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f -wave superfluidity from repulsive interaction in Rydberg-dressed Fermi gas
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Interacting Fermi gas provides an ideal model system to understand unconventional pairing and intertwined
orders relevant to a large class of quantum materials. Rydberg-dressed Fermi gas is a recent experimental system
where the sign, strength, and range of the interaction can be controlled. The interaction in momentum space has
a negative minimum at qc inversely proportional to the characteristic length scale in real space, the soft-core
radius rc. We show theoretically that single-component (spinless) Rydberg-dressed Fermi gas in two dimensions
has a rich phase diagram with superfluid and density wave orders due to the interplay of the Fermi momentum pF ,
interaction range rc, and interaction strength u0. For repulsive bare interactions u0 > 0, the dominant instability
is a f -wave superfluid for pF rc � 2 and a density wave for pF rc � 4. The f -wave pairing in this repulsive Fermi
gas is reminiscent of the conventional Kohn-Luttinger mechanism but has a much higher Tc. For attractive bare
interactions u0 < 0, the leading instability is p-wave pairing. The phase diagram is obtained from a functional
renormalization group that treats all competing many-body instabilities in the particle-particle and particle-hole
channels on an equal footing.
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I. INTRODUCTION

Understanding the many-body instabilities and symmetry
breaking in strongly interacting fermions in two dimensions
holds the key to several long-standing problems in condensed
matter physics. One example is the precise mechanism by
which unconventional superconductivity with various pairing
symmetries emerges from repulsive interactions, in materials
including cuprate [1], ruthenate [2], and pnictide [3] super-
conductors. These and other correlated quantum materials
typically display intertwined vestigial orders, e.g., in the so-
called pseudogap region where charge density waves, pairing,
and other fluctuations compete. Recently, ultracold Fermi
gases [4,5] of atoms and molecules have become a promising
experimental platform to tackle some of these open problems
by realizing Hamiltonians such as the Fermi-Hubbard model
[6–8] with tunable interactions [9]. This offers the opportunity
to deepen our understanding of the “pairing glue” in repul-
sively interacting systems and shed light on the complex in-
terplay of quantum fluctuations in distinct channels for simple
and highly controlled Hamiltonians. In this paper we show
theoretically that Rydberg-dressed Fermi gas of alkali atoms
with tunable long-range interactions gives rise to not only
p-wave topological superfluids for attractive bare interactions,
but also f -wave superfluid with high transition temperatures
stemming from repulsive bare interactions.

Rydberg atoms and Rydberg-dressed atoms haven long
been recognized for their potential in quantum simulation
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and quantum information [10–14]. Recent experiments have
successfully demonstrated a panoply of two-body interactions
in cold gases of Rydberg-dressed alkali atoms [15–21]. In
Rydberg dressing, the ground state atom (say n0S) is weakly
coupled to a Rydberg state (say, nS or nD) with large principal
number n by off-resonant light with Rabi frequency � and
detuning �. The coupling can be achieved, for example,
via a two-photon process involving an intermediate state
n1P to yield longer coherence times [22]. The huge dipole
moments of the Rydberg states lead to strong interactions that
exceed the natural van der Waals interaction by a factor that
scales with powers of n [12,13]. The interaction between two
Rydberg-dressed atoms takes the following form [22]:

V (r) = u0

r6 + r6
c

. (1)

Here r = |r| is the interparticle distance, u0 = (�/2�)4C6 is
the interaction strength, C6 is the van der Waals coefficient,
and rc = |C6/2h̄�|1/6 is the soft-core radius and the charac-
teristic scale for the interaction range. As shown in Fig. 1,
V (r) has a steplike soft core for r � rc before decaying to
a van der Waals tail at long distances. Both u0 and rc can
be tuned experimentally via � and � [22]. Moreover, by
choosing proper Rydberg states (e.g., nS versus nD for 6Li
with n > 30 [23]) C6 and u0 can be made either repulsive or
attractive. By choosing proper n, �, and �, atom loss can
be reduced to achieve a sufficiently long lifetime to observe
many-body phenomena [18,20,22,24].

Previous theoretical studies have explored the novel
many-body phenomena associated with interaction (1) in
bosonic [22,25–31] and fermionic gases [24] including the
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FIG. 1. Single-component Fermi gas with Rydberg-dressed in-
teractions in two dimensions. (a) The interaction potential (1) shows
a steplike soft core of radius rc and a long-range tail. (Inset) Ratio
of the interaction to kinetic energy varies nonmonotonically with
density. (b) The Rydberg-dressed interaction (2) in momentum space
attains a negative minimum at qc ∼ 4.82/rc. (c) For attractive in-
teractions, the critical temperatures in different angular momentum
� channels (in arbitrary units) from the solution of the Cooper
problem. The leading instability is p-wave, � = ±1. Maximum Tc

is around pF rc ≈ 2. (d) For repulsive interactions, random phase
approximation points to a density-wave order. False color (shading)
shows the ordering wave vector of density modulations.

prediction of topological superfluids [23] and topological den-
sity waves [32]. Here we consider single-component Rydberg
Fermi gases confined in two dimensions [33], where mean
field and the random phase approximation (RPA) become
unreliable due to enhanced quantum fluctuations. Our goal is
to set up a theory to systematically describe the competing
many-body phases of two-dimensional (2D) Rydberg-dressed
Fermi gas by treating them on an equal footing beyond the
weak-coupling regime and RPA. We achieve this by solving
the functional renormalization group flow equations for the
fermionic interaction vertices. The resulting phase diagram
(Fig. 2) is much richer than the RPA prediction [33] and
reveals an unexpected f -wave phase.

The paper is organized as follows. In Sec. II we intro-
duce many-body phases of Rydberg-dressed Fermi gas within
mean field from the standard Cooper instability analysis and
random phase approximation. In Sec. III we present the
numerical implementation of a functional renormalization
group to this problem, and in Sec. IV we show many-body
phases beyond the mean-field calculation which manifest
intertwined quantum fluctuations in pairing and density-wave
channels. In Sec. V we summarize our study and implica-
tions of our findings for future experimental developments in
ultracold gases.

FIG. 2. Phase diagram of Rydberg-dressed spinless Fermi gas in
two dimensions based on FRG. Tuning the interaction range rc and
interaction strength g yields Fermi liquid (FL), p-wave superfluid
(p-SF), f -wave superfluid (f-SF), and density wave (DW). False
color (shading) indicates the critical scale �c of the instability where
brighter (darker) regions have higher (lower) Tc. Panels labeled
with P1, P2, and P3 show the details of renormalization flow and
vertex function for points marked with white diamonds on the phase
diagram. The leading eigenvalues for a few channels (see legends)
are shown on the left. The maps of vertex function �(p′

F1, p′
F2, pF1)

are shown on the right for fixed pF1 = (−pF , 0). Superfluid
(density wave) order displays diagonal (horizontal and vertical)
correlations.
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II. RYDBERG-DRESSED FERMI GAS

We first highlight the unique properties of Rydberg-dressed
Fermi gas by comparing it with other well-known Fermi
systems with long-range interactions such as the electron gas
and dipolar Fermi gas. Correlations in electron liquid are
characterized by a single dimensionless parameter rs, the ratio
of Coulomb interaction energy to kinetic energy. In the high-
density limit rs � 1, the system is weakly interacting, while
in the low-density limit rs � 1, Wigner crystal is formed.
The intermediate correlated regime with rs ∼ 1 can only be
described by various approximations [34]. Similarly, dipolar
Fermi gas also has a power-law interaction that lacks a scale,
so a parameter analogous to rs can be introduced which
varies monotonically with the density [35]. The situation is
different in Rydberg-dressed Fermi gas with interaction given
by Eq. (1). From the interparticle spacing 1/

√
2πn and the

Fermi energy εF = 2πn/m (we put h̄ = 1 and kB = 1) in
terms of areal density n, one finds that the ratio of interac-
tion energy to kinetic energy scales as n2/[1 + (2πr2

c )3n3],
which varies nonmonotonically with n unlike an electron
liquid due to rc [Fig. 1(a) inset]. A distinctive feature of the
interaction V (r) is revealed by its Fourier transform in two
dimensions [33],

V (q) = gG
(
q6r6

c /66
)
, g = πu0/3r4

c , (2)

where q is the momentum, q = |q|, g is the coupling
strength, and G is the Meijer G function [36]. The function
V (q), plotted in Fig. 1(b), develops a negative minimum at
q = qc ∼ 4.82/rc. This is the momentum space manifestation
of the steplike interaction potential (1). These unique behav-
iors are the main culprits of its rich phase diagram.

Starting from the free Fermi gas, increasing the interac-
tion g may lead to a diverging susceptibility and drive the
Fermi liquid into a symmetry-broken phase. We first give
a qualitative discussion of potential ordered phases using
standard methods to orient our numerical FRG results later.
For attractive interactions, u0 < 0, an arbitrarily small g is suf-
ficient to drive the Cooper instability. By decomposing V (q =
pF − p′

F ) into angular momentum channels, V (2pF sin θ
2 ) =∑

� V�ei�θ where θ is the angle between pF and p′
F , one

finds different channels decouple and the critical temperature
of the �th channel Tc(�) ∼ e−1/N0V� [37] with N0 = m/2π

being the density of states. Thus the leading instability comes
from the channel with the largest V� (hence the largest Tc).
Figure 1(c) illustrates Tc(�) as a function of rc for fixed pF .
It is apparent that the dominant instability is in the � = ±1
channel, i.e., p-wave pairing. Its Tc develops a dome structure
and reaches a maximum around pF rc ≈ 2. For large rc, higher
angular momentum channels start to compete with the � = ±1
channel.

For repulsive bare interactions, u0 > 0, a sufficiently strong
interaction g can induce an instability toward the formation
of (charge) density waves. This has been shown recently
[33] for 2D Rydberg-dressed Fermi gas using random phase
approximation (RPA) which sums over a geometric series
of “bubble diagrams” to yield the static dielectric function,
ε(q) = 1 − V (q)χ0(q) where the Linhard function χ0(q) =
−N0[1 − �(q − 2kF )

√
q2 − 4k2

F /q]. The onset of density
wave instability is signaled by ε(q) = 0 at some wave vector

q = qins, i.e., the softening of particle-hole excitations. Within
RPA, qins always coincides with qc, and the resulting phase
diagram is shown in Fig. 1(d).

While these standard considerations capture the p-wave
pairing and density wave order, they fail to describe the
physics of intertwined scattering between particle-particle and
particle-hole channels. We show below that this missing in-
gredient exhibits significant effects, leading to the emergence
of a robust f -wave superfluid in the repulsive regime. For a
detailed comparison between RPA and FRG see Ref. [38].

III. NUMERICAL IMPLEMENTATION OF FUNCTIONAL
RENORMALIZATION GROUP

Functional renormalization group (FRG) is a powerful
technique that can accurately predict the many-body insta-
bilities of strongly interacting fermions [39]. It implements
Wilson’s renormalization group for interacting fermions in a
formally exact manner by flowing the generating functional
of the many-body system � as a sliding momentum scale
� is varied. Starting from the bare interaction V (q) at a
chosen ultraviolet scale �UV , higher energy fluctuations are
successively integrated out to yield the self-energy � and
effective interaction vertex � at a lower scale � < �UV . As
� is lowered toward a very small value �IR, divergences
in the channel coupling matrices and susceptibilities point
to the development of long-range order. Its advantage is
that all ordering tendencies are treated unbiasedly with full
momentum resolution. The main drawback is its numerical
complexity: at each RG step, millions of running couplings
have to be retained. FRG has been applied to dipolar Fermi
gas [38,40] and extensively benchmarked against different
techniques [41–44]. For more details about the formalism see
reviews [39] and [45]. Note that our system is a continuum
Fermi gas, not a lattice system as extensively studied and
reviewed in Ref. [39].

The central task of FRG is to solve the coupled flow
equations for self-energy �1′,1 and two-particle vertex
�1′,2′;1,2 [39]:

∂��1′,1 = −
∑

2

S2�1′,2;1,2,

∂��1′,2′;1,2 =
∑
3,4

�3,4

[
1

2
�1′,2′;3,4�3,4;1,2 − �1,′4;1,3�3,2′;4,2

+ �2′,4;1,3�3,1′;4,2

]
. (3)

Here the short-hand notation 1 ≡ (ω1, p1), 1,2 (1′, 2′) label
the incoming (outgoing) legs of the four-fermion vertex �,
and the sum stands for integration over frequency and mo-
mentum, � → ∫

dωd2p/(2π )3. Diagrammatically, the first
term in Eq. (3) is the BCS diagram in the particle-particle
channel, and the second and third terms are known as the
ZS and ZS′ diagram in the particle-hole channel [46]. The
polarization bubble �3,4 = G3S4 + S3G4 contains the product
of two scale-dependent Green functions defined by

Gω,p = �(|ξp| − �)

iω − ξp − �ω,p
, Sω,p = δ(|ξp| − �)

iω − ξp − �ω,p
. (4)
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Note that G, S, �, and � all depend on the sliding scale �;
we suppressed their � dependence in equations above for
brevity.

Several well-justified approximations are used to make the
flow equations computationally tractable. To identify leading
instabilities, the self-energy can be safely dropped, and the
frequency dependence of � can be neglected [39]. As a result,
the frequency integral of the fermion loops in Eq. (3) can
be performed analytically. Furthermore, we retain the most
relevant dependence of � on p by projecting all off-shell mo-
menta radially onto the Fermi surface [39]. Then � is reduced
to �1′,2′;1,2 → �(p′

F1, p′
F2, pF1) where the last momentum

variable is dropped because it is fixed by conservation, and
the subscript in pF indicates radial projection onto the Fermi
surface. The initial condition for � at the ultraviolet scale �UV

is given by the antisymmetrized bare interaction V (q),

�(p′
F1, p′

F2, pF1)
∣∣
�UV

≡ 1
2 [V (p′

F1 − pF1) − V (p′
F2 − pF1)].

(5)

We solve the flow equation by the Euler method on a logarith-
mic grid of � consisting of 103 RG steps going from �UV =
0.99EF down to �IR = 10−3EF . Each pF is discretized on
an angular grid with up to hundreds of patches on the Fermi
surface [47]. We monitor the flow of �(p′

F1, p′
F2, pF1), which

contains hundreds of millions of running coupling constants.
When the absolute value of a running coupling constant in
� exceeds a threshold, e.g., 50EF , signaling an imminent
divergence, we terminate the flow, record the critical scale
�c, and analyze the vertex to diagnose the instability. If the
flow continues smoothly down to �IR, we conclude the Fermi
liquid is stable down to exponentially small temperatures.
Scanning the parameter space (g, rc) gives the phase diagram,
whereas �c provides a rough estimate of the Tc of each
ordered phase.

Two complementary methods are employed to identify
the leading instability from the large, complex data set of
�. First, we plot �(p′

F1, p′
F2, pF1) at �c against the angular

directions of p′
F1 and p′

F2 for fixed pF1 = (−pF , 0) [48] to
reveal the dominant correlations between particles on the
Fermi surface. The color map (Fig. 2, lower right columns)
shows diagonal structures (p′

F1 = −p′
F2) for pairing instabil-

ity, and horizontal-vertical structures (scattering pF1 → p′
F1

with momentum transfer close to 0 or 2pF ) for density waves
[45,49]. This method directly exposes the pairing symmetry
through the number of nodes along the diagonal structures:
a p-wave phase has one node, an f -wave phase has three
nodes, etc. In the second method, we construct the channel
matrices from �, e.g., VBCS (p′, p) = �(p′,−p′, p) for the
pairing channel and V q

DW (p′, p) = �(p + q/2, p′ − q/2, p −
q/2) for the density wave channel. Different values of q,
e.g., qi = (qi, 0) with qi ∈ {0.05pF , 0.5pF , pF , 2pF } for i ∈
{1, . . . , 4}, respectively, are compared (see DWi in Fig. 2,
left column). The channel matrices are then diagonalized,
and their the most negative eigenvalues are monitored. This
method provides a clear picture of the competition among
the channels. The eigenvector of the leading divergence
exposes the orbital symmetry, e.g., p- or f -wave, of the
incipient order.

IV. PHASE DIAGRAM FROM FRG

The resulting phase diagram is summarized in the top panel
of Fig. 2. In addition to the Fermi liquid, three ordered phases
are clearly identified. Here the filled circles mark the phase
boundary, the color indicates the critical scales �c which
is proportional to Tc [39], and the dash lines are guide for
the eye and roughly enclose the regions where �c is higher
than the numerical IR scale �IR. For attractive interactions
g < 0, e.g., at the point P1, the leading eigenvalues are
from VBCS and doubly degenerate with p-wave symmetry.
The vertex map also reveals diagonal structures with single
node (Fig. 2), confirming a p-wave superfluid phase. While
the FRG here cannot directly access the wave function of
the broken symmetry phase, the mean-field argument favors
a px + ipy ground state because it is fully gapped and has
the most condensation energy. Thus Rydberg-dressed Fermi
gas is a promising system to realize the px + ipy topological
superfluid. Our analysis suggests that the optimal Tc is around
pF rc ∼ 2 and Tc increases with |u0|.

For repulsive interactions g > 0, which channel gives the
leading instability depends intricately on the competition be-
tween pF and rc. First, FRG reveals a density wave phase
for pF rc � 4, in broad agreement with RPA. For example,
at point P3, the most diverging eigenvalue comes from VDW ,
and the vertex map shows clear horizontal-vertical structures
(Fig. 2). Note the separations between the horizontal/vertical
lines, and relatedly the ordering wave vector, depend on rc.
For pF rc � 4, however, the dominant instability comes from
the BCS channel despite that the bare interaction is purely
repulsive in real space. In particular, for small pF rc � 2,
such as the point P2 in Fig. 2, the pairing symmetry can be
unambiguously identified to be f -wave: the vertex map has
three nodes, the most diverging eigenvalues of VBCS are doubly
degenerate, and their eigenvectors follow the form e±i3θ .
This f -wave superfluid is the most striking result from FRG.
Finally, for pF rc roughly between 2 and 4, sandwiched be-
tween the density wave and f -wave superfluid, lies a region
where the superfluid paring channel strongly intertwines with
the density wave channel. While the leading divergence is
still superfluid, it is no longer pure f -wave, and it becomes
increasingly degenerate with a subleading density wave order.
This hints at a coexistence of superfluid and density wave.

To determine the phase boundary, we trace the evolution
of �c along a few vertical cuts in the phase diagram and use
the kinks in �c as indications for the transition between the
density wave and superfluid phase or a change in pairing sym-
metry within the superfluid (see inset, top panel of Fig. 2). We
have checked the phase boundary (filled circles) determined
this way is consistent with the eigenvalue flow and vertex map.

Cooper pairing can occur in repulsive Fermi liquids via
the Kohn-Luttinger (KL) mechanism through the renormaliza-
tion of fermion vertex by the particle-hole fluctuations. Even
for featureless bare interactions V (q) = U > 0, the effective
interaction V� in angular momentum channel � can become
attractive due to overscreening by the remaining fermions
[50]. In two dimensions, the KL mechanism becomes effec-
tive at higher orders of perturbation theory, e.g., U 3, and the
leading pairing channel is believed to be p-wave [51]. Here the
effective interaction is also strongly renormalized from
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the bare interaction by particle-hole fluctuations. We have
checked that turning off the ZS and ZS′ channels eliminates
superfluid order on the repulsive side. However, our system
exhibits f -wave pairing with a significant critical temperature
in contrast to usual KL mechanism with exponentially small
Tc. This is because the Rydberg-dressed interaction already
contains a “pairing seed”: V (q) develops a negative minimum
in momentum space for q = qc unlike the featureless inter-
action U . Among all the scattering processes (pF ,−pF ) →
(p′

F ,−p′
F ), those with q = |p′

F − pF | ∼ qc favor pairing. It
follows that pairing on the repulsive side occurs most likely
when the Fermi surface has a proper size, roughly 2pF ∼ qc,
in broad agreement with the FRG phase diagram. These con-
siderations based on the bare interaction and BCS approach,
however, are insufficient to explain the f -wave superfluid
revealed only by FRG, which accurately accounts for the
interference between the particle-particle and particle-hole
channels. The pairing seed and overscreening conspire to give
rise to a robust f -wave superfluid with significant Tc.

V. CONCLUSION

We developed an unbiased numerical technique based on
FRG to obtain the phase diagram for the new system of
Rydberg-dressed Fermi gas to guide future experiments. We

found an f -wave superfluid with unexpectedly high Tc driven
by repulsive interactions beyond the conventional Kohn-
Luttinger paradigm. The physical mechanism behind the Tc

enhancement is traced back to the negative minimum in the
bare interaction, as well as the renormalization of the effective
interaction by particle-hole fluctuations. These results con-
tribute to our understanding of unconventional pairing from
repulsive interactions and, more generally, competing many-
body instabilities of fermions with long-range interactions.
Our analysis may be used for optimizing Tc by engineering
effective interactions using schemes similar to Rydberg dress-
ing. Our FRG approach can also be applied to illuminate
the rich interplay of competing density wave and pairing
fluctuations in solid-state correlated quantum materials. Note
that f -wave pairing has been previously discussed in the
context of fermions on the p-orbital bands [52,53].
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