can be directly generalized for measure-
ment and retrodiction of any linearizable system undergoing
transient or non-steady-state dynamics driven by Markovian
noise.

Retrodiction can be illustrated by considering continuous
measurement of the position X̂1(t ) of a single harmonic os-
cillator. Estimates for the average position quadrature 〈X̂1(0)〉
and momentum quadrature 〈P̂1(0)〉 of the oscillator’s initial
state can be recovered from measurement of its subsequent

coherent evolution

〈X̂1(t )〉 = e−�1t/2(〈X̂1(0)〉 cos ω1t + 〈P̂1(0)〉 sin ω1t ), (1)

where ω1 and �1 are the oscillator’s frequency and energy
damping rate, respectively. Incoherent noise from measure-
ment backaction and the oscillator’s intrinsic thermal bath
also perturbs the oscillator’s trajectory during measurement,
as simulated in Fig. 1(c). The accumulated diffusion from
these noise baths reduces the relative signal-to-noise in the
measurement record at later times.

Quadrature estimators for the oscillator’s initial state can
be defined as linear filters of the recorded homodyne sig-
nal Ŝ(t ), which appropriately weight the measured signal at
each subsequent time t . The optimally “matched” filters must
appropriately balance the coherent evolution and incoherent
diffusion, in order to minimize the total estimate error. The
use of matched filters to recover signals of a known form from
stationary additive Gaussian noise is well described in stan-
dard textbooks [27] and commonly employed, for instance,
for gravitational wave detection [28]. However, for retrodic-
tion of optomechanical systems, diffusion of the oscillator’s
state, driven by quantum backaction and the thermal bath,
introduces nonstationary noise which accumulates throughout
the observed transient signals, requiring careful accounting of
the full two-time correlation of the signal noise.

For high quality oscillators, where ωi � �i, the initial
state undergoes multiple coherent oscillations during the
subsequent ringdown. Retrodiction from the observed tra-
jectory, therefore, obtains approximately equal information
about each initial quadrature amplitude, recovering an esti-
mate of the oscillator’s initial state that is independent of
the oscillator’s phase. The Heisenberg uncertainty principle
〈�X̂ 2

i 〉〈�P̂2
i 〉 � 1/4 establishes a fundamental bound, known

as the standard quantum limit (SQL) [29,30], for the minimum
noise added by such phase-independent measurements,〈

�X̂ 2
i

〉 = 〈
�P̂2

i

〉 = �ni � 1
2 , (2)

quantified here as an added effective thermal phonon occupa-
tion �ni.

In this work, we consider retrodiction of Gaussian states
and demonstrate inference of two-mode squeezed states in
a multimode optomechanical system. Full tomography of a
general many-body state involves estimation of the entire
density matrix, which contains further information about all
higher-order moments of the oscillator quadratures. The fol-
lowing analysis could be extended to estimate these higher-
order moments of the multimode state. Though beyond the
scope of this work, it would be worth considering which
features of multimode quantum states can be retrodicted from
such phase-independent optomechanical measurements [31]
or how measurements beyond the SQL [25,32–34] can be
performed simultaneously on multimode systems.

Summary of main results

We summarize here the primary conclusions of this work
and give an overview of the following sections. In Sec. II,
we describe a general model for homodyne measurement of a
multimode optomechanical system. Measurement backaction
arises from radiation pressure shot noise, which appears as
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a shared noise bath driving correlated diffusion of the os-
cillators. A general set of quadrature estimators is defined
in Sec. III, in terms of linear filters applied to the recorded
homodyne signal. Optimal quadrature filters, which minimize
the estimator variance, are derived using linear regression,
accounting for temporal correlations introduced by the oscil-
lators’ diffusive motion.

In Sec. IV, we derive the estimator covariance matrix,
describing the imprecision added to the quadrature estimates
by each source of noise in the recorded signal. The estimator
covariance can be measured using an ensemble of repeated
measurements, which allows estimation of the covariance of a
squeezed state, after correcting for the added noise covariance.

We derive an analytic approximation for the optimal single-
oscillator filter in Sec. V, which minimizes the total added
covariance. The measurement strength, parametrized by the
cooperativity Ci, quantifies the relative rate that information
is gained from the system. The optimal estimate, with sensi-
tivity reaching the SQL, is obtained from a high-cooperativity
measurement νi + 1 � Ci � ωi/�i, which is bounded below
by the thermal bath occupation νi and above by the oscillator
quality factor. This condition ensures the measurement rate far
exceeds the loss of information to the thermal environment.
The corresponding measurement backaction drives rapid dif-
fusion of the oscillators, which is suppressed in the quadrature
estimates by the appropriately optimized filters.

We demonstrate these matched-filter estimators on a sim-
ulated two-mode system in Sec. VI. Simultaneous estimation
of the state of multiple oscillators places additional constraints
on the optimal estimate sensitivity, explored in Sec. VII. We
show that the state of multiple oscillators can be retrodicted
from the measurement record with precision at the SQL, if
their frequencies are resolved by many linewidths.

Experimental results of matched filter estimates are pre-
sented in Sec. VIII, obtained from a recent demonstration
of the negative-mass instability between collective atomic
spin and motion [16]. Additional experimental complications
from shot-to-shot fluctuations of system parameters had to
be included in the model to recover accurate retrodicted es-
timates. Finally, the conclusions and outlook are summarized
in Sec. IX.

For clarity of notation throughout, vectors will be notated
in bold (e.g., v), and matrices in roman typeface (e.g., M).
Hermitian amplitude and phase quadratures of bosonic opera-
tors, such as ĉ, are defined according to

ĉAM = 1√
2

(ĉ† + ĉ) and ĉPM = i√
2

(ĉ† − ĉ), (3)

respectively. In particular, the quadratures of the optomechan-
ical oscillators will be notated as a generalized position and
momentum,

X̂i = 1√
2

(â†
i + âi ) and P̂i = i√

2
(â†

i − âi ), (4)

respectively.

II. SIMULTANEOUS OPTOMECHANICAL
MEASUREMENT

Consider an ensemble of N harmonic oscillators, illustrated
in Fig. 1(a), described by bosonic operators âi evolving at
frequencies ωi, which are dispersively coupled to a driven
single-mode optical cavity with independent linear optome-
chanical coupling strengths gi [4]. The cavity resonance fre-
quency is shifted by the sum of the oscillators’ displacements,
which can be continuously measured by driving the cavity
on resonance, such that the oscillators’ motion modulates
the phase quadrature of reflected light and is recorded using
optical homodyne detection.

For small displacements, the dispersive shift of the
cavity frequency is small relative to the cavity linewidth∑

i gi〈â†
i + âi〉 � κ , and the dynamics of the cavity field can

be linearized in terms of fluctuations ĉ around an average
cavity photon number n̄, in a frame rotating at the cavity
drive frequency ωp, yielding a multimode generalization of
the linearized optomechanical Hamiltonian [4],

H = −h̄�ĉ†ĉ +
∑

i

h̄ωiâ
†
i âi + 2

∑
i

h̄
√

n̄giĉ
AMX̂i, (5)

where � = ωp − ωc is the detuning between the drive and
cavity resonance frequency ωc, having dropped constant en-
ergy terms.

In order to simultaneously measure the intrinsic dynam-
ics of multiple independent oscillators—without introducing
optically mediated coupling [14,15], spring shifts [35,36], or
damping [37–39]—we always consider a resonantly driven
cavity, with � = 0. The Heisenberg-Langevin equation of
motion for the state of the cavity field ĉ(t ),

˙̂c = −i
∑

i

√
2n̄giX̂i − κ ĉ +

√
2κξ̂ , (6)

is obtained from Eq. (5), with the addition of input and output
terms [40] introducing vacuum fluctuations ξ̂ from optical
coupling to the environment, parametrized by the cavity half
linewidth κ .

For simultaneous measurement of multiple oscillators, it is
advantageous to work in the fast-cavity (unresolved-sideband)
regime defined by κ � ωi, such that the cavity field is sensi-
tive across a wide bandwidth to dynamics of many oscillators
at well-resolved frequencies. Equation (6) can then be solved
under the adiabatic approximation ˙̂c ≈ 0, assuming the cavity
field equilibrates to the oscillators’ motion nearly instan-
taneously, yielding solutions for the amplitude and phase
quadratures,

ĉAM(t ) =
√

2

κ
ξ̂AM(t ) and (7a)

ĉPM(t ) = 2
√

n̄

κ

∑
i

giX̂i(t ) +
√

2

κ
ξ̂PM(t ), (7b)

respectively. The cavity input fluctuations are assumed to be
in the vacuum state, described by the two-time correlation
〈ξ̂ (t )ξ̂ †(t ′)〉 = δ(t − t ′).

The optical field leaking out of the cavity, determined by
the boundary condition

√
2κ ĉ = ĉout − ξ̂ , carries information

about the oscillator dynamics in its phase quadrature. The
optical phase is recorded using a balanced homodyne detector,
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resulting in a signal proportional to the instantaneous shift
of the cavity frequency due to the displacement of each
oscillator,

Ŝ(t ) =
√

2
∑

i

giX̂i(t ) +
√

PSNξ̂SN(t ). (8)

The second term describes the added measurement shot noise,
due to vacuum fluctuations of the optical probe, with two-time
correlation 〈ξ̂SN(t )ξ̂SN(t ′)〉 = δ(t − t ′) and normalized shot-
noise PSD PSN = κ/(8εn̄) in terms of the total cavity photon
detection efficiency ε.

Derivation of oscillator trajectories

Accurate retrodiction of the initial state of the oscilla-
tors from their subsequent evolution requires knowledge of
the system’s coherent dynamics, in addition to a complete
stochastic model for all incoherent noise sources. The oscil-
lator equations of motion derived from Eq. (5) are given by
[41].

˙̂ai = (−�i/2 − iωi )âi − i
√

Ci�iξ̂
AM +

√
�iη̂i, (9)

assuming each oscillator is intrinsically coupled with strength
�i to an independent Markovian bath η̂i, with two-time cor-
relation 〈η̂i(t )η̂†

i (t ′)〉 = (νi + 1)δ(t − t ′) parametrized by the
equilibrium thermal occupation νi.

Radiation-pressure forces introduce measurement back-
action by coupling each oscillator to the cavity amplitude
fluctuations ĉAM described by Eq. (7a). The optomechanical
cooperativity

Ci = 4n̄g2
i /κ�i, (10)

which parametrizes the measurement strength, quantifies here
the added equilibrium occupation due to diffusion from
measurement backaction. This backaction noise represents
a common-mode bath, driving correlated diffusion of each
oscillator during measurement [15].

Each oscillator’s trajectory is found by solving Eq. (9),
simulated numerically in Fig. 1(c), and is readily separated
into two parts:

X̂i(t ) = Q̂
T
i ri(t ) + D̂i(t ), (11)

coherent evolution of the initial phase space quadratures,

summarized by the two-element vector Q̂i = (X̂i(0), P̂i(0))
T
,

and accumulated incoherent diffusion D̂i(t ). The coherent
state evolution is described by a vector of quadrature impulse
response functions,

ri(t ) = e−�it/2

(
cos ωit
sin ωit

)
�(t ), (12)

in terms of the Heaviside step function �(t ). The accumulated
oscillator diffusion is given by the convolution

D̂i(t ) =
∫ ∞

0
dτ d̂

T
i (τ )ri(t − τ ), (13)

of the oscillator’s response with the stochastic input noise,
summarized by the input quadrature vector

d̂ i(τ ) =
√

�i

(
η̂AM

i (τ )

η̂PM
i (τ ) − √

2Ciξ̂
AM(τ )

)
. (14)

Substituting the oscillator trajectory given by Eq. (11) into
Eq. (8), the quantum mechanical model for the measured
homodyne signal can be written as

Ŝ(t ) =
∑

i

√
2gi[Q̂

T
i ri(t ) + D̂i(t )] +

√
PSN ξ̂SN(t ), (15)

which is a sum of the coherent ringdown of the initial states
Q̂i, the accumulated diffusion of each oscillator during mea-
surement, and measurement shot noise. The incoherent part of
Eq. (15) determines the total noise PSD of the homodyne sig-
nal, displayed for simulated signals in Fig. 1(b), and contains
thermal- and backaction-driven optomechanical responses in
addition to the broadband shot-noise floor.

Although these results are derived in the unresolved-
sideband limit, Eq. (15) can be generalized for any resonantly
driven cavity, provided only that κ � �i, by accounting for
a reduced effective coupling strength gi → giκ/

√
κ2 + ω2

i ,
due to suppression of shot-noise fluctuations and the optome-
chanical response by the cavity susceptibility, and an effective
phase delay of the optically measured oscillator amplitude
âi → eiφi âi with tan φi = ωi/κ .

III. LINEAR FILTER ESTIMATION

The goal of retrodiction, considered here, is to estimate
the state of all oscillators at time t = 0, represented by the
quadrature vectors Q̂i, from continuous measurement of their
subsequent dynamics [17]. The homodyne photocurrent is
amplified electronically and then digitally sampled, resulting
in a classical recorded signal that contains noise arising from
measurement shot noise and quantum backaction. For the
linear systems considered in this work, such state estimation
from the recorded signals can be approached as an essentially
classical signal-filtering problem [24].

A general set of linear filters applied to the observed
homodyne signal is defined as

q̆ =
∫ t f

0
dt m(t )Ŝ(t ), (16)

in terms of a vector of real-valued temporal weight functions
m(t ). Here, the vector of filter outputs q̆ represents projections
from the infinite-dimensional space of the continuous signal
Ŝ(t ) onto temporal modes defined by the filter functions m(t ).

Assuming all noise sources in Eq. (15) have zero mean, the
average filter outputs can be directly evaluated and expressed
as a matrix equation,

〈q̆〉 = J〈Q̂〉, (17)

in terms of the 2N-element vector of initial quadrature ampli-
tudes Q̂ and 2N × 2N normalization matrix J,

Q̂ =

⎛
⎜⎜⎜⎝

Q̂1

Q̂2
...

Q̂N

⎞
⎟⎟⎟⎠ J =

⎛
⎜⎜⎝

J11 J21 . . . JN1

J12 J22 . . . JN2
...

...
. . .

...
J1N J2N . . . JNN

⎞
⎟⎟⎠, (18)
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defined by concatenation of the individual two-dimensional
quadrature vectors and 2 × 2 block matrices,

Ji j =
√

2g j

∫ t f

0
dt mi(t )rT

j (t ), (19)

for two-element vectors of filter functions mi(t ) defined for
each oscillator i.

As an initial example, the filters can be defined according
to each oscillator’s quadrature response functions,

mOLS
i (t ) ≡ ri(t ). (20)

For this choice of filter functions, the estimator results rep-
resent the projection of the signal onto each quadrature’s
coherent response function. The diagonal elements of the
matrix J describe the normalization of each filter and the
off-diagonal elements reflect the nonorthogonality between
quadrature responses, due to spectral overlap from the finite
oscillator linewidths.

This overlap between quadrature filters introduces spurious
correlations in the raw filter outputs q̆i. Provided there are 2N
linearly independent filter functions m(t ) that span the space
of the quadrature response functions ri(t ), then Eq. (17) can
be solved to recover the average initial quadrature amplitudes
by inverting the normalization matrix J.

By extension, a complete set of unbiased quadrature esti-
mators can, therefore, be defined as

Q̆ =

⎛
⎜⎜⎜⎝

Q̆1

Q̆2
...

Q̆N

⎞
⎟⎟⎟⎠ ≡ J−1

∫ t f

0
dt m(t )Ŝ(t ), (21)

satisfying 〈Q̆i〉 = 〈Q̂i〉.
Results obtained by applying these filter estimators to

simulated measurements of a single oscillator’s trajectory are
shown in Fig. 2(a). The notation Q̆ is used here to indicate
an estimator for the vector of quadrature operators Q̂, corre-
sponding to a temporal mode of the detected optical field. The
distribution of measured samples, obtained by application of
Eq. (21) to the recorded homodyne traces, can be described
by the statistics of the thermal and quantum noise contained
in the estimator model defined by Eqs. (15) and (21).

Generalized least-squares optimization

The optimal set of filter functions mi(t ), which provide
a minimum-variance unbiased estimate for any linear com-
bination of quadratures Q̂, can be derived using the method
of least squares, such as commonly used for linear curve
fitting. The filters defined by Eq. (20) are obtained from an
ordinary least-squares (OLS) linear regression, by minimizing
the sum of square residuals between the measured signal and
the coherent model,

�OLS[m(t )] ≡
∫ t f

0
dt

[
Ŝ(t ) −

√
2

∑
j

g jQ̆
T
j r j (t )

]2

, (22)

parametrized by estimators Q̆ j .
However, the Gauss-Markov theorem [42] proves that

these estimators are optimal only when the signal noise is

FIG. 2. (a) Initial-state estimates (blue points) from applying
ordinary least-squares (OLS) filters to 8000 simulated signals for
measurement of an oscillator in equilibrium with its thermal bath
(ω1 = 2π × 125 kHz, �1 = 2π × 2 kHz, and ν1 = 1), with measure-
ment cooperativity C1 = 3. The covariance of quadrature estimates
defines a 68% confidence ellipse (blue), which is the cumulative
sum of the added measurement shot noise (black circle), thermal
bath noise (red annulus), quantum backaction (green annulus), and
the retrodicted state covariance. (b) Phase-space distribution for
simulated measurements of a displaced −10-dB squeezed vacuum
state of the oscillator in (a), with measurement cooperativity C1 =
20 and estimated using optimal filters derived from Eq. (24). In-
set: Squeezing of the oscillator’s initial state can be inferred after
subtracting the added noise covariances (blue ellipse), revealing an
initial quadrature variance below the zero-point scale (black circle).

temporally uncorrelated (white noise). Diffusive motion of
the oscillators during the measurement, driven by thermal
and backaction fluctuations, generates temporal correlations
in the signal noise, indicated by structure in the PSD shown
in Fig. 1(b). In the presence of temporally correlated noise,
a minimum variance unbiased estimator can be constructed
through linear regression using the generalized least squares
(GLS) method [43]. This method can be understood concep-
tually as decorrelating the temporal signal by inverting the
known two-time noise correlation function prior to perform-
ing linear regression.

The inverted noise correlation function is more easily
defined for a signal sampled at discrete times tn = n/ fs, with
sample frequency fs and count Nt = fst f , which is typical
for most experimental applications. The discrete two-time
correlation function of the added diffusive and measurement
noise defines the Nt × Nt square matrix,

�nm = 2
∑

kl

gkgl〈D̂k (tn)D̂l (tm)〉 + PSN fs δnm, (23)

which can be inverted numerically to derive the discrete GLS
filter functions,

mGLS(tn) ≡
Nt −1∑
m=0

[�−1]nmr(tm). (24)

These filters implicitly transform the signal to decorrelate
the noise, recovering conditions to satisfy the Gauss-Markov
theorem and, therefore, providing the minimum-variance un-
biased estimate for any general optomechanical measurement.
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The effect of diffusive noise on the optimal filters is further
illustrated in Sec. V, where an analytic formula is derived that
approximates the optimal filters for a single oscillator. The
numerical method defined in Eqs. (23) and (24), however,
facilitates calculation of optimal filters in any condition and
is fully general for state estimation with multiple oscillators,
considered in Sec. VI.

IV. LINEAR ESTIMATOR STATISTICS

In addition to providing an estimate of the mean quadrature
amplitudes 〈Q̂i〉, an ensemble of estimates from repeated
measurements of identically prepared states can be used to
estimate the multimode quadrature covariance of the initial
state,

cov[Q̂] ≡ Re[〈Q̂Q̂
T〉] − 〈Q̂〉〈Q̂T〉. (25)

Noise in the measured signal introduces errors into the
quadrature estimates, increasing the uncertainty of the retrod-
icted state. For linear filters, the additive noise in the signal
described by Eq. (15) introduces a systematic bias to the
covariance of the observed quadrature estimates,

� ≡ cov[Q̆] = cov[Q̂] + T + B + M, (26)

which is a sum of the actual state covariance cov [Q̂] and
the additive covariance from each independent noise source—
thermal diffusion T, quantum backaction B, and measurement
shot noise M—indicated by shaded regions in Fig. 2.

The estimate covariance added by measurement shot noise
is given by

M = PSN

∫ t f

0
dt J−1m(t )[J−1m(t )]T, (27)

in terms of the overlap matrix between each pair of normalized
quadrature filters. The filter functions of interest are gener-
ally not orthogonal, therefore measurement shot noise will
induce correlated errors in the quadrature estimates, due to the
spectral overlap between pairs of filters, described by nonzero
off-diagonal components of M.

Diffusion of the oscillators’ states during the measurement,
driven by their intrinsic thermal baths as well as quantum
backaction, also adds to both the variances and covariances
of the quadrature estimates. The response of oscillator k to
a generic bath fluctuation at time τ has an integrated effect
on the quadrature estimates, described by the 2N × 2 matrix-
valued function

Nk (τ ) =
√

2�kgkJ−1
∫ t f

0
dt m(t )rT

k (t − τ ), (28)

which arises from applying the estimator defined by Eq. (21)
to the diffusion term of the full signal model in Eq. (15). The
thermal baths of each oscillator are assumed to be indepen-
dent, so that the total thermal noise covariance is simply given
by a sum over the variance of induced estimate perturbations,
weighted by each oscillator’s bath occupation,

T =
∑

k

(
νk + 1

2

) ∫ t f

0
dτ Nk (τ )NT

k (τ ). (29)

The quantum backaction, however, induces correlated dif-
fusion of the oscillators during the measurement, since the

oscillators all respond to the same amplitude fluctuations of
the cavity field and have finite spectral overlap of their suscep-
tibilities (assuming nonzero oscillator linewidths). Diffusive
motion from this common optical bath induces correlated
errors in the quadrature estimates, with covariance given by
a sum over all oscillator pairs,

B =
∑

kl

√
CkCl

∫ t f

0
dτ Nk (τ )

(
0 0
0 1

)
NT

l (τ ) (30)

≈
∑

kl

√
CkCl

2

∫ t f

0
dτ Nk (τ )NT

l (τ ), (31)

assuming in the last line that ωk + ωl � �k + �l .
As defined above, the added noise covariance matrices T,

B, and M are expressed in units of an equivalent thermal
phonon occupation and represent the measurement uncer-
tainty for any single estimate obtained from these filters.
For a given measurement configuration, the optimal filters
minimize this added noise covariance and provide estimates
of the quadrature amplitudes with the least uncertainty.

The quadrature covariance of the initial multimode state
can be inferred from an ensemble of repeated measurements,
by inverting Eq. (26),

cov[Q̂] = � − T − B − M, (32)

assuming identical preparation of the initial state for each
measurement. If the system and bath parameters are inde-
pendently calibrated, then the bias matrices T, B, and M can
be precisely calculated and subtracted to recover the inferred
multimode state covariance. The statistical uncertainty of the
inferred covariance is then limited by the uncertainty of the
estimator covariance �, which can be reduced by minimizing
the total added noise covariance T + B + M for each sample,
in addition to increasing the sample size ns (see Appendix A).

Figure 2(b) demonstrates retrodiction of an oscillator ini-
tially prepared in a squeezed state |ζ 〉 = Ŝ (ζ ) |0〉, defined by
the single-mode squeezing operator [44]

Ŝ (ζ ) = exp 1
2

(
ζ ∗â2

1 − ζ â†2
1

)
. (33)

Squeezing of the quadrature variance below the ground-state
zero-point motion cannot be directly observed with the phase-
independent quadrature estimates considered in this work,
since they are constrained by the SQL. However, quadrature
squeezing can be inferred from the covariance of an ensemble
of estimates, demonstrated in Fig. 2(b), only after subtracting
the added noise covariance matrices, which are numerically
evaluated from Eqs. (27), (29), and (30) as described in
Appendix B.

V. STANDARD QUANTUM LIMIT FOR RETRODICTION

Realizing optimal state retrodiction of a given ensemble of
oscillators involves two separate choices. First, the intracavity
intensity n̄ must be chosen at the time of measurement, deter-
mining the measurement cooperativity Ci for each oscillator.
Second, for a given measurement strength, the optimal filter
must be derived to obtain the best state estimates from each
recorded trace, provided by Eq. (24). In this section, we
consider retrodiction of the state of a single oscillator and
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determine the measurement conditions for achieving sensitiv-
ity at the SQL.

The OLS filters defined in Eq. (20) weight the filter esti-
mate according to the coherent decay of the initial state. How-
ever, diffusion of the oscillator state after t = 0 adds noise to
the observed trajectories, illustrated in Fig. 1(c), accumulating
at a rate proportional to the measurement cooperativity C1

and the thermal bath occupation ν1. An optimal filter should
appropriately weight the relative signal to noise at each sub-
sequent time t , implying that the optimal filter envelope must
decay faster than the coherent response functions r1(t ).

The GLS filters derived from Eq. (24) can be used to cal-
culate the optimal filter for any particular system parameters,
however an analytic model yields further intuition about the
optimal measurement cooperativity. For estimation of a single
oscillator, the GLS filters are well approximated by a set of
exponentially damped sinusoidal filters,

mexp
1 (t ) ≡ e−γ1t/2

(
cos ω1t
sin ω1t

)
, (34)

parametrized by an arbitrary exponential decay rate γ1, for
sufficiently long observation intervals �1, γ1 � t f

−1. In gen-
eral, the total noise added to the quadrature estimates for any
oscillator i can be quantified by the average variance,

�ni = 1
2 Tr [Tii + Bii + Mii], (35)

where, for example, Tii refers to the 2 × 2 diagonal block
matrix corresponding to oscillator i. For estimation of a single
oscillator with the exponential filters, this added noise occu-
pation can be numerically evaluated for a given measurement
cooperativity C1 and filter decay rate γ1 with results summa-
rized in Fig. 3(a).

The individual noise covariance matrices given by
Eqs. (27), (29), and (30) can also be evaluated analytically and
shown to be approximately proportional to the identity matrix,
for filters that decay slower than the oscillation frequency
γ1 � ω1 and assuming a measurement duration that is suf-
ficiently long to capture the full transient response �1, γ1 �
t f

−1. The uncertainty contributed from each noise source,
therefore, can be fully described by the added quadrature
variance, expressed as equivalent added thermal occupation,

�n1(T) ≡ 1

2
Tr [T11] ≈

(
ν1 + 1

2

)�1

γ1
, (36a)

�n1(B) ≡ 1

2
Tr [B11] ≈ C1

2

�1

γ1
, (36b)

�n1(M) ≡ 1

2
Tr [M11] ≈ 1

2εC1

(�1 + γ1)2

4�1γ1
. (36c)

These three expressions sum to give the total added noise, as
displayed in Figs. 3(b) and 3(c).

For measurements performed at a particular cooperativity
C1, the uncertainty of estimates obtained from the recorded
traces can be evaluated individually for each noise source as
a function of the filter decay rate γ1, as shown in Fig. 3(b).
As predicted by the Gauss-Markov theorem [45], the OLS
estimators defined by Eq. (20), equivalently γ1 = �1, only
minimize the added variance due to the temporally uncor-
related measurement noise �n1(M). The OLS optimization
does not minimize the estimator variance for temporally cor-
related noise [45], driven by the thermal bath and quantum

FIG. 3. (a) Total estimate imprecision for retrodiction of a single
oscillator’s state as a function of the measurement cooperativity C1

and exponential filter decay rate γ1, calculated for the same oscillator
as Fig. 2 but assuming a zero-temperature bath ν1 = 0 and ideal
detection efficiency ε = 1. Dashed white lines mark the line cuts
plotted in (b) and (c). (b) Total added noise for various exponential
filter decay rates γ1 at a fixed cooperativity C1 = 1, from numerical
calculations (solid blue line) and 4000 simulated estimates (blue
dots). Analytic approximations for each noise component (dashed
black: shot noise; green: backaction; red: thermal) illustrate that
thermal- and backaction-driven diffusion shift the optimal filter to
a faster decay rate. (c) The minimized added noise for the optimal
exponential filter approaches the SQL (dotted gray line) in the
backaction-dominated regime C1 � 1. When γopt � ω1, the filters
no longer provide equal information about both quadratures and
the analytic approximation (dashed lines) deviates from the full
numerical calculation (solid blue line). Simulated estimates with the
GLS filters derived from Eq. (24) (blue dots) reach identical noise
limits, provided γ1 � t f

−1.

backaction, and the optimal filter decay rate is increased
γ1 > �1, because a shorter temporal filter envelope captures
less of the accumulated diffusion at later times.

Minimizing the total added variance, the optimal exponen-
tial filter decay rate for a given measurement cooperativity C1

is

γopt = �1

√
1 + 4εC1(C1 + 2ν1 + 1). (37)

The added noise for this optimized exponential filter is plot-
ted in Fig. 3(c) as a function of measurement cooperativity
C1. The optimal measurement condition for retrodiction is
achieved in the limit of high cooperativity, corresponding to
backaction-dominated diffusion of the oscillator during the
measurement.

In this high-cooperativity regime, where diffusion from
backaction exceeds that from the oscillator’s thermal motion
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(satisfying C1 � ν1 + 1/2), and where the effect of backac-
tion in the measured signal exceeds that of measurement shot
noise (satisfying C1 � ε−1/2), the optimal filter decay rate is
approximately

γopt ≈ 2
√

εC1�1 = 8
√

εn̄g2
1

κ
, (38)

with corresponding minimized total added noise occupation

nmin = 1

2
√

ε
. (39)

The SQL for state retrodiction, therefore, is reached in this
backaction-dominated regime, assuming ideal detection effi-
ciency ε = 1. The result in Eq. (38) also defines the optimal
filter envelope for an oscillator with negligible intrinsic damp-
ing �1 → 0. In this limit, the optimal measurement sensitivity
is realized at any finite measurement strength, provided an
observation period much longer than the backaction diffusion
time scale t f � 2πκ/(4n̄g2

1).
In the strong-measurement limit C1 → ∞, this best expo-

nential filter evolves toward a delta function, which would
describe a fully projective, instantaneous measurement of
the oscillator’s position. However, as observed in Figs. 3(a)
and 3(c), the optimal measurement cooperativity is bounded
from above by the oscillator’s quality factor 2

√
εC1 � ω1/�1.

Beyond this bound, the filter envelope decays within an oscil-
lation period, violating the approximation γ1 � ω1 above, and
retrodiction no longer provides a phase-independent estimate
of both oscillator quadratures.

It is noteworthy to contrast these imprecision limits for
state retrodiction with those for the well-demonstrated limits
for continuous displacement [46–48] and force [49,50] de-
tection. In each case, the optimal measurement is obtained
with an equal imprecision added by measurement noise and
quantum backaction. When an optomechanical oscillator is
employed as a sensor for external forces or displacements, for
instance from gravitational waves [51], then diffusion driven
by quantum backaction increases the measurement impreci-
sion at later times, and the optimal sensitivity on mechanical
resonance is achieved with cooperativity C1 = (2

√
ε)−1 [49],

typically of unity order.
However, for the case of retrodiction, the results described

here indicate that the optimal sensitivity is reached in the
high-cooperativity regime C1 � ν1 + 1/2, where information
about the oscillator’s initial state is rapidly extracted. Mea-
surement of the oscillator’s state by the cavity mode inherently
results in backaction noise added to the oscillator. Never-
theless, it is preferable to increase the measurement cooper-
ativity such that the measurement rate and the backaction-
induced diffusion far exceed the loss of state information to
the unmeasured modes of the oscillator’s thermal bath. The
additional diffusive noise added to the oscillator’s trajectory
during measurement is suppressed in the estimate, by using
an appropriately short filter profile.

VI. TWO-MODE STATE ESTIMATION

The formalism developed in Secs. II and III is already fully
general for estimation of multimode states of N oscillators.
Similar multimode estimation has been applied in experiments
to obtain estimates for two-mode states [15,16,52] and to

demonstrate entanglement [3] from correlations observed in
subsequent measurements of two modes.

As an example, consider simultaneous retrodiction of two
oscillators prepared in a two-mode squeezed state (TMSS)
|z〉 = Ŝ2(z) |0, 0〉, generated from ground-state oscillators
through the action of the two-mode squeezing operator [44],

Ŝ2(z) = exp(z∗â1â2 − zâ†
1â†

2). (40)

After the squeezing interaction is turned off, estimates of each
quadrature of the two-mode system are obtained by applying
optimized filters, calculated from Eqs. (23) and (24), to the
subsequently observed free transient decay.

The resulting 2N-dimensional Gaussian phase space distri-
bution defines an ellipsoid in phase space, fully characterized
by its mean and covariance. The distribution can be visualized
in terms of orthogonal 2D projections, as shown in Fig. 4 for
estimates obtained from simulated homodyne measurements
of a TMSS. Projections onto the 2D phase space for each
individual oscillator, shown in Fig. 4(a), are equivalent to
tracing over the other oscillator’s state and reflect an effective
thermal occupation 〈â†

i âi〉 = sinh2 |z|.
The presence of two-mode squeezing is revealed by corre-

lations between quadratures of the different oscillators, which
are displayed in Fig. 4(b). “In-phase” correlations, between
the positions of the two oscillators X̂1(0) and X̂2(0), are
produced by the real part of z, while the imaginary part
generates “out-of-phase” correlations, between the position
of one oscillator and the momentum of the other, as shown
in Fig. 4(b). The other two orthogonal projections of the
4D phase space are qualitatively similar, but not shown.
Once again, recovering the actual state covariance requires
subtracting the covariances added by each noise source, which
are numerically evaluated from independent knowledge of the
system parameters.

Verification of estimated correlation

The two-mode covariance inferred from the matched-filter
estimates can be experimentally validated through comparison
to model-independent statistics of the recorded signals. For a
multimode system, the mean-squared homodyne signal also
reveals information about the initial correlations [16],

〈Ŝ2(t )〉 ≈ 2
∑

i j

gig jrT
i (t )

〈
Q̂iQ̂

T
j

〉
r j (t ) + fBWPSN

+
∑

i j

gig j
[
(2νi + 1)δi j + √

CiCj
]
Ri j (t, t ), (41)

again assuming ωi + ω j � �i + � j , where fBW is the band-
width of the recorded signal. This expression reflects coherent
time evolution of the mean and covariance of the initial
quadrature amplitudes, in addition to relaxation given by

Ri j (t, t ′) =
∫ ∞

0
dτ rT

i (t − τ )r j (t
′ − τ ) (42)

to an equilibrium signal variance determined by the thermal
baths and measurement backaction.

Correlations between oscillators appear in this signal as
transient beat notes at the sum and difference frequen-
cies, unperturbed by the thermal, backaction, and measure-
ment noise that biases the filter covariances. This signal,
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FIG. 4. Retrodiction from 8000 simulated measurements of a
−10-dB two-mode squeezed state |z = 1.15i〉 of the oscillators
simulated in Fig. 1(b), with measurement cooperativity Ci = 5.3
and bath occupation ν1 = ν2 = 1. (a) Independent phase-space dis-
tributions for each oscillator show an effective thermal distribution
of estimates, convolved with additive variance from measurement
(black circle), thermal (red annulus), and backaction noise (green
annulus). (b) For an imaginary squeezing parameter, the positions
of the two oscillators are uncorrelated (left), however estimate errors
are weakly correlated due to spectral overlap of the oscillator suscep-
tibilities and filters. Correlations between out-of-phase quadratures
of each oscillator (right) reveal the two-mode squeezed state, when
corrected for the added covariance and correlation from all noise
sources (inset). (c) The mean-square signal (blue dots) provides an
independent signature of the two-mode correlations, unbiased by the
added noise, which corroborates the inferred signal reconstructed by
time evolution of the estimated two-mode covariance (blue line).
The initial-state transient decays to equilibrium with thermal and
backaction noise (red dots) in addition to measurement shot noise
(black dots).

therefore, serves as an independent statistic for comparison
to the matched-filter estimates, through reconstructing the
predicted beat note for the inferred two-mode state, shown in
Fig. 4(c). This comparison indicates how faithfully the filter
model matches the system dynamics and serves as a check
for calibration of the added noise covariance that must be
subtracted from the filter estimates.

The “out-of-phase” correlations for the TMSS simulated
in Fig. 4 are characteristic of those generated by the negative-
mass instability observed in Ref. [16], produced by resonant
coupling between positive- and negative-mass oscillators. For
an effective negative-mass oscillator, the coherent-state evo-
lution corresponds to an opposite rotation in phase space,
corresponding to ωi → −ωi in Eqs. (9) and (12). By conse-
quence, for the TMSS represented in Fig. 4(c), the second-
order coherence 〈â1â2〉 evolves at the frequency difference,
with amplitude and phase directly reflecting the magnitude
and phase of correlations between the two oscillators.

VII. LIMITS OF MULTIMODE ESTIMATE PRECISION

For a given multimode measurement record, with inde-
pendently calibrated system and noise parameters, the GLS
method facilitates numerical calculation of the optimal filter
to recover the multimode state estimates. For a single oscil-
lator, the optimal estimate imprecision approaches the SQL
in the limit of high cooperativity, as demonstrated in Sec. V.
However, diffusive motion of each oscillator in the measure-
ment record introduces additional imprecision to the estimate
results. Here we explore the optimal two-mode measurement
strength and additional limits to the estimate precision due to
the presence of a second oscillator.

Consider state retrodiction for simultaneous observation of
two oscillators that differ only in their resonance frequency,
with frequency separation δ = ω2 − ω1. The distinguishabil-
ity of the two oscillator responses is parametrized by their
spectral resolution δ/�1 and the measurement strength by the
cooperativity C1 = C2.

The total estimate uncertainty for the first oscillator �n1,
defined by Eq. (35), was numerically computed as a function
of measurement cooperativity C1 for a few different oscillator
detunings, assuming perfect detection efficiency ε = 1, with
results shown in Fig. 5(a). For sufficiently low-cooperativity
measurements, the single-oscillator exponential filters defined
by Eqs. (34) and (37) achieve optimal results, with the mea-
surement imprecision decreasing with increasing measure-
ment strength C1. When the optimal single-oscillator filter de-
cay rate γopt approaches the oscillators’ frequency difference
δ, the simple exponential filters fail to optimally distinguish
the response of each oscillator, resulting in additional estimate
imprecision.

The GLS filters defined by Eq. (24) achieve reduced impre-
cision at high cooperativity. These filters optimally distinguish
the motion of each oscillator by acquiring a notch in the filter
spectrum, shown in Fig. 5(b), that suppresses signal compo-
nents in the frequency band of the other oscillator. However,
for larger cooperativity, the backaction broadened filters for
each oscillator become increasingly indistinguishable. The
filter normalization matrix J, defined by Eq. (19), becomes
nearly singular, resulting in growth of the normalized estimate
imprecision.

The optimal measurement cooperativity for two-mode
retrodiction at a given detuning δ was found by numerically
minimizing the total estimate imprecision �ni, summarized
in Fig. 5(c). When �1 � δ � ω1, the optimal cooperativity
is approximated by Copt = δ/2�1, the threshold where the
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FIG. 5. Optimal simultaneous two-mode retrodiction approach-
ing the SQL. (a) Measurement imprecision �ni for estimation of the
state of one oscillator in a two-oscillator system, using the optimal
single-oscillator exponential filters (dashed lines) or multimode GLS
filters (solid lines). The oscillator frequencies ω1/2π = 125 kHz
and ω2 = ω1 + δ are detuned by δ = {2, 10, 50}�1, with identical
damping rates �1 = �2 = 2π × 2 kHz to zero-temperature thermal
baths. (b) Amplitude spectrum of one GLS filter for each oscillator, at
the optimum measurement cooperativity [black cross in (a)]. Motion
of the other oscillator is suppressed in each by acquiring a notch
at the position of the oscillator’s response spectrum (dotted lines).
(c) Numerically optimized measurement cooperativity that mini-
mizes �n1 at a range of detunings δ. For well-resolved oscillators,
the optimal cooperativity is determined by γopt = δ (black line),
where the corresponding single-oscillator filter linewidth equals the
oscillator detuning. When δ � ω1, the cooperativity is again limited
by the single-oscillator quality factor. (d) Minimized measurement
imprecision �n1 (red pluses), corresponding to the optimal coopera-
tivity in (c). State estimates for poorly resolved oscillators δ/�i � 1
have strongly correlated errors 〈|�ă†

1�ă2|〉 (blue crosses).

corresponding single-oscillator exponential filter linewidth
defined by Eq. (38) matches the oscillator detuning δ.

At the optimal measurement cooperativity, the minimum
estimate imprecision for each oscillator, shown in Fig. 5(d),
approaches the SQL in the limit of well-resolved oscillators
δ/�i � 1. When the oscillators are not well resolved δ � �1,
the filters cannot distinguish the motion of each oscillator.
The homodyne signal is always sensitive to the center-of-mass
motion of the oscillators, but contains negligible information
about their relative motion, resulting in strong correlated
errors in the individual oscillator estimates, as displayed in
Fig. 5(d), described by the off-diagonal blocks of the noise
covariance matrices,

〈�ă†
1�ă2〉 = 1

2
(1 − i)[T12 + B12 + M12]

(
1
i

)
. (43)

When δ � ωi, the optimal measurement cooperativity Copt is
once more limited by the single-oscillator quality factor, as
seen in Fig. 2(c).

VIII. EXPERIMENTAL DEMONSTRATION

We previously employed this matched-filter analysis for
retrodicting correlated states of a multimode optodynamical
system, reported in Ref. [16]. In that work, correlations were
generated through a negative-mass instability from collective
coupling between the motion and spin of an atomic ensemble,
resulting in resonant pair creation analogous to a parametric
amplifier.

Real-world measurements invariably bring additional com-
plications, such as variations in system parameters and addi-
tional incoherent dynamics. These must all be included in the
preceding statistical analysis to accurately estimate the state
covariance. In particular, for Ref. [16], inhomogeneous broad-
ening of the observed average homodyne PSD, due to shot-
to-shot fluctuations of the oscillator frequencies ωi, caused
dephasing of the ensemble-averaged signals and complicates
the matched filter analysis.

To include this inhomogeneous broadening in the filter
statistics, the oscillator frequency ωi was treated as a classical
random variable with variance σi. The quadrature response
functions ri(t ) are then also stochastic, with mean trajectory

〈ri(t )〉 = e−�it/2e−σ 2
i t2/2

(
cos ωit
sin ωit

)
�(t ), (44)

which includes an additional decay envelope with dephasing
rate σi, assuming a Gaussian frequency distribution. The
intrinsic damping rate �i and inhomogeneous dephasing rate
σi were experimentally calibrated by fitting the observed
homodyne PSD with a Voigt profile.

This inhomogeneous broadening of the oscillator response
motivates definition of modified quadrature filters,

mavg
i (t ) ≡ 〈ri(t )〉, (45)

which are spectrally broadened to match the average PSD,
in order to better capture the oscillator response across the
distribution of frequencies.

The filter normalization matrix J, defined in Eq. (19),
must also be considered as a matrix-valued random variable.
Assuming here that fluctuations of the system parameters are
uncorrelated with the initial quadrature operators, its expecta-
tion can be independently computed in Eq. (17) as

〈q̆〉 = 〈J〉〈Q̂〉. (46)

Individual quadrature estimates from data reported in
Ref. [16] are displayed in Fig. 6, obtained using filters defined
by Eq. (45) and normalized by 〈J〉−1.

Estimation of the quadrature covariance is further compli-
cated. The second-order moment of any pair of the unnormal-
ized filter estimates, defined by Eq. (16), can be written

〈q̆iq̆ j〉 =
∑

kl

〈JikJ jl〉〈Q̂kQ̂l〉 + T′
i j + B′

i j + M′
i j . (47)
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FIG. 6. Quadrature estimates from 215 repeated optodynamical
measurements (n̄ = 2.6) of a correlated state of collective atomic
spin and motion. (a) Individual state estimates of each mode indicate
effective thermal states. The collective atomic spin (left), precessing
near its highest energy state, represents a negative effective-mass os-
cillator, with independently calibrated parameters {gs, ωs, σs, �s} =
2π × {18, 111, 0.2, 0} kHz. The center-of-mass motion (right) pro-
vides a positive-mass oscillator, with independently calibrated
parameters {gs, ωs, σs, �s} = 2π × {27, 95, 0.4, 2.4} kHz and νm =
2.7. Estimate errors are dominated by thermal diffusion (red annulus)
and measurement shot noise (black ellipse), with negligible mea-
surement backaction (green annulus). (b) Cross correlation plots of
in-phase (left) and out-of-phase (right) quadratures reveal a squeezed
thermal state, with an imaginary correlation parameter characteristic
of the negative-mass instability [16]. Subtracting the systematic noise
covariances gives the inferred state covariance (magenta ellipse).
(c) The observed mean-squared signal (blue dots) agrees will with
a reconstruction from the matched-filter covariance estimate (blue
line). The transient beat note from the initial correlations decays
faster than the average signal relaxes to the equilibrium level (red
dots), due to dephasing from inhomogeneous broadening.

Here, the indices i, j, k, and l run over all 2N quadrature
elements, unlike the block-matrix notation used above. The
covariances added from each noise source in Eq. (47) are

given by the matrices

M′ = PSN

∫ t f

0
dt m(t )mT(t ), (48)

T′ =
∑

k

(
νk + 1

2

) ∫ t f

0
dτ

〈
N′

k (τ )N′T
k (τ )

〉
, (49)

B′ ≈
∑

kl

√
CkCl

2

∫ t f

0
dτ

〈
N′

k (τ )N′T
l (τ )

〉
, (50)

N′
k (τ ) =

√
2�kgk

∫ t f

0
dt m(t )rT

k (t − τ ). (51)

These expressions can be evaluated numerically as described
in Appendix B, based on independent calibrations of the
system parameters. The system of (2N )2 equations defined by
Eq. (47) can then be inverted to recover the second moments
of the quadrature estimates and the added noise covariances,
which define the covariance ellipses shown in Figs. 6(a) and
6(b).

Finally, incoherent coupling in the experimental system
between the spin and motion of individual atoms also resulted
in additional thermal diffusion of the collective spin, which
was included as an additional noise drive in Eq. (14). Diffu-
sion from this interaction increased with n̄, proportional to the
measurement strength, and therefore limited the experimental
system to low-cooperativity measurements, which prevented
achieving retrodiction at the SQL.

IX. CONCLUSION

In summary, we have derived a detailed model for linear
state estimation from optical measurements of multimode
optomechanical systems. We have demonstrated that retro-
diction of the past state of a single oscillator from high-
cooperativity measurements approaches the SQL, when es-
timated with a matched filter that optimally suppresses the
accumulated backaction noise. Furthermore, we have de-
scribed a general numerical method to derive optimal filters,
which directly facilitates optimal estimation from simultane-
ous measurements of multiple oscillators. We explored the
optimal measurement strength for retrodiction of a multimode
state and demonstrated additional constraints on the oscillator
detuning in order to reach estimate imprecision at the SQL.
This work lays an experimentally motivated framework for
simultaneous measurements of multimode systems, which
provides an essential tool toward efficient measurements of
many-body systems.
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APPENDIX A: CONVERGENCE OF SAMPLE
COVARIANCE MATRIX

Assuming the noise covariance matrices can be calculated
to arbitrary precision, from independent calibration of the sys-
tem and bath parameters, then the statistical uncertainty of the
state covariance matrix inferred from Eq. (26) is determined
solely by the uncertainty of the estimator covariance �.

This covariance matrix can be estimated from an ensemble
of ns identical measurements {Q̆[i]} according to the sample
covariance,

�̆ = 1

ns − 1

ns∑
i

(Q̆[i] − μ̆)(Q̆[i] − μ̆)T, (A1)

where μ̆ = (1/ns)
∑

i Q̆[i] is the sample mean. The covari-
ance estimator �̆ is itself a random variable, which, assuming
Gaussian initial states and input noise, is distributed according
to the 2N-dimensional central Wishart distribution [53]

(ns − 1)�̆ ∼ W2N (�, ns − 1), (A2)

with (ns − 1) degrees of freedom. This distribution is the
multidimensional generalization of the χ2 distribution, and
allows calculation of estimate uncertainties from the variance
of the matrix elements,

var[�̆i j] = 1

ns − 1

(
�2

i j + �ii� j j
)
. (A3)

The uncertainty for estimating the multimode state covariance
�̆ from an ensemble of measurements, therefore, is reduced
by minimizing the total systematic noise bias T + B + M
added to the retrodicted estimate covariance � in Eq. (26).

APPENDIX B: EVALUATION OF ESTIMATE COVARIANCE
FROM DIFFUSIVE NOISE

The covariance matrices of estimator noise added from
thermal- and backaction-driven diffusion, defined in Eqs. (29)
and (30), respectively, contain a triple integral over rapidly
oscillatory integrands. To aid in numerical evaluation, the

integral which appears in each of these equations, describing
the estimate covariance for correlated diffusion of oscillator k
and l driven by a common bath, can be rewritten as∫ t f

0
dτ Nk (τ )NT

l (τ )

= gkgl

∫∫ t f

0
dtdt ′ J−1m(t )Rkl (t, t ′)mT(t ′)[J−1]T, (B1)

in terms of the generic oscillator two-time correlation for
response to a common noise bath defined in Eq. (42).

Generalizing to a complex response function

ρi(t ) = e−(�i/2+iωi )t�(t ), (B2)

in terms of which ri(t ) = (Re[ρi(t )], − Im[ρi(t )])T, then
Eq. (42) can be rewritten as

Rkl (t, t ′) =
∫ ∞

0
dτ Re[ρ∗

k (t − τ )ρl (t
′ − τ )]. (B3)

This integral can be evaluated analytically, giving

Rkl (t, t ′) = Re

[
ρ∗

k (t − t ′) + ρl (t ′ − t ) − ρ∗
k (t )ρl (t ′)

(�k + �l )/2 − i(ωk − ωl )

]
,

(B4)

in terms of the complex oscillator responses. This result can be
used for efficient numerical evaluation of the double integral
in Eq. (B1) for discretely sampled signals and filter functions.

When considering fluctuations of the oscillator frequencies
in Sec. VIII, it is necessary to evaluate the expectation of
this two-time response product. Assuming the variances of
the oscillator frequencies are small compared to their differ-
ence, σk + σl � |ωk − ωl | for k �= l , this expectation can be
approximated by

〈Rkl (t, t ′)〉 ≈ Re

[ 〈ρ∗
k (t − t ′) + ρl (t ′ − t ) − ρ∗

k (t )ρl (t ′)〉
(�k + �l )/2 − i(ωk − ωl )

]
.

(B5)
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