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We study the emptiness formation probability (EFP) in interacting one-dimensional Bose liquids, which is the
probability that a snapshot of its ground state reveals exactly zero particles within the interval |x| < R. For a
weakly interacting liquid there is parametrically wide regime n−1 < R < ξ (here n is the average density and ξ

is the healing length) where EFP exhibits a nontrivial crossover from the Poisson to the Gaussian behavior. We
employ the instanton technique [NATO Science Series II: Mathematics, Physics and Chemistry (2004), Vol. 221]
to study quantitative details of these regime and compare it with previously reported special cases.
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I. INTRODUCTION

Recent precision measurements of particle number fluctu-
ations in ultracold quantum gases [1–3] have revived inter-
est [4–7] in large-deviation statistics in many-body systems.
Emptiness formation probability (EFP) is probably the most
iconic and widely studied measure of such large deviations.
It plays a special role in the theory of Bethe ansatz [8]
integrable models [9–12] and is a test bed for the development
of nonperturbative techniques, such as the instanton calculus
[13]. The EFP, PEFP(R), is the probability that no particles are
found within the space interval (−R, R) in the ground state
of a one-dimensional (1D) many-body system with average
density n:

PEFP(R) =
N∏

i=1

∫
|xi|�R

dxi |�g(x1, x2, . . . , xN )|2, (1)

where �g(x1, x2, . . . , xN ) is the normalized ground-state wave
function of an N-particle system. Even in integrable models,
where �g is known via the Bethe ansatz, the calculation of the
multiple integral over the restricted interval is still a difficult
task. A similar idea was first discussed in random matrix
theory (RMT) [14], where the probability that no eigenvalues
fall within a certain interval of energy spectrum for different
ensembles was studied [15].

For integrable systems, the problem is often formulated in
terms of spin-1/2 chains, where the EFP is defined as a proba-
bility of measuring l consecutive spin to be “up” in the ground
state of the chain. Via a Jordan-Wigner transformation, such
a formulation is equivalent to the absence of quasiparticles
on l consecutive sites [16]. In these cases, EFP is found to
be expressed in terms of Fredholm determinants [9,16–19].
Even though EFP can be related to known mathematical con-
structions, how to extract its asymptotic behavior is unclear in
general cases. The exact answers are known so far only in a
handful of isolated points in the parameter space [16,20].

This makes EFP an attractive playground for development
of approximate asymptotic techniques. Most studies have
been focusing on the regime nR � 1 (see, however, Ref. [21]),

where EFP is exponentially small, PEFP(R) � 1. In this limit
the problem may be studied within the semiclassical instanton
approximation, where ln PEFP(R) is associated with (twice) the
classical action along a certain dynamical trajectory of the
Euler-Lagrange equations [13]. Such classical problems need
to be solved with the boundary conditions imposed on both
“past” and “future” boundaries, which makes techniques for
initial-value problems fail, either analytically or numerically.
Similar structures are known in the theory of rare events in
classical stochastic systems [22–25].

In this work we focus on EFP in the repulsive Lieb-
Liniger (LL) model [26], of spinless bosons with the repulsive
delta-potential in 1D. The ground (and excited) states of the
model may be written through the Bethe ansatz [26], and
its thermodynamic characteristics are known exactly in terms
of the microscopic parameters [26]. In particular, one may
find the sound velocity vs and thus define the healing (or
correlation) length as

ξ = (mvs)−1, (2)

where m is a mass of bosonic particles. In the limit of
impenetrable interactions (the Tonks-Girardeau limit [27]),
ξ = (πn)−1, the model is equivalent to free fermions. Their
(squared) ground-state wave function coincides with the joint
probability distribution of eigenvalues in the circular unitary
random matrix ensemble [28]. The exact answer for the free-
fermion EFP is thus known from RMT [29,30]:

− ln PEFP(R) = 1

2

R2

ξ 2
+ 1

4
ln(R/ξ ) + O(1). (3)

Within the instanton approach the leading term here was
derived by Abanov [31] through a beautiful application of the
complex-valued functions theory. The only treatment away
from the Tonks-Girardeau case that we are familiar with is
Ref. [32], which conjectured EFP in the limit ξ � R (see
discussion below).

Our particular focus here is on the opposite limit of weakly
interacting bosons. A defining feature of this regime is that
the mean distance between the particles is much shorter than
the correlation length, n−1 � ξ . As a result, there is a wide
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FIG. 1. Function f (R/ξ ), Eq. (4), for a weakly repulsive bosons
on a log-log scale. The numerical results show a crossover for the
exponent of EFP from linear (green dotted line) to quadratic (blue
dashed line), and the red dot-dashed line is fit to the first few points.

range n−1 < R < ξ , which was not previously discussed in
the literature.

Our main finding is that, through the entire range n−1 � R,
the logarithm of EFP may be expressed as

− ln PEFP = nξ f

(
R

ξ

)
, (4)

where f (r) is a universal function, as long as n−1 � ξ ,
plotted in Fig. 1. Its asymptotic limits are

f (r) ≈ 2.01(4)r + 1.50(4)r2 + O(r3), r � 1. (5)

The leading term here is consistent with PEFP ≈ e−2Rn, which
is the Poisson probability of finding the interval 2R empty of
independent (i.e., noninteracting) randomly placed particles
with the mean density n. Indeed, the limit R � ξ is reached
in the noninteracting case (i.e., ξ → ∞). The latter is charac-
terized by the uniform ground state |�g|2 = L−N , where L =
N/n is the system size. From Eq. (1), PEFP = ( L−2R

L )N N→∞→
e−2Rn.

The other limit is

f (r) ≈ 1.70(1)r2 + 0.1(3)r + O(ln r), r � 1. (6)

Now the leading term corresponds to the Gaussian EFP,
PEFP ≈ exp{−1.7 R2n/ξ}. The Gaussian large-R asymptotic
of the zero-temperature EFP may be argued on very gen-
eral grounds [31]. The specific coefficient, found here for
the weakly interacting limit, is new. It is at odds with the
conjecture of Ref. [32], − ln PEFP = 4(R/ξ )2, which is para-
metrically inconsistent with our scaling, Eq. (4).

The term linear in r in Eq. (6) is consistent with being
zero. Indeed, in all cases with short-range interactions, where
exact results are available [16,20], such a term is indeed
absent. We believe that this is a generic feature of short-range
interacting systems and provide a perturbative argument to
that effect in Sec. III. Curiously, the Calogero-Sutherland
model with the inverse-square long-range interactions exhibits
a nonzero O(r) term (i.e., ≈R term in the large-R asymptotic
of − ln PEFP) [14,33]. Our numerical accuracy is not sufficient
to establish a coefficient of the ln R term in Eq. (6).

The paper is organized as follows: In Sec. II we formu-
late an instanton approach for calculating EFP for weakly
interacting bosons. A numerical solution of the corresponding
Euler-Lagrange equations, a discussion of the limiting cases,
and a comparison with other works may be found in Sec. III.
Appendix A presents a derivation of the hydrodynamic action
in the Hamiltonian formalism and Appendix B is devoted
to the free-fermion limit as a test-drive of our numerical
procedure.

II. INSTANTON CALCULUS FOR WEAKLY
INTERACTING BOSONS

Here we adopt the hydrodynamic instanton approach to
emptiness formation, developed by Abanov [31,34–37]. It
is justified in the macroscopic emptiness regime, n−1 � R,
where EFP is exponentially small. It is thus expected to be
given by an optimal evolution trajectory in the space of the
system’s hydrodynamic degrees of freedom. In our case the
latter are the local particle density, ρ(x, t ), and the local
current, j(x, t ). The two are rigidly related by the continuity
equation,

∂tρ + ∂x j = 0. (7)

The classical action, which yields proper hydrodynamic equa-
tions as its extremal conditions, is given by [27]

S[ρ, j] =
∫∫

dxdt

[
m j2

2ρ
− V (ρ)

]
, (8)

V (ρ) = c

2
(ρ − n)2 + (∂xρ)2

8mρ
. (9)

The Lagrangian in Eq. (8) consists of the kinetic energy
of the current along with the potential energy (equation of
state) V (ρ). For a weakly interacting Bose liquid the latter is
quadratic in density deviations from its equilibrium value n,
with the interaction parameter c. The correlation length
is given by ξ = 1/mvs = (mnc)−1/2. It satisfies the weak-
interaction criterion n−1 � ξ as long as γ ≡ mc/n � 1. The
potential energy also contains the so-called quantum pressure
[27,38] term, which reflects the tendency of the condensate to
maintain the uniform density throughout the system (due to
the gradient terms in the underlying quantum description).

Variation of the action (8) over ρ and j, under the con-
tinuity constraint, Eq. (7), yields a classical Euler equation
of the hydrodynamic flow (with the quantum pressure con-
tribution) [39]. Solutions of this equation do not lead to
the formation of emptiness. The reason is that the empti-
ness is a large quantum fluctuation (similar to tunneling),
which is located in a classically forbidden region of phase
space. The instanton approach is based on the realization
that the quantum transition amplitude is given by the path
integral

∫
DρD jeiS[ρ, j]δ(∂tρ + ∂x j), with proper boundary

conditions. The integration contours over the field variables
may be then deformed into the complex plane to pass through
a classically forbidden stationary configuration that reaches
the required emptiness. The probability of such a rare event
is P ∝ |eiSinst |2, where the classical action along the instanton
trajectory, Sinst, acquires a (positive) imaginary part.
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Before proceeding with the analytical continuation to
the complex plane, it is convenient to pass from a La-
grangian formalism (7) to a Hamiltonian formalism. To
this end we introduce a new auxiliary field ∂xθ (x, t ) and
perform the Hubbard-Stratonovich transformation for the
kinetic-energy term ∼m j2/(2ρ) in eiS[ρ, j]. This brings terms
−ρ(∂xθ )2/(2m) + j∂xθ to the action. One may then integrate
by parts the last term (assuming periodic boundary conditions
in the x direction) and employ the continuity relation to find

S[ρ, θ ] =
∫∫

dxdt

[
θ∂tρ − ρ(∂xθ )2

2m
− V (ρ)

]
, (10)

where we neglected the factor
√

det[ρ] from Hubbard-
Stratonovich transformation since it goes beyond the accuracy
of the instanton approach (see Appendix A for details). Notice
that the fields ρ and θ are not subject to any constraints and
play the role of the canonical pair.

We are now on the position to perform the analytical
continuation. Following the standard treatment of tunneling, it
is achieved by the Wick rotation to imaginary time t → −iτ .
The resulting equations of motions may be solved with real
ρ and purely imaginary θ (the integration contour in θ is
deformed to pass through an imaginary saddle point). It is
convenient thus to redefine θ → iθ such that the saddle-point
solutions for both ρ and θ are real functions (in imaginary
time), while the new θ integration runs along the imaginary
axis. The corresponding Euclidian action acquires the Hamil-
tonian form

S[ρ, θ ] = i
∫∫

dxdτ [θ∂τρ − H(ρ, θ )], (11)

H(ρ, θ ) = ρ(∂xθ )2

2m
− c

2
(ρ − n)2 − (∂xρ)2

8mρ
. (12)

Notice that the potential V (ρ) enters the effective Hamilto-
nian H(ρ, θ ) with the “wrong” sign, mirroring the inverted
potential in the tunneling problem.

The equations of motion that follow from the action (11)
are not the most convenient for the numerical solution. To
facilitate the latter, we found it useful to perform the canon-
ical transformation (ρ, θ ) → (Q, P) to the new pair of the
conjugated fields Q(x, τ ) = √

ρ(x, τ ) e−θ (x,τ ) and P(x, τ ) =√
ρ(x, τ ) eθ (x,τ ), or conversely ρ = PQ and θ = 1

2 ln(P/Q).
Substituting these into Eq. (11), one finds for the action

S[Q, P] = i
∫∫

dxdτ [P∂τ Q − H(Q, P)]

+ i

2

∫
dx PQ ln

P

Q

∣∣∣∣
τ=τ f

τ=τi

, (13)

H(Q, P) = − ∂xP∂xQ

2m
− c(PQ − n)2

2
, (14)

where τi( f ) are initial (final) times of the optimal trajectory, as
discussed below.

Variables Q, P may be considered as an analytical continu-
ation of the real-time degrees of freedom Q ↔ � and P ↔ �̄.
The first line of Eq. (13) is nothing but the analytical continua-
tion of the Gross–Pitaevskii (GP) action [40], ∼|∂x�|2/2m +
c(|�|2 − n)2/2. However, would we start directly from the GP
action, and we would miss the boundary term, i.e., the second

line in Eq. (13). This boundary term [41], i
∫

dxρ θ |τ=τ f
τ=τi ,

does not alter the equations of motion but contributes to the
instanton action. Its contribution appears to be of paramount
importance in the regime n−1 < R < ξ . To the best of our
knowledge, it was first introduced in the context of classical
stochastic systems by Krapivsky, Meerson, and Sasorov [24],
but we discuss it here in the quantum context.

It is convenient to pass to dimensionless coordinates and
fields: x → ξx, τ → τ/(nc), P → √

nP, Q → √
nQ. In terms

of them, the Euclidean action takes the form

S = inξ

(∫∫
dxdτ

[
P∂τ Q + ∂xP∂xQ

2
+ (PQ − 1)2

2

]

+ 1

2

∫
dx PQ ln

P

Q

∣∣∣∣
τ=τi

τ=τ f

)
. (15)

The corresponding equations of motion acquire the universal
parameter-free form:

∂τ Q = 1
2∂2

x Q − (PQ − 1)Q, (16)

∂τ P = − 1
2∂2

x P + (PQ − 1)P. (17)

These partial differential equations are known as the
Ablowitz-Kaup-Newell-Segur (AKNS) system [42], which
is integrable with the inverse scattering method. Remark-
ably, exactly these equations appear in the studies of rare
events in the Kardar-Parisi-Zhang classical stochastic equa-
tion [25,43,44].

We can now specify the boundary conditions, appropriate
for the emptiness formation problem. We are looking for a
transition amplitude from a uniform state at a distant past,
τi = −∞, to a state with the emptiness, i.e., zero density for
|x| < R, at the observation time, τ f = 0. This leads to the
conditions: ρ(x,−∞) = n and ρ(|x| < R, 0) = 0. Outside of
the interval x ∈ (−R, R) at the observation time τ f = 0, the
density is not fixed and is to be integrated out in the boundary
term i

∫
dxρ θ |τ=τ f . This fixes θ (|x| > R, 0) = 0. In terms

of the dimensionless coordinates and fields Q, P, these read
as

PQ(x,−∞) = 1, (18)

P(x, 0) =
{0, |x| < R/ξ

Q(x, 0), |x| > R/ξ .
(19)

The zero density constraint within the emptiness interval ρ =
QP = 0, may be enforced by either P = 0 or Q = 0. This
choice is arbitrary, since Q and P are interchangeable by a
canonical transformation.

The program now is as follows: one needs to solve the sta-
tionary field equations (16) and (17), subject to the boundary
conditions (18) and (19). The resulting instanton trajectory is
to be substituted into the action (15) (including the boundary
term), resulting in the instanton action Sinst(R). The semi-
classical transition amplitude is then given eiSinst (R), resulting
finally in the EFP of the form

− ln PEFP(R) = 2 Im Sinst(R). (20)

One notices then that Eqs. (16) and (17) are free from
any parameters, while the boundary conditions (18) and
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(19) depend on the single parameter R/ξ . The form of the
action (15) immediately implies the result, Eq. (4), where
f (R/ξ ) is twice the value of the double integral plus the
boundary term, within the large round brackets on the right-
hand side of Eq. (15), evaluated along the optimal trajectory.

III. RESULTS AND DISCUSSION

The equations of motion (16) and (17) are of the AKNS
type and thus are, in principle, integrable. However, the
boundary conditions (18) and (19) are not the initial-value
problem, which could be treated with the inverse scattering
approach. Although a lot is known about solutions of Eqs. (16)
and (17) (see, e.g., discussion of their multisoliton configura-
tions in Ref. [25]), we were not able to find their analytical
treatment, suitable for EFP setup, formulated above. We thus
resorted to a numerical approach.

We use Chernykh-Stepanov algorithm [23,45] to solve
the equations of motion iteratively. The algorithm takes the
advantage of the diffusive character of Eq. (16) in forward
time and of Eq. (17) in backward time. The two equations
are successively evolved Q-forward, followed by P-backward
in time to converge to the desired solutions. The diffusive
character of the equations provides stability for such iteration
scheme, making the (Q, P) variables advantageous over the
(ρ, θ ) pair. The results are still presented in terms of the more
physically intuitive (ρ, θ ) degrees of freedom.

At the initial backward-propagating step, we put Q(x, τ ) =
1 and P(x, 0) = θ (|x| − R), where θ (x) is the Heaviside step
function. Then P(x, τ ) is determined from backward evolution
of Eq. (17) up to a large negative time τ = −T . Next we up-
date the initial condition for Q from Q(x,−T )P(x,−T ) = 1,
cf. Eq. (18), and evolve Eq. (16) forward in time up to τ = 0,
with P(x, τ ) found in the first step. This way we obtain new
Q(x, τ ), which we use to update the initial conditions for P at
τ = 0, according to Eq. (19), and evolve P backward in time
again, etc. We then evaluate the action (15) and check that
its value does not depend on the choice of the large negative
initial time, −T .

The evolution of density and (imaginary) phase are shown
in Figs. 2 and 3 for R/ξ = 1 and 20, respectively. The cor-
responding f (R/ξ ) is presented in Fig. 1. We numerically
determine this function in the regimes R/ξ � 1 and R/ξ � 1
by curve fitting to the data points with a second-order poly-
nomial. The best-fit coefficients are summarized in Eqs. (5)
and (6), correspondingly. In this work, we are only able to
determine the coefficients for the first two leading-order terms
because numerical precision of data points varies from the
order of 10−4 at R/ξ = 0.1 to the order of 1 at R/ξ = 20.

In R/ξ � 1 limit the system is approaching the nonin-
teracting system. Indeed, ξ → ∞ is equivalent to the limit
c → 0. In this case the stationary equations for Q and P
become pure diffusion and antidiffusion, while the dynamical
part of the action (15) is

∫∫
dxdτP[∂τ Q − 1

2∂2
x Q], which is

nullified on the equation of motion. The only contribution to
the action is thus the boundary term

1

2

∫
dxPQ ln

P

Q

∣∣∣∣
τi=−∞

. (21)

FIG. 2. Time evolution of the density ρ(x, τ ), imaginary phase
θ (x, τ ), and velocity v(x, τ ) for weakly interacting bosons with
R/ξ = 1. The density evolves from the uniform value ρ = n at large
negative τ towards the emptiness of size 2R at τ = 0. At τ → 0
the phase tends to the negative infinity for |x| < R and thus is
not shown. The velocity v is related to spatial gradient of phase,
v = ∂xθ/m.

The final time τ f = 0 does not contribute either, in view of
Eq. (19). Its numerical evaluation gives 1.005(20) in the limit
R � ξ . After taking care of the factor of two in Eq. (20), this
agrees with the free-boson result − ln PEFP(R) = 2nR, as we
expect.

In the opposite limit R/ξ � 1, it is useful to look at the ac-
tion (11) and rescale variables in an alternative way: x → Rx,
τ → Rmξτ , ρ → nρ, and θ → (R/ξ )θ . The Euclidean action
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FIG. 3. Same as Fig. 2 but for R/ξ = 20.

takes the form

S = inξ

∫∫
dxdτ

[
R2

ξ 2

(
θ∂τρ − ρ(∂xθ )2

2
+ (ρ − 1)2

2

)

+ (∂xρ)2

8ρ

]
. (22)

The first line here is the leading term, ∝(R/ξ )2, which is
given by the hydrodynamic action without quantum pressure.
It corresponds to the leading Gaussian term in EFP, Eq. (6).
One notices the absence of the term linear in R/ξ , which is
consistent with our numerical finding.

The message from Eq. (22) is that the Gaussian part of
EFP in the limit R � ξ can be found without the quantum

pressure. This is in agreement with the success of such
hydrodynamic theory [31] to obtain exact results vis à vis
the Gaussian limit. The most notable case is the free-fermion
Tonks-Girardeau limit, cf. Eq. (3). We numerically explored
this known limit (see Appendix B) as a test-drive of our
numerical procedureand found the coefficient 0.501(2), which
should be compared with 1/2 in Eq. (3)—this provides some
support to the accuracy of our results.

We conclude with a brief comparison with some previ-
ously published results on EFP. The only analytic work that
we know of on EFP in a 1D interacting-boson model is a
conjecture by Its, Korepin, and Waldron [32]. In the weakly
interacting limit, the leading term at large R is claimed to
be − ln PEFP = 4(R/ξ )2. This is in parametric disagreement
with our main result (4). There is a factor nξ missing in their
conjecture and it plays an important role as a large parameter
in the weak-interacting region. The only large parameter in
their work is R/ξ , which alone is insufficient to describe the
asymptotic behavior. They might have overlooked this factor
in the calculation. On the other hand, calculations based on
the bosonization procedure [31] are in a parametric agreement
with Eq. (4). Bosonization only allows for a treatment of a
small suppression of density, rather than the emptiness. If one
arbitrarily takes such “small” suppression all the way to zero
density, its probability is consistent with Eq. (4). There is
also a number of results on EFP in antiferromagnetic spin-1/2
XXZ chains with the Hamiltonian

H =
∞∑

j=−∞

[
Sx

j S
x
j+1 + Sy

j S
y
j+1 + �Sz

jS
z
j+1

]
, (23)

where � is the anisotropy in the z direction. It is proposed in
Ref. [46] that EFP in the gapless regime −1 < � � 1 is

− ln PEFP ≈ Al2 + B ln l, (24)

where A and B are constants depending on �, and l is
the number of consecutive spin-polarized sites. An explicit
expression for the coefficient A was found to be

A = ln

[
�2(1/4)

π
√

2π

]
−

∫ ∞

0

dt

t

sinh2(tν)e−t

cosh(2tν) sinh(t )
, (25)

where parameter ν is defined through cos(πν) = �. The
correspondence with the weakly interacting bosons may
be established for � � −1, where the Luttinger parameter
K = 1/[2(1 − ν)] � 1. Defining the correlation length (in
lattice units) as ξ = K/(πn), where the corresponding
bosonic density is n = 1/2 in the lattice units, one finds from
Eq. (25) for the leading term of EFP in the ξ � 1 limit:

− ln PEFP = n

2ξ
l2, (26)

which is in parametric agreement with our result (4).
To conclude, we have developed the instanton approach

that is capable of describing a complete crossover of EFP
from the Poisson to the Gaussian regime over the wide range
of parameters n−1 < R < ξ available in weakly interacting
bosonic 1D systems. Such systems are now routinely realized
in cold atom experiments, where EFP may be measured.
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FIG. 4. The upper panel is the time evolution of the density ρ

for free fermions with R/ξ = 20. The middle and lower parts are the
time evolution of phase θ and velocity v, respectively. The solid lines
are numerical solutions of Eqs. (B3) and (B4), using the algorithm
outlined in Sec. III, and dashed lines are the analytical solutions of
Ref. [31].
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APPENDIX A: HAMILTONIAN FORMALISM FOR
HYDRODYNAMIC SYSTEM

We present details of the transition from La-
grangian formalism to Hamiltonian formalism by the

Hubbard-Stratonovich transformation. The functional integral
of a hydrodynamic system in Lagrangian formalism is

Z =
∫

DρD j eiS[ρ, j]δ(∂tρ + ∂x j), (A1)

S[ρ, j] =
∫∫

dxdt

[
m j2

2ρ
− V (ρ)

]
, (A2)

where the δ function δ(∂tρ + ∂x j) imposes the continuity
equation on the system and V (ρ) is some general potential
energy (equation of state) which does not affect the following
derivation. We introduce an auxiliary field ∂xθ (x, t ) by the
Hubbard-Stratonovich transformation

Z =
∫

DρD jD∂xθ
√

det[ρ]eiS[ρ, j,θ]δ(∂tρ + ∂x j), (A3)

S[ρ, j, θ ]ds =
∫∫

dxdt [−ρ(∂xθ )2/(2m) + j∂xθ − V (ρ)],

(A4)

where the prefactor
√

det[ρ] comes from the Gaussian func-
tional integration and we neglect the overall constant factor
in the functional integral. In principal, the prefactor

√
det[ρ]

should be reformulated and absorbed into the action in the ex-
ponent. However, we can focus only on Eq. (A4) in semiclas-
sical approximation without worrying about the contribution
from the prefactor

√
det[ρ].

In the end, we first do the integration by parts on j∂xθ and
then integrate out the field j. The term with ∂x j is replaced
by −∂tρ because of the δ function δ(∂tρ + ∂x j). The action is
now expressed in Hamiltonian formalism:

S[ρ, θ ] =
∫∫

dxdt

[
θ∂tρ − ρ(∂xθ )2

2m
− V (ρ)

]
. (A5)

APPENDIX B: FREE-FERMION LIMIT

In the free-fermion limit the hydrodynamic potential is
given by

V (ρ)= 2
∫ πρ

πn

dk

2π

k2

2m
− μ(ρ − n) = π2(ρ3 − 3n2ρ + 2n3)

6m
,

(B1)

FIG. 5. 2 Im Sinst/nR vs R/ξ for free fermions. The blue dashed
line is a fit to 0.501πR/ξ .
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where μ = (πn)2/2m is the chemical potential. We substitute
it in the hydrodynamic action (11) to find

S = i
∫∫

dxdτ

[
θ∂τρ − ρ(∂xθ )2

2
+ V (ρ) + (∂xρ)2

8ρ

]
, (B2)

where we kept the quantum pressure term from the weakly
interacting case, since, as explained in Sec. III, it does not
contribute in the large-R limit anyways. We now proceed to
the Q, P variables as above and then make them dimension-
less, using ξ = 1/πn appropriate for the free fermions. The
resulting equations of motion are

∂τ Q = 1
2∂2

x Q − 1
2 (P2Q2 − 1)Q, (B3)

∂τ P = − 1
2∂2

x P + 1
2 (P2Q2 − 1)P, (B4)

with the same boundary condition (18) and (19) and the
modified action

S = inξ

(∫∫
dxdτ

[
P∂τ Q + ∂xP∂xQ

2
,

+ (P3Q3 − 3PQ + 2)2

6

]
+ 1

2

∫
dx PQ ln

P

Q

∣∣∣∣
τ=0

τ=−∞

)
.

(B5)

The instanton solution is shown in Fig. 4, where we compare
it to the analytical solution (without quantum pressure) of
Ref. [31]. The corresponding optimal action is shown in
Fig. 5. Its best fit is given by

− ln PEFP = 0.501(2)(R/ξ )2 + O(ln R/ξ ), (B6)

where we used relation ξ = 1/πn. This is in a very good
agreement with exact result for the free fermions, Eq. (3)
[29,30].
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