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Superfluid-to-Mott transition in a Bose-Hubbard ring: Persistent currents and defect formation
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We revisit here the Kibble-Zurek mechanism for superfluid bosons slowly driven across the transition toward
the Mott-insulating phase. By means of a combination of the time-dependent variational principle and a tree-
tensor network, we characterize the current flowing during annealing in a ring-shaped one-dimensional Bose-
Hubbard model with artificial classical gauge field on up to 32 lattice sites. We find that the superfluid current
shows, after an initial decrease, persistent oscillations which survive even when the system is well inside the
Mott insulating phase. We demonstrate that the amplitude of such oscillations is connected to the residual energy,
characterizing the creation of defects while crossing the quantum critical point, while their frequency matches
the spectral gap in the Mott insulating phase. Our predictions can be verified in future atomtronics experiments
with neutral atoms in ring-shaped traps. We believe that the proposed setup provides an interesting but simple
platform to study the nonequilibrium quantum dynamics of persistent currents experimentally.
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I. INTRODUCTION

The Kibble-Zurek (KZ) mechanism, introduced to under-
stand the defect formation at a symmetry-breaking phase
transition, has been theoretically studied and experimentally
verified in many different circumstances [1–17]. The KZ dy-
namics, initially investigated in classical (finite temperature)
critical phenomena has been further extended to quantum
critical systems, where it also has notable connections with
many-body state preparation, adiabatic quantum computation
and quantum annealing [18–27]. Progress in the realization of
quantum simulators has led to important experimental results
in KZ physics, most notably with cold atoms [28–32] and
trapped ions [33,34]. Despite the multitude of works, the
initial proposal put forward more than 30 years ago [35]—to
observe the formation of defects through the changes of the
persistent current in a superfluid ring—was never theoretically
or experimentally addressed in quantum systems. The reason
is twofold: Theoretically, the simulation of the dynamics of a
quantum many-body system on a ring is a highly demanding
task and has not been carried out so far. Experimentally,
to date it has been difficult to realize a condensate with a
ring-shaped geometry.

In this paper, we fill this gap theoretically by investi-
gating how persistent currents are modified on crossing the
superfluid-insulator transition in a Bose-Hubbard ring. Be-
sides its conceptual interest, we believe that our work is timely

in view of the experimental possibilities offered by the newly
born field of atomtronics (see, e.g., the focus issue [36]). We
consider the case where a toroidal trapping potential and a
lattice modulation along the trapping ring is present, such that
the system is described by the Bose-Hubbard model on a ring
pierced by an external static gauge field (see Fig. 1). While the
ground state of this system has been investigated extensively
[37,38], previous studies of the nonequilibrium time evolu-
tion focused on the mean-field regime (e.g., large particle
densities), chain geometries without persistent current, or
short-time analysis [39–46]. We present fully quantum, time-
dependent results for the persistent current on a ring of up to
L = 32 sites, hence beyond the reach of exact diagonaliza-
tion. We carry out our calculations using an approach which
combines the time-dependent variational principle (TDVP)
[47,48] with tree-tensor networks (TTNs) [49–53]. We show
that the annealing from superfluid to a Mott insulator—which
does not carry any current itself at equilibrium—leads to
oscillations of the persistent current flowing in the ring, with
the amplitude showing a strong dependence on the annealing
rate and being related to the residual energy, a key quantity in
the KZ mechanism. We also show that the frequency of the
persistent current oscillations matches the spectral gap of the
Mott insulating final state.

Induced by a classical gauge field, the magnitude of the
persistent current of bosonic particles flowing on a ring
strongly depends on the interaction between particles. At
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equilibrium, strong repulsion at integer filling typically leads
to Mott localization, suppressing the persistent current, while
weak interactions allow current flow in presence of an external
field [37]. Persistent currents are of particular interest in the
growing field of atomtronics [54–57], where atomic particle
currents are used to mimic currents in electronic devices [58].
For instance, atomtronic quantum interference devices, being
the analog of superconducting quantum interference devices,
allow us to study persistent currents in highly controllable
systems of ultracold atomic gases [59,60]. In these systems
of neutral atoms, currents are created by confining a Bose-
Einstein condensate to an effectively one-dimensional system
and driving the particles through gauge fields, implemented
either artificially or by stirring, e.g., using a rotating potential
barrier [61,62]. Thanks to the unrivaled tunability of inter-
actions and potentials in combination with low decoherence,
these systems provide experimental tools to study collective
phenomena, with possible applications in the development of
high precision sensors, quantum simulation, or quantum infor-
mation processing [36], where, for instance, the superposition
of persistent current states could serve as an implementation
of qubits [63,64].

The paper is organized as follows: In Sec. II, we define the
time-dependent Bose-Hubbard model considered throughout
the paper and discuss some of its equilibrium features. Sec-
tion III is dedicated to our tree-tensor network algorithm. We
briefly recapitulate the time-dependent variational principle
and present the algorithm to carry out the time evolution of
a TTN. Results are presented in Sec. IV, where we discuss the
behavior of the persistent current, its connection to the resid-
ual energy, and the system-size dependence of our findings. In
Sec. V, we provide details of our semianalytical calculations
for the oscillation frequency of the current using second-order
perturbation theory. We finally conclude the paper in Sec. VI
with some additional remarks on our results and possible
experimental realizations.

II. TIME-DEPENDENT BOSE-HUBBARD
MODEL ON A RING

For a system consisting of L sites, the Bose-Hubbard
model, pierced by a magnetic field, is described by the Hamil-
tonian

Ĥ = −J
L∑

j=1

(eiφ/Lb†
j+1b j + H.c.) + U

2

L∑

j=1

n j (n j − 1), (1)

where J and U are the hopping amplitude and on-site in-
teraction, respectively, and the Peierls phase φ takes into
account the flux � through the ring in units of the flux
quantum �0 (φ = 2π �/�0). From now on, we will simply
refer to φ as the magnetic field, for simplicity. We work
at fixed density of ρ = 1 particle per site, where the model
exhibits, for φ = 0, an equilibrium quantum phase transition
between a Mott insulator and a superfluid at (U/J )c ≈ 3.37
[65]. Still at equilibrium, but for φ �= 0, based on previous
mean-field studies [66] and on a strong coupling analysis
of the two-dimensional case [67], the critical value (U/J )c

is expected to decrease as compared to the zero-field case,
therefore extending the Mott insulating phase.

We consider an out-of-equilibrium dynamics, in which the
initial superfluid in the presence of a magnetic field φ �=
0 is driven in time across the transition toward the Mott
insulating phase by ramping up the Hubbard interaction U (or,
equivalently, by ramping down the hopping matrix element
J). This procedure is the reverse as compared to the typical
KZ scenario discussed in Ref. [35], where the transition from
the disordered to the ordered phase is considered, correspond-
ing to a Mott to superfluid transition for the Bose-Hubbard
model. However, it has been shown in Ref. [68] that also
the superfluid to Mott transition obeys KZ power-law scaling
within a limited range of annealing velocities. In contrast to
the superfluid-Mott transition, excitations are created only
after crossing the transition, meaning that there are almost
no excitations within the superfluid phase. The quantity we
investigate is the time-dependent current flowing on the ring,
defined as the expectation value I (t ) = 〈ψ (t )|Î|ψ (t )〉 of the
current operator:

Î = −1

h̄

∂Ĥ

∂φ
= iJ

h̄L

L∑

j=1

(eiφ/Lb†
j+1b j − H.c.). (2)

More in detail, we prepare the system in the ground state |ψ0〉
of the Hamiltonian Ĥ within the superfluid phase, specifically
for U (t = 0) = Ui = 2J , with a given value of the external
magnetic flux � < �0/2, corresponding to φ = 2π�/�0 in
the interval [0, π )—kept fixed during the dynamics—and
then anneal the value of the interaction U (t ) up toward a
final value U (t = t0) = Uf deep inside the Mott phase, in a
time t0, at a constant rate γ = (Uf/Ui − 1)/t0. The ramp is
followed by a final part of the evolution where the interaction
is kept constant at Uf . The time evolution of the interaction is
therefore given by (see also Fig. 5, top) U (t ) = Ui(1 + γ t ) for
t � t0, while U (t ) = Uf for t > t0.

III. THE TTN-TDVP ALGORITHM

In this section, we provide details on the time-evolution
algorithm, the TDVP applied to a TTN. The TTN ansatz
is well suited for one- and two-dimensional systems with
periodic boundary conditions, since the distance between the
first and last sites scales with only O(log2(L)) in the tensor
network [51,69–71]. In particular, we employ a two-tensor
evolution scheme, allowing us to adapt the bond dimension
during the simulation dynamically. Starting from the TDVP
as introduced by Dirac and Frenkel, it has been formulated
for loopless tensor networks by Haegeman et al. [47]. Only
recently, this method has been further improved [48,72], over-
coming problems with small singular values in the original
formulation. The algorithm originally has been formulated for
matrix product states (MPSs) and has been extended for MPSs
with an optimized boson basis [73], introducing additional
tensors into the MPS.

In general, the idea of the TDVP algorithm for tensor
networks is to project the change of the wave function onto
the tangent space of the tensor network manifold M with
given bond dimension D. This guarantees that each update
of a tensor is optimal, meaning that the Euclidean distance
between the exact evolution and its MPS approximation is
minimal [48]. Formally, the projection is introduced into
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FIG. 1. Left: Schematic picture of the trapping potential. The
particles are confined to lattice sites on a ring, where they can hop
between neighboring sites with hopping amplitude J , picking up the
phase ±φ/L. Right: Ground-state current I , Eq. (2), as a function of
the on-site interaction U in a system of L = 32 sites at unit filling for
φ = 0.7π .

Schrödinger’s equation by means of the projection operator
P̂|ψ (t )〉, projecting on the tangent space of M at |ψ (t )〉 ∈ M:

ih̄
d

dt
|ψ (t )〉 = P̂|ψ (t )〉Ĥ |ψ (t )〉. (3)

For the model considered in this paper, we exploit the U(1)
symmetry of the Hamiltonian explicitly [53,74,75] and we
use a two-tensor integration scheme to allow for a dynamical
adjustment of the bond dimension and the dimensions of
the different symmetry sectors. For MPSs, this two-tensor
algorithm was presented in Ref. [48]. It has been pointed out
that TDVP cannot be formulated in the form of a differential
equation as in Eq. (3) for the two-tensor scheme, because the
projector does not keep the state within the tensor network
manifold. However, the algorithm requires a discrete time
step anyway and therefore we can perform a singular value
decomposition (SVD) after each update to bring the tensor
network back to the variational manifold M. We present this
two-tensor integration scheme for a TTN, which can easily be
generalized to arbitrary loopless tensor networks.

Let us introduce a decomposition of a tree-tensor network
consisting of M + 1 tensors. Since the network is loopless,
there are M pairs of tensors, with the tensors of a pair
being connected through a bond link. Then, for λ = 1, .., M
labeling such a pair of tensors, as depicted in Fig. 2, the state
represented by the network reads

|ψ〉 =
∑

k,m

(Q(λ)C(λ)(U (λ) )†)k,m

∣∣�(λ)
L,k

〉∣∣�(λ)
R,m

〉
, (4)

with C(λ) = C(λ)
L C(λ)

R being the matrix corresponding to the
two-tensor center block: This matrix is obtained by multiply-
ing the matrices corresponding to the tensors of pair λ, C(λ)

L

and C(λ)
R , where the tensors need be chosen such that in the net-

work geometry C(λ)
R is closer to the pair λ = M than C(λ)

L . Note
that for simplicity we use the same notation for tensors and the
corresponding matrices formed by fusing tensor indices.
The states |�(λ)

L,k〉 and |�(λ)
R,m〉 in Eq. (4) are product states in the

local basis. They correspond to the two subsystems obtained
by splitting the network between the matrices C(λ)

L and C(λ)
R .

In Fig. 2, we visualize this decomposition in an example.
Note that even though the labels indicate a separation into left

Q(λ)

C
(λ)
L

C
(λ)
R U (λ)

FIG. 2. Visualization of the tree-tensor network decomposition
in Eq. (4) for a system with 16 sites. In this example, the matrix Q(λ)

is built from the two lower left tensors encircled in red (left box).
The center block is composed of the tensors C (λ)

L and C (λ)
R , being the

orthogonality center of the network as indicated by the arrows, while
the matrix U (λ) represents the rest of the network [blue (right) box].
Note that this notation is used for convenience to represent the three
different parts of the TTN: the orthogonal parts Q(λ) and U (λ) and
the center block C (λ). In practice, we never calculate Q(λ) or U (λ)

explicitly but keep them in the TTN format.

and right parts, the physical bipartition usually is of different
shape.

Since the network is free of loops, we can choose
it to be isometrized with respect to the center block
C(λ), such that Q(λ) and U (λ) have orthonormal columns
((V (λ) )†V (λ) = 1,V = Q,U ). Using this decomposition, it is
possible to follow the derivations in Refs. [72,73,76] to find
the projector onto the space of two-tensor variations:

P̂ = P̂(2)
M +

M−1∑

λ=1

(
P̂(2)

λ − P̂(1)
λ

)
,

with P̂(2)
λ = P̂L,λ ⊗ P̂R,λ, P̂(1)

λ = P̂L+C,λ ⊗ P̂R,λ, and

P̂L,λ =
∑

k,k′
(Q(λ)(Q(λ) )†)k,k′

∣∣�(λ)
L,k

〉〈
�

(λ)
L,k′

∣∣,

P̂L+C,λ =
∑

k,k′

(
Q(λ)C(λ)

L

(
C(λ)

L

)†
(Q(λ) )†

)
k,k′

∣∣�(λ)
L,k

〉〈
�

(λ)
L,k′

∣∣,

P̂R,λ =
∑

m,m′
(U (λ)(U (λ) )†)m,m′

∣∣�(λ)
R,m

〉〈
�

(λ)
R,m′

∣∣.

One of the key ideas of the TDVP in this form is to use a
Lie-Trotter splitting [77] for Eq. (3), yielding one differential
equation for each of the summands in the projector. These
differential equations can be solved efficiently one after the
other [72]. We can therefore update the network according to
every summand in the projector step by step. Since there are
two types of projectors, P̂(2)

λ and P̂(1)
λ , we get two structurally

different equations to update the network. In particular, the
projector P̂(2)

λ introduces the update of a two-tensor block C(λ),
while the projector P̂(1)

λ leads to an update of the tensor C(λ)
R .

Effectively, these updates are governed by the equations

ih̄Ċ(λ) = H(2)
eff,λC(λ) λ = 1, .., M, (5)

ih̄Ċ(λ)
R = −H(1)

eff,λC(λ)
R λ = 1, .., M − 1, (6)

where the application of the effective Hamiltonian on the
right-hand side corresponds to a tensor contraction of multiple
indices. The effective Hamiltonians are constructed from the
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FIG. 3. Left: Effective Hamiltonian for the two-tensor block C (1)

in a TTN of eight physical sites. It is obtained by contracting the
Hamiltonian (red rectangle) with the state from above and below.
The state is isometrized with respect to the tensor C (1), taken out
from the state. Right: Effective Hamiltonian for the tensor C (1)

R built
from the contraction of the effective Hamiltonian on the left with the
time-evolved tensor C (1)

L (blue/dark gray) from above and below.

summands on the right-hand side of Eq. (3) as depicted in
Fig. 3 for the simple case of a two-layer tree (eight physical
sites), where the center block is built from the left lower and
upper tensors. Note that after evolving the two-tensor block,
an SVD has to be performed to bring the network back to
the initial form. The full algorithm is summarized hereafter,
while some of the steps are shown graphically in Fig. 4. In our
implementation, we chose the pair built from the uppermost
tensors to be the one with λ = M, for which there is no
backward evolution. The tensors in the TTN are then evolved
in time from left to right, bottom to top.

Algorithm: Two-tensor TTN-TDVP.

1: for λ = 1, .., M do
2: Isometrize network with respect to C (λ)

3: Build H(2)
eff,λ

4: Evolve C (λ) according to Eqs. (5)
5: Perform SVD of C (λ) = C (λ)

L C (λ)
R ((C (λ)

L )†C (λ)
L = 1)

6: If λ �= M then
7: Build H(1)

eff,λ

8: Evolve C (λ)
R according to Eqs. (6)

9: end if
10: end for

IV. RESULTS

Since the system starts in the ground state |ψ0〉 at a finite
value of the external flux φ ∈ [0, π ) and inside the superfluid
phase, it displays an initial persistent current I (0) = 〈ψ0|Î|ψ0〉
(see Fig. 1). Upon annealing the interaction upward to enter in
the Mott region of the equilibrium phase diagram, the current
I (t ) drops toward zero (see Fig. 5), the expected value of the
equilibrium current at zero temperature in the Mott phase.
There is, however, a residual, time-dependent current which
is approximately sinusoidal, IAC(t ) ∼ I0 cos(ω0t + ϕ), with a
characteristic main frequency ω0. The amplitude I0 depends

(a) (b)

(c) (d)

(e)

FIG. 4. Pictorial description of the algorithm to evolve the block
built out of the two leftmost tensors (yellow/light gray) by one
time step, in a system of eight sites. (a) Initially, the TTN is
isometrized with respect to the yellow (light gray) tensors building
the block (isometrization indicated by arrows). (b) The two tensors
are contracted to form a single block, being evolved according to
Eqs. (5) with the effective Hamiltonian in Fig. 3 (left). (c) The
blue color (dark gray shading) indicates that the block has been
evolved in time. Afterward, the block is split by means of an SVD.
The singular values are contracted into the ”right” tensor, being the
new orthogonality center of the network. (d) The ”right” tensor is
evolved backward in time according to Eqs. (6), using the effective
Hamiltonian in Fig. 3 (right). (e) The first pair of tensors has been
evolved by one time step. The upper tensor of the evolved pair is
drawn in the color for nonevolved tensors as it has been evolved
backward in time.

on the annealing rate γ and will be the key signal of the de-
fects created by crossing the quantum phase transition: The
slower the annealing, the smaller I0 is, as suggested by the
three curves in Fig. 5. As expected, this extrapolates well to
the adiabatic limit (γ → 0), where no oscillations are present,
since the equilibrium current of the Mott insulator vanishes.
On the other hand, the main frequency ω0 is essentially unaf-
fected by the annealing rate, but increases when the final Mott
interaction Uf is increased. As we will show, this behavior
is related to the dynamical spectral gap of the final Mott
insulating state, as the persistent alternating current is related
to the dynamical oscillation between the Mott insulating state
and higher excited states in which few holes and multiply
occupied sites are created.

In the following, we analyze the current amplitude I0 and
its relation to the residual energy εres, defined as the excitation
energy above the final ground-state energy, and the oscillation
frequency ω0 in more detail. At the end of the section, we will
discuss the size dependence of the results.

We extract the oscillation amplitude by numerically calcu-
lating I0 = (1/2)[maxt�t1 I (t ) − mint�t1 I (t )], where we take
t1 > t0 to neglect some possible transient behavior after the
final value of Uf is reached. The results are presented in
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FIG. 5. Top: Annealing protocol used for the on-site interaction
U (t ) throughout the paper. After linearly increasing the interaction
with annealing rate γ , the system for t � t0 is evolved according to
the final constant Hamiltonian. Bottom: Current I (t ) as a function
of time during the annealing from Ui = 2J to Uf = 7J in a system
of L = 32 sites at fixed magnetic field φ = 0.7π for three different
annealing rates γ .

Fig. 6, quantifying the decay of the amplitude with decreasing
annealing rate γ . As shown hereafter, this behavior is under-
stood by the dependence of the amplitude on the occupation
of higher excited states, and in particular the occupation c2

of the first excited state of the final Hamiltonian. The prob-
ability c2, on the other hand, behaves as in a two-level sys-
tem undergoing a Landau-Zener dynamics, with decreasing

10-3
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10-1

1.0 2.0 4.0 8.0 14 20

re
s 

(u
ni

ts
 o

f J
)

1/  (units of -h/J)
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1.4Io

2, L=16

res, L=32
7.3Io

2, L=32

FIG. 6. Residual energy εres and square of the oscillation ampli-
tude I2

0 of the persistent current as a function of the inverse annealing
rate γ in systems of sizes L = 16, 32. The residual energy shows a
crossover from power-law Kibble-Zurek (1/γ � 1.7) to exponential
Landau-Zener behavior. The field is kept constant at φ = 0.7π and
the on-site interaction is ramped from Ui = 2J to Uf = 7J .

excitation probability as γ → 0. The amplitude I0 is the main
signature of the quasiadiabatic driving through the transition.
This is further corroborated by a relation between the current
amplitude and the residual energy as detailed below. Denoting
by {|α〉} the (many-body) eigenstates of the final Hamiltonian
Ĥf , with associated energies Eα , one can write for any time
t > t0:

I (t ) =
∑

α,α′
c�
α′cαe−i(Eα−Eα′ )(t−t0 )/h̄〈α′|Î|α〉 . (7)

The constants cα = 〈α|ψ (t0)〉 are the overlaps between the
eigenstates of Ĥf and the state |ψ (t0)〉 at the end of the
annealing ramp. The diagonal matrix elements of the current
operator can lead to a DC component of the current, while
off-diagonal elements can cause oscillations of the current.
Let us now assume that the annealing ramp is slow, such that
the system mainly remains in the ground state |1〉 and only one
excited state |2〉, compatible with the translational symmetry,
is slightly occupied during the ramp (|c2| � |c1| ⇒ c1 =
1 + O(c2

2 )), while all the other excited states have negligi-
ble occupation. Then Eq. (7) simplifies and becomes I (t ) ∼
|c2〈1|Î|2〉| cos(� × t + ϕ) + Ioffset, where ϕ is an unimportant
phase, while h̄� = E2 − E1 is the energy gap between ground
and first excited state. Here Ioffset is a DC component, domi-
nated by the ground-state contribution, and vanishing deep in
the Mott phase, as demonstrated in Fig. 1. On the other hand,
we can argue in the same way that the residual energy will be
dominated by the contribution of the first excited state |2〉:

εres ≈ |c2|2h̄� . (8)

In the slow annealing regime, this implies that both the current
amplitude (I0 ∝ |c2|) and the residual energy (εres ∝ |c2|2)
depend on the annealing rate γ only through the occupa-
tion c2(γ ) of the first excited state. In Fig. 6, this relation
[εres(γ ) ∝ I2

0 (γ )] is verified numerically for different γ , by
comparing the residual energy to the square of the current
(multiplied by a size dependent prefactor). Clearly, the agree-
ment is quite good in the slow annealing regime. Theo-
retically, the propotionality prefactor is given by εres/I2

0 =
h̄�/|〈1|Î|2〉|2 and has been obtained by fitting this ratio for
slow annealing ramps to a constant.

As explained in Ref. [68], the residual energy shows an
effective power-law behavior within a limited range of anneal-
ing velocities, which we find for 1/γ � 3 (L = 32) and 1/γ �
1.7 (L = 16). However, in this regime the simple picture of
having only one excited state involved in the dynamics breaks
down, as manifested by the disagreement of the current and
the residual energy for L = 16 and slightly indicated by the
latest points for L = 32. Very fast annealing leads to a rapid
increase of entanglement, preventing us from studying this
regime for large systems. Moreover, higher excited states
get occupied for fast annealing ramps, which leads to the
appearance of additional transition frequencies in the current,
corresponding to the energy differences between occupied
energy levels [see Eq. (7)]. However, a more quantitative
analysis of those frequencies is beyond the scope of this paper.

We now concentrate on the oscillation frequency and,
in particular, on the most relevant frequency, obtained by
calculating the Fourier transform of I (t ) in an appropriate time
window [t1, t2] I (ω) = ∫ t2

t1
dt I (t )e−iωt , where again t1 > t0 as
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FIG. 7. Position of the highest peak of the Fourier transform (FT,
see inset) of the current for annealing rate h̄γ /J = 1/6 and field φ =
0.7π in a 32-site system (blue dots). Dashed and solid curves show
�(U ) obtained from strong-coupling perturbation theory up to first
and second order, see Eq. (9).

above to allow for a steady-state behavior to set in, and t2 is
the total simulation time. The Fourier transform of the current
I (ω) displays a sharp carrier frequency ω0, where |I (ω0)|
is maximum (see inset in Fig. 7). The oscillation frequency
ω0 is basically insensitive to the external flux φ and to the
annealing rate γ . However, it does depend on the final on-site
interaction Uf : It increases with Uf , as shown in Fig. 7. We will
now argue that, in the quasiadiabatic limit, ω0 is essentially
related to the gap h̄� between the ground and the first excited
state, and hence depends only on the final Hamiltonian. A
theoretical analysis using strong coupling perturbation theory
for the ground and first excited state—presented with more
details in Sec. V—yields

h̄�(Uf ) � Uf − 5.97J + 5.20
J2

Uf
. (9)

The corresponding theory curves including up to first- and
second-order terms are plotted in Fig. 7, showing excel-
lent agreement with the numerical results obtained from
the Fourier transform of the current, hence confirming that
ω0 = �. Furthermore, we observe that the created defects are
not only single holon-doublon pairs, as in this case zeroth
order perturbation theory—taking into account only a single
holon-doublon exicitation—would fit the numerical data. The
necessity of going to second order shows that the defects
consist of multiple holon-doublon pairs, sites with more than
two particles, and several empty sites.

Let us now discuss the system-size dependence of the
results. First, it is important to note that the equilibrium
current of a perfect superfluid (interaction U = 0) decreases
as 1/L with the system size and therefore vanishes in the
thermodynamic limit. For the oscillation amplitude of the
current, we can expect to find a similar behavior as long as
the annealing is quasiadiabatic, being the regime where we
can relate the current amplitude to the residual energy. In
Fig. 6, this behavior is indicated by the larger prefactor for
L = 32 as compared to L = 16. On the other hand, the energy
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FIG. 8. Dynamics of the current for two different system sizes
L = 16 and 32 at annealing rate h̄γ /J = 1/6, magnetic field φ =
0.7π , and annealing from Ui = 2J to Uf = 7J .

gap at the critical point decreases with the system size (see
Ref. [68]), leading to an increased population of excited states
and, correspondingly, larger oscillations of the current. This
effect is shown in Fig. 8, where the amplitudes for N = 16
and N = 32 are very similar for fixed annealing velocity, even
though the initial values differ by a factor of 2. However,
keeping the annealing velocity fixed and increasing the system
size will bring the dynamics out of the quasiadiabatic regime.
Therefore, if we stay in the quasiadiabatic regime, the oscilla-
tions will vanish once we increase the system size.

V. STRONG COUPLING PERTURBATION THEORY

In the previous section, we compared numerical results for
the oscillation frequency of the current with the spectral gap at
the end of the evolution as obtained from perturbation theory.
In the following, we provide some details of our perturbative
calculations for the gap h̄� in the strong repulsion limit. To
this end, we expand the energies of both the ground state and
the first excited state—compatible with the symmetry—up to
second order. From here on, we focus on the case L = 32,
while the field is fixed to be φ = 0.7π as before.

It is important to note that the Bose-Hubbard model is
translationally invariant, implying that the initial state of the
dynamics—a superfluid ground state—is an eigenstate of
the translation operator T̂ , where we find the corresponding
eigenvalue to be 1. Due to the translational invariance of the
model, this eigenvalue is conserved, i.e., the time-dependent
state will be an eigenstate of T̂ with unit eigenvalue at any
time. Later we will use this to construct a suitable basis.

A. Zeroth and first order

In the infinite interaction limit J/U = 0, the ground state
of Eq. (1) is a Mott insulator with one particle per site |GS〉 =
|11...11〉, such that to zeroth order the energy for the ground
state is E (0)

0 = 0. The first excited energy level is degenerate
with E (0)

1 = U for all states with one doublon and one holon.
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Since the ground state is nondegenerate, the first-order
contribution to the ground state energy is given by

E (1)
0 = J 〈GS|V̂ |GS〉 = 0,

where V̂ = −∑
j (eiφ/Lb†

j+1b j + H.c.) is the perturbation. To
calculate the first-order contribution to the excited states,
we use degenerate perturbation theory. First, we construct a
suitable basis, where in particular we restrict the Hilbert space
to the subspace of eigenstates of the translation operator T̂
with unit eigenvalue. Let us define the basis states,

|s〉 = 1√
L

L−1∑

q=0

(T̂)q|0 11..11︸ ︷︷ ︸
length s

21..1〉,

with s = 0, .., L − 2 the separation of the doubly occupied
and the empty site. In this basis, the perturbation matrix
elements evaluate to

〈s′|V̂ |s〉 = −3(δs,s′+1e−iφ/L + δs′,s+1eiφ/L ).

The first-order correction is given by the smallest eigenvalue
of this (L − 1) × (L − 1) matrix, and is found numerically
to be E (1)

1 = −5.97J for L = 32 and φ = 0.7π . Note that
the exact eigenvalues of this tridiagonal Toeplitz matrix are
known. However, we restrict ourselves to the numerical values
for convenience in the next section.

B. Second order

The second-order contribution for the ground state is given
by

E (2)
0 = (J2/U )

∑

k �=GS

|〈k|V̂ |GS〉|2
E (0)

0 − E (0)
k

, (10)

where |k〉 are the energy eigenstates for J/U = 0. In this sum,
only states |k〉 with one doubly occupied and one neighboring
empty site can give a nonzero contribution. Since the operator
V̂ contains 2L operators contributing −2 each, we find for the
second-order correction of the ground-state energy:

E (2)
0 = (−4L)(J2/U ). (11)

Similarly, we continue for the second-order contribution of
the excited state, which is

E (2)
1 = (J2/U )

∑

k /∈{s}

|〈k|V̂ |1ex〉|2
E (0)

1 − E (0)
k

, (12)

where |1ex〉 (not to be confused with |s = 1〉) is the first ex-
cited state we found by diagonalizing the perturbation matrix.
Using the numerical result for this state, we can evaluate the
sum to obtain the energy correction (L = 32)

E (2)
1 = −122.8(J2/U ). (13)

Adding up all the different contributions, we find for the gap

h̄� = E1 − E0 � U − 5.97J + 5.20(J2/U ). (14)

VI. DISCUSSION AND CONCLUSION

Our predictions are ready for experimental verification in
future setups of cold atomic systems on ring lattices, where

the Bose-Hubbard model including a gauge field can be
naturally implemented with 87Rb atoms. Quasilocal currents
can be measured following the readout scheme presented in
Ref. [60]. Due to the quasiadiabatic annealing, the evolution
times required for the observation of oscillations need to
be longer than in commonly used sudden quench scenarios.
However, the time periods in the order of 10 h̄/J needed
here are still reachable in state-of-the-art experiments [60].
Moreover, the nondecaying oscillations might eventually be
used to demonstrate long-living coherence in next generation
quantum simulators.

In conclusion, we have investigated the time-dependent
behavior of the persistent current following a linear annealing
procedure on a Bose-Hubbard ring of up to L = 32 sites
where, in particular, we analyzed the crossover from a su-
perfluid to a Mott insulator in the presence of a gauge field.
We found that after an initial decay, the current starts to
oscillate around nearly zero current, being the ground-state
value at the end of the ramp. The current is nonzero due
to the excitation of higher states and, in particular, results
from the nondiagonal matrix elements of the current oper-
ator. In the slow annealing regime, where only one excited
zero-momentum state is occupied, the oscillation amplitude
is proportional to the square root of the occupation prob-
ability and can therefore be related to the residual energy,
characterizing the creation of defects. In a closed system,
the coherent oscillations are not expected to decay even for
longer evolution times as long as the annealing is sufficiently
slow. Instead, they persist according to Eq. (7), due to the
occupation of few eigenstates and correspondingly a small
number of frequencies. This can easily be understood from the
special case where only the ground and first excited state are
populated. After the annealing (t > t0), the populations stay
constant, while the relative phase between the two populated
eigenstates changes in time, producing the oscillations of
the current. On the other hand, fast annealing leads to the
presence of many frequencies, which might result in the decay
of oscillations due to averaging effects. Using perturbation
theory up to second order, we have been able to compute
the frequency of the oscillations—defined through the final
Hamiltonian only—in the limit of strong final interactions and
slow annealing, in very good agreement with the numerical
findings. While in this paper, we focused on the case where
translational invariance is not broken, it might be interesting
for future research to include a localized barrier, breaking the
translational symmetry and providing the possibility to realize
current-based qubits [63,64].

Note added. Recently, we became aware of the work by
Bauernfeind and Aichhorn [78], presenting in detail the TDVP
for general loopless tensor networks with an application to the
Fork Tensor Product States tensor network used for dynamical
mean-field theory calculations.
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APPENDIX: NUMERICAL
PARAMETERS/CONVERGENCE

In this section, we discuss the numerical parameters we
used for our simulation. For the results shown previously,
we use the bond dimension D = 60, the local bosonic di-
mension d = 5—translating to the limitation of at most four
particles per site—and the fixed time step �t = 2 × 10−3 h̄/J .
In the following, we focus on the convergence in the bond
dimension for the largest system considered (L = 32), since
numerical errors due to the truncation of the local boson
occupation and the finite time step were found to be small
compared to the error due to the bond dimension. As shown
in Fig. 9, the oscillation amplitudes obtained for D = 60
compare well with D = 50, while more significant differences
are visible in comparison with D = 40. This indicates that
indeed D = 60 is enough to obtain accurate results. Note that
in contrast to equilibrium scenarios, where the ground-state
energy decreases monotonically with the bond dimension,
dynamical quantities like the oscillation amplitude can show
nonmonotonic behavior as a function of the bond dimension.

In practice, it turned out that alternatively we can check
if the bond dimension is sufficiently large by comparing the
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FIG. 10. Dynamics of the local current Ik , given as the expec-
tation value of the local current operator in Eq. (A1). The current
between different neighboring sites k and k + 1 is shown for bond
dimensions D = 40 (top) and D = 60 (bottom). Physical parameters
are those used in Fig. 5, at rate γ h̄/J = 1/14.

local currents between sites k and k + 1, defined as the time-
dependent expectation value of the operator [compare with
Eq. (2)]

Îk = iJ

h̄
(eiφ/Lb†

k+1bk − H.c.). (A1)

Considering that the model of interest is translationally
invariant, we expect to find the same local current between
any pair of neighboring sites. However, the TTN breaks the
translational invariance, resulting in different local currents if
the bond dimension is too small. As visualized in Fig. 10, the
local currents do not agree very well for D = 40, while the
agreement is much better for D = 60, confirming that D = 60
yields reliable results.
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