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We study topological features of interacting spin- 1
2 particles in one-dimensional state-dependent optical

lattices. Due to the cotranslational symmetry, we introduce the center-of-mass Zak phase with the help of
center-of-mass momentum. There appear topological bound states composed by two particles in different spin
states via tuning hopping and interaction strengths. Under symmetric open boundary conditions, topological edge
bound states appear as a result of the nontrivial center-of-mass Zak phase of bound-state band, which is protected
by the center-of-mass inversion symmetry. The interaction plays a crucial role in the appearance of topological
bound states and the system becomes completely trivial if the interaction is switched off. By periodically
modulating the hopping and interaction strengths, we show how to implement topological Thouless pumping
of bound states, in which the quantized shift of center of mass can be described by a nontrivial center-of-mass
Chern number.

DOI: 10.1103/PhysRevA.101.023620

I. INTRODUCTION

Topological band theory provides a general framework to
explain topological features via topological invariants defined
with single-particle energy bands. It can be traced back to the
great success in explaining quantum Hall effects (QHE) [1],
in which a so-called TKNN invariant (i.e., Chern number) is
used to distinguish different phases of matters. Topological
phase transitions happen when topological invariants change.
Later on, Chern number was linked to the quantized charge
pumping in one-dimensional (1D) periodically modulated
lattices [2], which has the same origin as QHE. For decades,
topological band theory played a key role in identifying
topological states and exploring topological materials [3–7].

Ultracold atomic systems have been proved as a powerful
platform for the investigation of noninteracting topological
states, i.e., the realization of Thouless pumping [8,9], Hof-
stadter model [10] and Haldane model [11], measurement
of Zak phase [12], dynamical characterization of topological
phases [13,14], etc. The experimental realizations of the spin-
orbit couplings in ultracold atomic gases [15–17] also bring
a new approach to topological states. Because the interac-
tions between atoms can be precisely tuned by Feshbach
resonances, there are increasing interests in the interplay
between interaction and topology in ultracold atom systems
[18,19]. Recently, it has been reported that the symmetry-
protected topological phase is observed with interacting
Rydberg atoms [20].
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It is challenging to study the topology in a general interact-
ing many-body system, since conventional topological band
theory fails as the interparticle interaction breaks the single-
particle translation symmetry. To overcome this problem, a
method based on twisted boundary condition (TBC) has been
utilized to analyze the many-body topological effects [21].
Another alternative method is the generalized topological
band theory regarding the center-of-mass (c.m.) momentum
[22,23]. Due to strong interaction, the bands of the bound
states are isolated from the continuum band [24–27]. Such
bound states have experimentally demonstrated to be stable
even if the interaction is repulsive [28]. In recent years,
topological bound states have been found in various systems,
such as Su-Schrieffer-Heeger (SSH) model [29–32], XXZ
chain [33], Haldane model [34], Hofstadter superlattice model
[23], Rice-Mele model [22], and Floquet system [35]. Among
these models, we note that they may support topological states
even in the absence of interaction. A natural question arises:
are there topological states in an interacting multiparticle
system whose noninteracting counterpart does not support any
topological state? Furthermore, due to the interaction, some
discrete symmetries essential to topology are reduced, such as
chiral symmetry and inversion symmetry. Therefore, we are
wondering if any essential discrete symmetry is still preserved
in 1D interacting systems.

In this work, we study interacting spin-1/2 particles in a
one-dimensional state-dependent lattice, in which the hopping
strengths are state dependent and interaction strengths are
distancedependent. We first calculate the two-particle energy
bands with respect to c.m. momentum. We find the existence
of interaction-induced topological bound states which are
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characterized by c.m. Zak phase. Remarkably, the topological
bound states are protected by the c.m. inversion symmetry,
and the c.m. Zak phase is quantized if the interspecies interac-
tions are the same. The topological edge bound states under
open boundary conditions are supported by nontrivial two-
body Zak phases, indicating the existence of bulk-boundary
correspondence in the interacting systems. Moreover, we
propose a scheme of implementing topological Thouless
pumping via modulating the interactions and tunnelings. The
nontrivial c.m. Chern number indicates a quantized shift of
c.m. position, which is verified by our numerical simulation.
We emphasize that both the topological bound state and the
topological transport are completely induced by interaction
effects.

The paper is organized as follows. In Sec. II A, we intro-
duce the c.m. Zak phase and Chern number based upon the
c.m. momentum. In Sec. II B, we describe our two-particle
system in a 1D state-dependent optical lattice. In Sec. II C,
we calculate the Bloch Hamiltonian and give the energy band
structure with respect to the c.m. momentum. In Sec. II D,
we investigate the topology of the isolated bands with the
help of c.m. Zak phase. In Sec. III, we propose a scheme
to implement the interaction-induced topological Thouless
pumping. Finally, we give a summary and discuss our results
in Sec. IV.

II. COTRANSLATIONAL SYMMETRY AND
CENTER-OF-MASS ZAK PHASE

A. General formalism

For an interacting system under the periodic boundary
condition (PBC), the quasimomentum of single particle is
no longer the conserved quantity. Considering interaction
that only depends on relative position between particles, the
Hamiltonian

H = HT + V =
∑

i

HT,i +
∑
i< j

V (|ri − r j |) (1)

is invariant under the cotranslation of all N particles through
a unit cell in one-dimensional lattice with periodic boundary
condition [23,33]. For simplicity, we consider a normal 1D
lattice with N particles and L sites here. The cotranslation
operation is formulated by

T̂ |r1, r2, . . . , rN 〉 = |r1 + 1, r2 + 1, . . . , rN + 1〉, (2)

where T̂ is the cotranslation operator and rn, n = 1, 2, . . . , N
denotes the position of the nth particle. The lattice constant is
set to unity a = 1 by default. With the cotranslation symmetry,
one has [Ĥ , T̂ ] = 0. The corresponding conserved quantity is
the center-of-mass (c.m.) quasimomentum K of all particles.

Before proceeding further, we introduce the concept of
seed basis [22]. Generally speaking, the seed basis is all
the possible states that cannot be generated to each other
by cotranslation operator T̂ . The total number of the seed
basis depends on the number of particles and the geometry of
lattice. Physically, each element of the seed basis corresponds
to a certain distribution of particles, and we shall denote
this set as {|r1, . . . , rN 〉}. The choice of seed basis seems to
be somewhat arbitrary. For example, given a certain particle
distribution r1, . . . , rN , one can choose either |r1, . . . , rN 〉 or

|r1 + d, . . . , rN + d〉, d ∈ Z as one of the seed basis. In fact,
different choices of seed basis correspond to different gauge
choices for |K, α〉 [36]. Although the choice of gauge does
not affect the energy bands, it may affect the calculation of
Berry phase. We would like to remark that different elements
of the seed basis can be considered as different virtual “orbits”
labeled by α. In this angle, the many-body system can be
considered as a single quasiparticle. Thus the generalization
from band theory of a single particle to the many-body case is
quite natural and reasonable.

Eigenstates of cotranslation operator T̂ are found to be the
superposition of a series state generated by any of the given
seed basis

|K, α〉 = 1√
L

L−1∑
l=0

eiK (l+�iri/N )T̂ l |{rα}〉

= 1√
L

L−1∑
l=0

eiK (l+�iri/N )|{rα} + l〉, (3)

where |{rα} + l〉 ≡ |r1 + l, r2 + l, . . . , rN + l〉 and {rα} de-
notes one of the given seed basis |r1, r2, . . . , rN 〉, which is
characterized by α. The eigenvalues of T̂ can be derived as

T̂ |K, α〉 =
∑

l

eiK (l+�iri/N )T̂ |r1 + l, . . . , rN + l〉

=
∑

l

eiK (l+�iri/N )|r1 + (l + 1), . . . , rN + (l + 1)〉

= e−iK
∑

l

eiK (l+1+�iri/N )|r1 + (l + 1), . . . , (rN + l + 1)〉

= e−iK |K, α〉. (4)

For a lattice with PBC, there is rn + L = rn, and therefore T̂ L

is an identity matrix, yielding e−iLK = 1, K = 2πn/L, n ∈ Z.
The Hamiltonian can be block diagonalized as the summa-

tion of Bloch Hamiltonians with momentum K ,

Ĥ = ⊕K Ĥ (K ), (5)

where

Hα′,α (K ) = 〈K, α′|Ĥ |K, α〉. (6)

The eigenstates of Ĥ (K ) are the linear combinations of seed
basis

|ψn
K〉 =

∑
{α}

un
K,α|K, α〉, (7)

in which {α} implies the summation of |K, α〉 with respect to
all seed basis labeled by α. By solving the eigenvalue problem
of H (K ), one can obtain the eigenvectors un

K,α and eigenvalues
En

K .
The Brillouin zone (BZ) with respect to c.m. momentum K

forms a manifold; it is natural to investigate the topology of
this manifold. Here, with respect to the c.m. momentum, we
introduce the concepts of c.m. Zak phase [37]

γ n
Zak = i

∫ π

−π

〈
un

K

∣∣∂K

∣∣un
K

〉
dK (8)
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for a 1D system (we mention it as Zak phase for short in the
following), and c.m. Chern number [22]

Cn = i

2π

∫
BZ

dK
∫ T

0
dt

(〈
∂t u

n
K

∣∣∂K un
K

〉 − 〈
∂K un

K

∣∣∂t u
n
K

〉)
(9)

for a (1+1)D system where the Hamiltonian is periodically
modulated with period T . This is quite similar to the well-
known topological band theory in a noninteracting system.

It has been shown that the c.m. shift of the multiparticle
Wannier state is related to the c.m. Chern number [22] in
the topological pumping process. It is tempting to investigate
the physical interpretation of the c.m. Zak phase. According
to the modern theory of polarization, it is known that the Zak
phase in the noninteracting case is related to the Wannier
center (or band center [37,38]) within the unit cell [39,40].
Next, we will use a similar method to show explicitly that the
c.m. Zak phase is related to the c.m. position.

First, the multiparticle Wannier function centered at R0 for
an isolated band can be defined as

|wn(R0)〉 = 1√
L

∑
K

e−iKR0
∣∣ψn

K

〉
, (10)

where |ψn
K〉 is the many-body Bloch state with respect to the

c.m. momentum introduced in Eq. (7). Next, we introduce
the c.m. position operator R̂ such that R̂|r1, r2, . . . , rN 〉 =
(
∑

i ri/N )|r1, r2, . . . , rN 〉. Then we would like to calculate the
expectation value of R̂ with respect to |wn(R0)〉

〈R̂〉w = 〈wn(R0)|R̂|wn(R0)〉
= 1

L

∑
K,K ′

e−i(K−K ′ )R0
〈
ψn

K ′
∣∣R̂∣∣ψn

K

〉
. (11)

To calculate 〈ψn
K ′ |R̂|ψn

K〉, we adopt the argument in Ref. [41],
where the average position 〈x〉 of the extended wave function
under the PBC should be calculated as

〈x〉 = L

2π
Im[log 〈ψ |eiδKx̂|ψ〉], (12)

in which δK = 2π/L. Therefore, the matrix element
〈ψn

K ′ |R̂|ψn
K〉 should be modified as 〈ψn

K ′ |R̂|ψn
K〉 =

L
2π

Im[log (〈ψn
K ′ |ei 2π

L R̂|ψn
K〉)]. With some algebraic

calculations, one has〈
ψn

K ′
∣∣ei 2π

L R̂
∣∣ψn

K

〉
= 1

L

∑
l,l ′

ei(Kl−K ′l ′ )
∑
α,α′

(
un∗

K ′,α′un
K,αei(K�iri−K ′�ir′

i )/N 〈{rα′ }

+ l ′|eiδKR̂|{rα} + l〉)
= 1

L

∑
l,l ′

ei(Kl−K ′l ′ )
∑
α,α′

eiδK (l+�iri/N )

× ei(K�iri−K ′�ir′
i )/N un∗

K ′,α′un
K,αδl,l ′δα,α′

= 1

L

∑
α

un∗
K ′,αun

K,α

∑
l

ei(K−K ′+δK )(l+�iri/N )

= δK ′,K+δK

∑
α

un∗
K ′,αun

K,α, (13)

in which
∑

i ri is the summation of positions of all particles.
Combining Eqs. (11) and (13), one obtains

〈R̂〉w =
∑

K

1

2π
Im

[
log

(
eiδKR0

∑
α

un∗
K+δK,αun

K,α

)]

= R0 + 1

2π
Im

[∑
K

log
〈
un

K+δK

∣∣un
K

〉]
, (14)

in which we have used a compact notation |un
K〉, according

to Ĥ (K )|un
K〉 = En

K |un
K〉. Note that, up to first order, there is

|un
K+δK 〉 ≈ |un

K 〉 + ∂K |un
K〉δK . Therefore, we have〈

un
K+δK

∣∣un
K

〉 ≈ 1 + 〈
∂K un

K

∣∣un
K

〉
δK. (15)

Using the relation log(1 + x) ≈ x for x → 0, we can write
Eq. (14) as

〈R̂〉w ≈ R0 + 1

2π
Im

[∑
K

log
(
1 + 〈

∂K un
K

∣∣un
K

〉
δK

)]

≈ R0 + 1

2π
Im

∑
K

〈
∂K un

K

∣∣un
K

〉
δK

= R0 + i

2π

∑
K

〈
un

K

∣∣∂K

∣∣un
K

〉
δK, (16)

in which we have used the fact that 〈∂K un
K |un

K〉 is a purely
imaginary quantity so that 〈∂K un

K |un
K〉 = −〈un

K |∂K |un
K〉. In the

thermodynamic limit L → ∞, the summation Eq. (16) be-
comes integral:

〈R̂〉w = R0 + i

2π

∫ π

−π

〈
un

K

∣∣∂K

∣∣un
K

〉
dK = R0 + γ n

Zak

2π
. (17)

Therefore, we know that the c.m. Zak phase is related to the
c.m. position of multiparticle Wannier states. The result can
be also generalized to a 1D superlattice or model in higher
dimension.

B. Model

With the theory of describing the many-body topological
properties in hand, we would like to explore the existence
of interaction-induced topological states. We consider two
spin-1/2 particles trapped by a state-dependent optical lattice
[42–45]. The state-dependent lattice considered here consists
of two lattices, which have the same periodicity but different
phase 	φ. These two different particles are trapped sepa-
rately. The phase difference between two lattices indicates
they have a relative spatial shift in real space, as shown in
Fig. 1. The Hamiltonian of this system can be written as

Ĥ = −
∑

l,σ=↑,↓
(Jσ ĉ†

σ,l ĉσ,l+1 + H.c.)

+
∑

l

(V1n̂↓,l n̂↑,l + V2n̂↓,l+1n̂↑,l ), (18)

where ĉ†
σ,l and ĉσ,l are respectively the creation and annihi-

lation operators of spin-σ particles in the lth site (σ =↑,↓,

l = 1, 2, . . . , L). We suppose there are only the intraspecies
tunnelings Jσ , and the interspecies tunnelings (spin flip) are
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FIG. 1. Sketch for 1D state-dependent lattice where two kinds of
spin-1/2 particles are trapped separately. The phases of two periodic
lattices have relative spatial shift. Blue and red lattices represent the
periodic potential for spin-up and spin-down particles, respectively.
Arrows represent the NN tunneling. Gray shadings represent the NN
interspecies interaction. The two lattices are overlapped in real space.
The labels of sites are shown, and we will adapt this convention of
labeling the sites in this work.

forbidden. Thus the particle number of each species is con-
served. Furthermore, we assume nearest-neighbor (NN) inter-
species interaction between spin-up and spin-down particles
is present. The interaction strength will depend on the relative
distance between the particles (see Appendix. A for detailed
discussions), and can be tuned via Feshbach resonance [46].
As the two lattices have relative shift, there are two kinds of
NN interaction strengths V1,2, as depicted by the gray-dashed
lines in Fig. 1. Without loss of generality, the interaction is
assumed to be repulsive (V1,2 > 0) by default in the following
context.

C. Solving the two-particle energy bands

We first consider only two particles with different spin in
this system, as this can be easily solved and may shed light
on some significant physics. The two-particle subspace can
be spanned by the following basis:

H(2) = {|r↓, r↑〉}, (19)

where r↓ (r↑) refers to the position of a (b) particle. Con-
sidering lattice with L↓ = L↑ = L sites, the dimension of the
Hilbert space is L2.

According to Sec. II A, the eigenstates of a cotranslation
operator under periodic boundary condition are found to be

|K, r↑↓〉 = 1√
L

N∑
l=1

eiKl |r↓ + l, r↑ + l〉, (20)

where r↓ = r↑ + r↑↓. To be explicit, we have used the notation
r↑↓ to label the eigenstates of cotranslation operator according
to relative distance between two particles. This is a convenient
way to distinguish the seed basis. As discussed in Sec. II A,
the choice of r↓ and r↑ determines the gauge. In this calcula-
tion, we fix r↑ = 0 and let r↓ = r↓↑. Then the seed basis used
here are {|r↓↑, 0〉}, r↓↑ ∈ [−L/2, L/2].

The Bloch Hamiltonian can be derived from (18) as

Hr′
↓↑,r↓↑ (K ) = 〈K, r′

↓↑|Ĥ |K, r↓↑〉, (21)

which is an L-by-L matrix in the basis of |K, r↓↑〉. For
convenience, we arrange the basis in the order of {|K, r↓↑〉}
by r↓↑ = 1, 2, . . . , N/2 − 1,−N/2,−N/2 + 1, . . . ,−1, 0. In
this manner, the matrix representation of H (K ) reads

H (K ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V2 −(J↓ + J↑e−iK ) 0 · · · −(J↓ + J↑eiK )

−(J↓ + J↑eiK ) 0 −(J↓ + J↑e−iK ) · · · 0

0 −(J↓ + J↑eiK )
. . . · · · ...

...
...

... 0 −(J↓ + J↑e−iK )

−(J↓ + J↑e−iK ) 0 0 −(J↓ + J↑eiK ) V1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

By numerically diagonalizing the Bloch Hamiltonian Eq. (22)
for all c.m. quasimomentum K , we obtain the energy bands of
the system within the first Brillouin zone. In the noninteract-
ing case, the system is simply the direct product of two normal
lattices. Correspondingly, the c.m. quasimomentum is an aver-
age of two single-particle momentum K = (k↓ + k↑)/2. The
energy bands with respect to K = (k↓ + k↑)/2 are shown in
Fig. 2(a). For strong interaction, there appears one continuum
and two isolated bands, as shown in Figs. 2(b)–2(d). The
continuum corresponds to states in which two particles move
quasi-independently. The isolated bands correspond to bound
states, where particles are bound by interaction and perform
correlated dynamics. The appearance of two isolated bands
is because there are two kinds of interactions V1,2. We find
that when V1 �= V2, or V1 = V2 and J↓ �= J↑, there is a gap

between the isolated bands, as shown in Figs. 2(b) and 2(d),
respectively. However, when J↓ = J↑ and V1 = V2, the two
isolated bands become gapless; see Fig. 2(c).

D. Topological nature of isolated bands

As pointed in the previous subsection, the system is the
direct product of two simple lattices under interaction-free
condition. It is already known that this system is completely
topologically trivial. For strongly interacting condition, the
two isolated bands are away from the continuum band.
Since the two particles within the continuum band are quasi-
independent, and the lattices are both trivial, the continuum
states should also be trivial. It is more intriguing to explore
the topological properties of isolated bands.
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FIG. 2. Band structure with respect to c.m. quasimomentum K
in four different conditions: (a) J↓ = 0.1J↑ and V = 0. (b) J↓ =
J↑, but the two kinds of interaction differ: V1 = 10J↑,V2 = 7J↑.
This condition corresponds to the two sets of lattices having a
relative shift 	x �= a/2 so that the two interactions are imbalanced.
(c) Gapless condition for isolated bands: V1 = V2 = 10J↑ and J↓ =
J↑. (d) Topological condition: V1 = V2 = 10J↑ and J↓ = 0.1J↑. The
V1 = V2 condition corresponds to the relative shift of two lattices
being 	x = a/2. The size of system is set as L↓ = L↑ = 26.

1. Discrete symmetry and quantized Zak phase

We note that, if V1 = V2 = V , the Bloch Hamiltonian
Eq. (22) possesses the c.m. inversion symmetry

IH (K )I−1 = H (−K ), (23)

where

I =

⎡
⎢⎢⎢⎣

1
. .

.

. .
.

1

⎤
⎥⎥⎥⎦ (24)

and I2 = 1. The c.m. inversion symmetry manifests that the
system is invariant if the relative distance of two particles
r↓↑ = r↓ − r↑ are reversed r↓↑ → −r↓↑. This is the result of
symmetry of interaction and the cotranslation symmetry. The
eigenstates of H (K ) and H (−K ) are therefore connected via

I
∣∣un

K

〉 = eiθ (K )
∣∣un

−K

〉
, (25)

where θ (K ) is a K-dependent function with θ (K + 2π ) =
θ (K ) + 2πm. Therefore, one can obtain the following
relation:

An
−K = 〈

un
−K

∣∣∂−K

∣∣un
−K

〉 = −〈
un

K

∣∣eiθ (K )I−1∂K (e−iθ (K )I|un
K〉)

= i∂Kθ (K ) − 〈
un

K

∣∣∂K

∣∣un
K

〉
= i∂Kθ (K ) − An

K , (26)

and hence the Zak phase is given as

γ n
Zak = i

∫ π

−π

An
K dK = i

∫ π

−π

[
i∂Kθ (K ) − An

−K

]
dK

= −[θ (π ) − θ (−π )] − i
∫ π

−π

An
−K dK

= 2πm − γ n
Zak, m ∈ Z, (27)

which implies that the Zak phase of the system is quantized to
0 or π mod 2π [37,47]. It is quite easy to understand why the
Zak phase is quantized by considering the relation between
Zak phase and the c.m. position of multiparticle Wannier
states. The c.m. inversion symmetry requires that the c.m.
position of the multiparticle Wannier states should be centered
at either of the two inversion-symmetric points of the lattice.
This can be seen from Eq. (16) that, since the Zak phase
is quantized to 0 or π mod 2π , the center of multiparticle
Wannier state 〈R̂〉w = R0 + γ n

Zak/2π would take half-integer
value, indicating it is only centered at inversion-symmetric
points. The discussion on imbalanced interaction V1 �= V2 is
presented in Appendix B.

In addition, the system also possesses the time-reversal
symmetry

KH (K )K−1 = H (−K ), (28)

in which K is the complex-conjugation operator.
As shown in the previous section, the isolated bands of

this system are well separated from continuum as long as the
interaction is strong enough, and they are still gapped from
each other in the limit of thermodynamic if J↓ �= J↑. We can
therefore evaluate the Zak phase of the isolated bands accord-
ing to Eq. (8). We present the numerical calculation of the
Zak phase according to Eq. (8) versus different ratios of J↓/J↑
in Fig. 3(a). The result shows a great quantization of Zak
phase, and the phase transition at |J↓/J↑| = 1 is very distinct.
Therefore, we are able to identify two topologically different
phases. If |J↓/J↑| > 1, the system is trivial, with the Zak
phase γZak = 0. If |J↓/J↑| < 1, the system is topological, with
the Zak phase γZak = π . The gapless condition |J↓| = |J↑| is
characterized as the topological transition point. It is known
that, in the conventional topological band theory, the Zak
phase is affected by the choice of unit cell [48] and the gauge
of Fourier transformation [36]. As stated in Sec. II A, the
choice of seed basis affects the c.m. Zak phase. For example,
if instead one chooses a different kind of seed basis r↓ ≡ 0,
r↑ ≡ r↓↑ = 0, 1, . . . , N/2−1,−N/2,−N/2+1, . . . ,−1, the
off-diagonal matrix elements −(J↓ + J↑e−iK ) in Eq. (22)
would be changed to −(J↑ + J↓e−iK ). In this gauge, there is
γZak = 0 if |J↓/J↑| < 1 and γZak = π if |J↓/J↑| > 1. How-
ever, the difference between these two phases is δγZak =
π mod2π , which is independent of the choice of gauge. In
other words, these two phases are still topologically distinct in
this gauge choice. In the next section, Sec. III, we will present
the topological pumping, which will further prove there are
two distinct phases.

Effective single-particle model for the isolated bands is
derived up to second order in Appendix C. The effective
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FIG. 3. (a) Zak phase of upper isolated band calculated vs J↓/J↑.
(b) Eigenenergies of bound states vs J↓/J↑. The energy spectrum of
scattering states are not shown here. Blue star and square respectively
mark the in-gap bound states and the bulk bound states at J↓/J↑ =
1/2, and their correlation matrices 
l,l ′ = 〈n↓,l n↑,l ′ 〉 are shown in
(c) and (d). The length of system is L↓ = L↑ = 14 for (a) with PBC
and L↓ = 14, L↑ = 13 for (b)–(d) with symmetric OBC. The strength
of interaction is set to V = 100J↑.

model shows a zigzag geometry, which still preserves the
similar inversion symmetry.

2. Bulk-edge correspondence

Keeping V1 = V2 = V , we proceed to investigate the ex-
istence of topological edge bound states by imposing the
open boundary condition (OBC). In fact, there are two dif-
ferent strategies to determine how the edge is terminated.
One kind of OBC is that L↓ = L↑, where the edge breaks
the c.m. inversion symmetry, and we shall mention it by the
asymmetric boundary. Another kind of OBC, mentioned by
symmetric boundary, is that L↓ = L↑ + 1, which preserves the
c.m. inversion symmetry. In the main text, we only consider

the symmetric boundary. For more discussions about these
two kinds of terminations, see Appendix D.

By using exact diagonalization, we calculate the energy
spectrum for different ratios of J↓/J↑ under the symmetric
open boundary condition. We find that there are doubly
degenerate in-gap states between the bulk of bound states
only for |J↓/J↑| < 1, as shown in Fig. 3(b). Compared with
Fig. 3(a), it is clear that this is in great agreement with the
bulk topology discussed above. To uncover the properties
of the in-gap bound states, we calculate the correlations of
the two particles 
l,l ′ = 〈n↓,l n↑,l ′ 〉. The correlation pattern
shown in Fig. 3(c) clearly reveals the in-gap states are strongly
localized and correlated, indicating the existence of edge
bound states. For comparison, the bound states in bulk of band
are highly delocalized but still bound together; see Fig. 3(d).
The appearance and disappearance of in-gap bound states at
edges is in agreement with our analysis in the bulk topology.
As stated in Sec. II A, the c.m. Zak phase is related to the
c.m. position of multiparticle Wannier states within a cell.
Nontrivial Zak phase leads to extra density accumulation at
the terminated edge if the edge is commensurate to the c.m.
inversion symmetry. This phenomenon is usually called the
bulk-edge correspondence [3,47].

III. INTERACTION-INDUCED THOULESS PUMPING

In this section, we would like to explore the topological
pumping of bound states induced by the interaction effect.
Recall that by adding modulation of on-site energy and tun-
neling, the SSH model is extended to the Rice-Mele model
[49]. In the topological Thouless pumping scheme [2,50],
the two distinct topological phases are connected through
breaking the chiral (inversion) symmetry without closing the
energy gap. After one period of pumping, the Zak phase winds
for 2π , and the polarization is changed for a quanta. The
Thouless pumping has already been realized experimentally
and quantized particle-charge transport is observed [8,9].

For an interacting system, the topological pumping of two
interacting bosons [22] and a many-body case [51,52] has
been investigated. However, these interacting models have
the topological single-particle counterpart in the interaction-
free condition. Here, we propose a scheme to realize the
quantized particle transport based on the interaction-induced
topological bound states discussed in the previous section. In
the same spirit of topological Thouless pumping, we add the
modulations of both interaction and tunneling terms into our
model, which are given as

ĤJ (t ) = −[J − δ(t )]
∑

l

(ĉ†
↓,l ĉ↓,l+1 + H.c.)

− [J + δ(t )]
∑

l

(ĉ†
↑,l ĉ↑,l+1 + H.c.), (29)

with δ(t ) = δ0 sin(ωt + ϕ0), and

ĤV (t ) = [V − 	(t )]
∑

l

n̂↓,l n̂↑,l + [V + 	(t )]

×
∑

l

n̂↓,l+1n̂↑,l , (30)
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FIG. 4. Topological pumping of two-particle bound state in one period T . (a)–(e) Schematic illustrations of the pumping process. Red and
blue lattices refer to periodic potentials for particle ↓ and ↑, respectively. The bound state is formed as long as the interaction is strong enough.
In (b) and (d), there appear degenerate states due to the equal strength of interaction V1 = V2. (f) A 3D view of bound-state energy bands in
closed K − t space of two-particle system. (g) The Zak phase γZak of lower and upper isolated bands as a function of time t in a period. Inset
shows an enlarged area around γZak = 0. (h)–(j) Numerical simulation of two-particle topological pumping. Panel (h) shows a c.m. position
shift of the two particles lc.m. = (l↓ + l↑)/2 starting from two different initial states: |ψi1 (0)〉 = |6↓, 6↑〉 (blue line) and |ψi2 (0)〉 = |6↓, 5↑〉
(pink line). Insets show the schematic diagram of the two initial states. Panels (i) and (j) show density distributions of the two particles
respectively during the pumping. For simplicity, we only show one of the results initialized as |ψi1 〉 = |6↓, 6↑〉. Pumping parameters are
chosen as V = 100J, 	0 = 50J, δ0 = J and ω = 3 × 10−4, φ0 = 0. Lattice length is L↓ = L↑ = 11.

with 	(t ) = 	0 cos(ωt + ϕ0). Here, δ0 and 	0 are the mod-
ulation strengths of hopping and interactions, ω is the com-
mon modulation frequency, and φ0 is the initial phase. The
full modulated Hamiltonian is Ĥ (t ) = ĤJ (t ) + ĤV (t ). Ex-
perimentally, the modulation of tunneling can be realized
through modulating the height of the periodic potential. For
the modulation of interaction, it can be implemented by tuning
the relative position of the two periodic potential [45], where
the interaction is assumed to depend on the relative distance
between particles. The demonstration of the pumping process
is shown in Figs. 4(a)–4(e). Note that our pumping scheme
is essentially different from the coherent transport using the
state-dependent lattice in Ref. [45].

Under the PBC, our pumping scheme adiabatically con-
nects two distinct topological phases of bound states via
breaking the c.m. inversion symmetry without closing the
gap. As shown in Sec. II A, the c.m. Zak phase indicates
the c.m. position within a unit cell. After a pumping cycle,
the Zak phase changes 2π and, correspondingly, the c.m.
position of particles is shifted for a unit cell. This is also a
useful approach to justify the topological nature. Considering
ϕ0 = 0, T = 2π/ω, the resonant tunneling between the two
nearest-neighboring positions mainly occurs at t = T/4 and
t = 3T/4 during the pumping cycle, which is protected by the
nontrivial topology [53].

To ensure the existence of energy gap between isolated
bands and continuum band, we focus on the regime that |V ±
	0| � |J ± δ0|. The bound-state energy bands in a closed

K − t space are shown in Fig. 4(f). According to Eq. (9), we
calculate the Chern number of these two bands numerically,
and the results are C = ±1 for upper and lower bands, respec-
tively. We also calculate the Zak phase as a function of time
in Fig. 4(g). With our choices of seed basis and the pumping
parameters, the Zak phase will reach to π at t = T/4 and to
0 at t = 3T/4. At these two points, the system reduces to the
model Eq. (18), and the Zak phase is strictly quantized. For
other cases, the Zak phase is not quantized and will change
with the parameters. The winding of Zak phase for each band
matches the associated Chern number, coinciding with the
following formula [39]:

Cn = 1

2π

∫ T

0
dt

∂

∂t
γ n

Zak(t ). (31)

Since the Zak phase is affected by the choice of seed basis
and origin of unit cell [48,54], the results in Fig. 4(g) are not
unique, and may vary with different choices [54]. However,
the winding of Zak phase in Eq. (31) after a full pumping cycle
is invariant and quantized [39,40,55].

As a verification of the topological pumping, we further
simulate the quasiadiabatic pumping numerically. We shall
start with two interacting particles in a nearest-neighboring
site as an initial bound state: |ψi1 (0)〉 = |6↓, 6↑〉 or |ψi2 (0)〉 =
|6↓, 5↑〉. These two kinds of initial bound states are dominated
respectively by the two kinds of interaction V1 and V2. During
the adiabatic pumping, these two kinds of initial states will
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evolve along lower or upper isolated bands accordingly. Thus
the results of c.m. position shift will reflect the topology of
the bands. The c.m. position of the particles during the time
evolution is presented in Fig. 4(h). We also present the den-
sity distributions of particles initialized in |ψi1 (0)〉 = |6↓, 6↑〉
during the pumping in Figs. 4(i) and 4(j). The results of
numerical simulation show that the c.m. position of particles
is shifted for one unit towards the left after a complete pe-
riod. The change of c.m. position (	l↓ + 	l↑)/2 = +1/ − 1
is in agreement with the Chern number of upper or lower
band.

IV. SUMMARY AND DISCUSSIONS

In summary, we have investigated the topological nature
of interacting bound states and their transport in a state-
dependent lattice. We find the existence of topological bound
states protected by the c.m. inversion symmetry. This kind
of symmetry requires the system should be invariant under
the interchange of two kinds of distinguishable particles. The
topological nature of bound states can be well characterized
by the quantized c.m. Zak phase. As a result of bulk-edge
correspondence, there appear topological edge bound states
corresponding to nontrivial c.m. Zak phases. The repulsive
bound pair can be regarded as the two-hole excitation of
a filled attractively interacting system. Therefore, to some
extent, the topological bound states reflect the topological
excitations in an interacting many-body quantum system.
Furthermore, the c.m. inversion symmetry in our system may
suggest the possible existence of a symmetry-protected (SPT)
phase [56] for the many-body ground state.

It should be noted that we assume no coherent popula-
tion transfer between two internal states. This is essential
for realizing the c.m. inversion symmetry. If there is such
kind of population transfer, two particles become indistin-
guishable. Therefore, the c.m. inversion symmetry does no
longer exist, since exchanging the relative position of two
indistinguishable particles has no physical meaning. Without
this essential symmetry, the Zak phase will no longer stay
quantized. This means the coherent population transfer is a
symmetry-breaking term.

On the other hand, we have also proposed a topological
Thouless pumping via periodically modulating interaction and
tunneling simultaneously. We obtain a nontrivial c.m. Chern
number which is evidenced by the quantized shift of the
c.m. position in the pumping process. Moreover, although
both systems involve state-dependent lattices, our topological
transport is different from the coherent transport via shift-
ing the potential [45]. In our scheme, the periodic poten-
tial is assumed to shift back and forth, instead of shifting
monotonously. The interplay between interaction and tunnel-
ing plays an important role during the pumping. In future, it
would be intriguing to investigate the pumping of the ground
state via the density matrix renormalization group or other
techniques.

Our model may be realized in a current cold atoms
experiment. The state-dependent optical lattice is an ideal
platform [42,45] in which the interaction and tunneling are
highly controllable. Besides, there are some other systems
or techniques being the possible candidates for realizing the

interaction-induced topological bound states, such as the
synthetic zigzag optical lattice [57,58]. We also note that
our model is similar to that in Ref. [59], and therefore the
experimental consideration may be shared.
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APPENDIX A: STATE-DEPENDENT OPTICAL LATTICE

The state-dependent lattice has been widely used in a
cold atoms experiment. The intraspecies interaction is used
to control and produce the desired entanglement in quantum
computation [43,60]. Usually, the state-dependent lattice con-
sists of two σ+ and σ− polarized standing waves. Atoms with
different internal states will be trapped by different standing
waves. The Hamiltonian of a 1D state-dependent lattice with
two bosonic components can be written in the language of
second quantization

Ĥ =
∑

σ=↑,↓

∫
dx �̂†

σ (x)

[
− h̄2

2m
∇2 + V lat

σ (x, φ)

]
�̂σ (x)

+ ginter

∫
dx �̂

†
↑(x)�̂†

↓(x)�̂↑(x)�̂↓(x), (A1)

where �̂σ is the field operator of spin-σ (σ =↑,↓) particle,
V lat

σ (x, φ) is the state-dependent optical lattice potential, and
ginter = 4πash̄

2/m is the interspecies coupling constant deter-
mined by s-wave scattering process. We have set the lattice
constant to be a = 1. As we only consider the interspecies in-
teraction in our model, the intraspecies interaction terms have
been omitted. The state-dependent optical lattice potential can
be written as

V lat
↑ (x, φ) = V (0)

↑ cos2(kLx + φ/2),

V lat
↓ (x, φ) = V (0)

↓ cos2(kLx − φ/2), (A2)

where V (0)
σ is the height of the lattice potential and φ is the

relative phase shift of the lattice, which is affected by the
laser polarization and can be controlled via the electro-optical
modulator (EOM) experimentally [44,45,61].

With tight-binding approximation, one can expand the field
operators in the 1D single-particle Wannier basis

�̂σ (x) =
∑

l

wσ (x − xl )ĉσ,l , (A3)
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FIG. 5. Depiction for the intraspecies interaction in terms of the
highly localized Wannier functions. Blue and red color respectively
indicates the spin-up and spin-down particle and its associated
trapping lattice. The interaction depends on the overlaps of the two
Wannier functions, and we show two cases as a schematic illus-
tration: (a) V1 < V2, corresponding to a/2 < 	x < a, and (b) V1 =
V2, corresponding to 	x = a/2. Panel (c) shows the strength of
interaction (in the unit of on-site interaction, which is the strongest)
as a function of relative distance 	x between two Wannier functions.
This result is based on the numerical calculation of the Wannier
function of the lowest band with V (0)

σ ≈ 13ER.

where wσ (x − xl ) is the Wannier function of spin-σ particle
localized around xl . Finally, we obtain

Ĥ = −
∑

i, j,σ=↑,↓
Jσ

i, j ĉ
†
σ,iĉσ, j +

∑
i, j,k,l

Vi, j,k,l ĉ
†
↑,i ĉ

†
↓, j ĉ↑,k ĉ↑,l ,

(A4)

where the tunneling and interaction energy are

Jσ
i, j = −

∫
dx wσ

∗(x − xi )

[
− h̄2

2m
∇2 + V lat

σ (x)

]
wσ (x − x j ),

Vi, j,k,l = ginter

∫
dx w↑∗(x − xi )w↓∗(x − x j )w↑(x − xk )

×w↓(x − xl ). (A5)

The strength of interspecies interaction depends on the overlap
of Wannier functions, which is affected by their relative
distance. The closer they are, the stronger they interact, as
depicted in Figs. 5(a) and 5(b). Thus we are able to control
the interspecies interaction via tuning the relative shift of the
two lattices. The tunneling strength, on the other hand, may
be engineered through the spin-dependent ac Stark shift [62].

The strengths of two NN interactions mentioned in main
text read as

V1 =
∫

dx |w↑(x − xl )|2|w↓(x − xl )|2,

V2 =
∫

dx |w↑(x − xl )|2|w↓(x − xl+1)|2. (A6)

Then we would like to estimate the strength of the NN
interaction V1,2. Generally, the NN interaction is omitted for
a deep optical lattice, as it is very weak compared with the
on-site interaction. However, the NN interaction considered in
our model is quite different. If the relative phase between the
two lattices is φ = π/4 in Eq. (A2), the distance between two
nearest Wannier functions of different species is 	x = a/2.
In this condition, the integral of the interaction term in
Eq. (A5) gives V1 = V2, corresponding to the case in our
model. We numerically [63] calculate the integral Eq. (A5)
for different relative distance 	x in Fig. 5(c). We find the NN
interaction strength is roughly about V1 = V2 ≈ 0.025Uon-site

when V (0)
σ ≈ 13ER. Here we use the on-site interaction Uon-site

for comparison. Usually, the ratio between on-site interaction
U and NN tunneling J in optical lattice is in the magnitude
of Uon-site/JNN ≈ 36 when V (0)

σ ≈ 13ER for 87Rb [64]. Thus
the NN interaction strength is roughly about V1 = V2 ≈ 0.9J ,
which is quite considerable. This estimation is in agreement
with the result in Ref. [57], in which a similar type of interac-
tion is considered. With the help of Feshbach resonance, it is
possible to increase the s-wave scattering length and produce
the desirable strong NN interaction. As shown in Fig. 5(c),
the integral of interaction term in Eq. (A5) decays fast
with the increase of distance. The interaction strength for
	x = a is about 10−4Uon-site � V1,2. Therefore, we may
keep only the two NN interspecies interaction terms in our
model (18).

APPENDIX B: EFFECT OF IMBALANCED INTERACTION
ON ZAK PHASE

We briefly discuss if the two interactions are not equal,
V1 �= V2. In this case, the c.m. inversion symmetry would be
broken and the relation in Eq. (23) does not hold. Hence the
Zak phase is not quantized to 0 or π mode 2π , and will
be affected by parameters. We calculate the Zak phase for
different imbalance 	V = (V1 − V2)/2 in Fig. 6. One can note
the nonzero Zak phase will decrease if the imbalance 	V in-
creases. This also explains why the Zak phase changes sharply
in Fig. 4(g), since the imbalance of interaction strength is
large for most time. If the imbalance is small |	V/J↓,↑| � 1,
the Zak phase would still be close to 0 or π . It can be also
noted that the effect of imbalance of the interaction in our
model is in analogy to imbalance of the on-site potential of
the sublattice in the SSH model, in which the chiral symmetry
and inversion symmetry would be broken by this imbalance.
To some extent, the considerations on such imbalance in these
two models share some similarities.

APPENDIX C: EFFECTIVE MODEL FOR BOUND STATES

Taking the tunneling as perturbation, one can obtain the
effective single-particle model describing the bound states.
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FIG. 6. Zak phase of upper isolated band vs different imbal-
anced interaction 	V . Here V1 = V0 + 	V and V2 = V0 − 	V with
V0 = 100J↑; (a) and (b) show the results of J↓ < J↑ and J↓ > J↑,
respectively. For simplicity, we only present the results of upper
band.

For simplicity, we only consider the condition V1 = V2 = V .
The unperturbed Hamiltonian reads

Ĥ0 = V
∑

l

(n̂↓,l n̂↑,l + n̂↓,l+1n̂↑,l ) (C1)

and the perturbative term is

ĤJ = −
∑

l,σ=↑,↓
(Jσ ĉ†

σ,l ĉσ,l+1 + H.c.). (C2)

Aside from the eigenstates that two particles are separated,
one can find two kinds of bound states |dA,l〉 = c†

↓,l c
†
↑,l |0〉 =

(a)

(b) (c)

FIG. 7. (a) Lattice geometry of the effective model Eq. (C4).
Black and gray lines represent first- and second-order effective tun-
neling of bound states. (b),(c) Comparison between original model
and the effective single-particle model. Blue dots are calculated
numerically from the original model and red lines are from the
effective model. We set J↓ = 5J↑ for (b), J↓ = J↑ for (c), and V1 =
V2 = 100J↑ for both.

|l↓, l↑〉 and |dB,l〉 = c†
↓,l+1c†

↑,l |0〉 = |(l + 1)↓, l↑〉 with degen-
erate eigenenergy E0 = V . By applying the degenerate pertur-
bation theory up to second order [65],

Ĥeff = E0P̂ + P̂ĤJ P̂ + P̂ĤJ ŜĤJ P̂, (C3)

where P̂ = ∑
l (|dA,l〉〈dA,l | + |dB,l〉〈dB,l |) is the projector onto

the subspace spanned by unperturbed bound states and Ŝ =
(1 − P̂)/V is a projector onto the orthogonal component of P̂.
Consequently, written in the form of particle operators, the
effective Hamiltonian reads

Ĥeff =
(

V + J2
↓ + J2

↑
V

)∑
l

(d̂†
A,l d̂A,l + d̂†

B,l d̂B,l )

−
∑

l

(J↓d̂†
A,l d̂B,l + J↑d̂†

B,l d̂A,l+1 + H.c.)

+ J↓J↑
V

∑
i

(d̂†
A,l d̂A,l+1 + d̂†

B,l d̂B,l+1 + H.c.). (C4)

(a) asymmetric boundary

(b) symmetric boundary

(c)

(d) (e)

FIG. 8. (a),(b) Lattice geometry of the asymmetric and symmet-
ric boundary. Blue-dashed lines indicate the interaction. (c) Eigenen-
ergies of bound states vs J↑/J↓ under the asymmetric-open boundary
condition, with the same parameters as Fig. 3(a). (d),(e) The corre-
lation matrices 
l,l ′ = 〈n↓,l n↑,l ′ 〉 of the eigenstates correspond to red
star and blue square in (c).
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The first row in the above effective Hamiltonian is
the homogeneous on-site energy. Second and third rows
respectively correspond to dimerized NN tunneling and
homogeneous next-nearest-neighbor (NNN) tunneling. This
effective Hamiltonian indicates the zigzag geometry; see
Fig. 7(a). The Fourier transformation yields

h(k) = d0(k)I + dx(k)σx + dy(k)σy, (C5)

in which σi is the Pauli matrices, and d0(k) = V +
(J2

↓ + J2
↑ )/V + J↓J↑ cos (k)/V , dx(k) = −J↑ − J↓ cos (k), and

dy(k) = −J↓ sin (k). It can be verified that the eigenenergy of
this effective model coincides well with the original model up
to the order of O[(J↓ + J↑)3/V 2], as compared in Figs. 7(b)
and 7(c). There is the inversion symmetry σxh(k)σx = h(−k)
and the Zak phase is quantized. In addition, it can be found
that the inversion symmetry will be preserved for arbitrary
order of perturbation. Such kind of property is due to the
inversion-symmetric form of interaction and the tunneling
does not break this symmetry.

APPENDIX D: ASYMMETRIC OPEN
BOUNDARY CONDITION

The schematic diagrams of asymmetric and symmetric
boundaries are shown in Figs. 8(a) and 8(b). We calculate
the spectrum and in-gap states with an asymmetric bound-
ary; see Figs. 8(c)–8(e). There is always an in-gap state,
but the occupations on the edge are different. This can be
understood from the effective model in Appendix C. With
an asymmetric boundary, the effective lattice misses one
site on the edge, and thus the two edges are in different
dimerization. No matter how the ratio of |J↑/J↓| changes,
there will always an edge bound state if the lattice is long
enough and the bulk-edge correspondence fails. The differ-
ence of the two kinds of termination as well as the results
is because the bulk-edge correspondence should respect the
symmetry that protects the topological properties [48,66]. In
our model, the protecting symmetry is the c.m. inversion sym-
metry, which is broken by the asymmetric termination of the
edge.
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eralized Bloch theorem and topological characterization, Phys.
Rev. B 91, 125424 (2015).

[37] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys. Rev.
Lett. 62, 2747 (1989).

[38] J. Zak, Band Center—A Conserved Quantity in Solids, Phys.
Rev. Lett. 48, 359 (1982).

[39] R. Resta, Macroscopic polarization in crystalline dielectrics:
The geometric phase approach, Rev. Mod. Phys. 66, 899 (1994).

[40] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[41] R. Resta, Quantum-Mechanical Position Operator in Extended
Systems, Phys. Rev. Lett. 80, 1800 (1998).

[42] D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P.
Zoller, Entanglement of Atoms via Cold Controlled Collisions,
Phys. Rev. Lett. 82, 1975 (1999).

[43] M. Olaf, G. Markus, W. Artur, R. Tim, T. W. Hänsch, and
B. Immanuel, Controlled collisions for multi-particle entangle-
ment of optically trapped atoms, Nature (London) 425, 937
(2003).

[44] B. Yang, H.-N. Dai, H. Sun, A. Reingruber, Z.-S. Yuan, and
J.-W. Pan, Spin-dependent optical superlattice, Phys. Rev. A 96,
011602(R) (2017).

[45] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I.
Bloch, Coherent Transport of Neutral Atoms in Spin-Dependent
Optical Lattice Potentials, Phys. Rev. Lett. 91, 010407 (2003).

[46] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo,
and R. Walser, Resonance Superfluidity in a Quantum

Degenerate Fermi Gas, Phys. Rev. Lett. 87, 120406
(2001).

[47] T. Kariyado and Y. Hatsugai, Symmetry-protected quantization
and bulk-edge correspondence of massless Dirac fermions:
Application to the fermionic Shastry-Sutherland model, Phys.
Rev. B 88, 245126 (2013).

[48] J.-W. Rhim, J. Behrends, and J. H. Bardarson, Bulk-boundary
correspondence from the intercellular Zak phase, Phys. Rev. B
95, 035421 (2017).

[49] M. J. Rice and E. J. Mele, Elementary Excitations of a Lin-
early Conjugated Diatomic Polymer, Phys. Rev. Lett. 49, 1455
(1982).

[50] Q. Niu, Towards a Quantum Pump of Electric Charges, Phys.
Rev. Lett. 64, 1812 (1990).

[51] E. Berg, M. Levin, and E. Altman, Quantized Pumping and
Topology of the Phase Diagram for a System of Interacting
Bosons, Phys. Rev. Lett. 106, 110405 (2011).

[52] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and
F. Heidrich-Meisner, Topological charge pumping in the in-
teracting bosonic Rice-Mele model, Phys. Rev. B 98, 245148
(2018).

[53] D. Meidan, T. Micklitz, and P. W. Brouwer, Topological classi-
fication of adiabatic processes, Phys. Rev. B 84, 195410 (2011).

[54] H. Watanabe and M. Oshikawa, Inequivalent Berry Phases for
the Bulk Polarization, Phys. Rev. X 8, 021065 (2018).

[55] R. D. King-Smith and D. Vanderbilt, Theory of polarization of
crystalline solids, Phys. Rev. B 47, 1651 (1993).

[56] X.-G. Wen, Colloquium: Zoo of quantum-topological phases of
matter, Rev. Mod. Phys. 89, 041004 (2017).
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