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We theoretically analyze superradiant emission of light from a cold atomic gas, when mechanical effects
of photon-atom interactions are considered. The atoms are confined within a standing-wave resonator and an
atomic metastable dipolar transition couples to a cavity mode. The atomic dipole is incoherently pumped in
the parameter regime that would correspond to stationary superradiance in the absence of inhomogeneous
broadening. Starting from the master equation for cavity field and atomic degrees of freedom we derive a
mean-field model that allows us to determine a threshold temperature, above which thermal fluctuations suppress
superradiant emission. We then analyze the dynamics of superradiant emission when the motion is described by
a mean-field model. In the semiclassical regime and below the threshold temperature we observe that the emitted
light can be either coherent or chaotic, depending on the incoherent pump rate. We then analyze superradiant
emission from an ideal Bose gas at zero temperature when the superradiant decay rate � is on the order of the
recoil frequency ωR. We show that the quantized exchange of mechanical energy between the atoms and the
field gives rise to a threshold, �c, below which superradiant emission is damped down to zero. When � > �c

superradiant emission is accompanied by the formation of matter-wave gratings diffracting the emitted photons.
The stability of these gratings depends on the incoherent pump rate w with respect to a second threshold value
wc. For w > wc the gratings are stable and the system achieves stationary superradiance. Below this threshold
the coupled dynamics becomes chaotic. We characterize the dynamics across these two thresholds and show that
the three phases we predict (incoherent, coherent, chaotic) can be revealed via the coherence properties of the
light at the cavity output.
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I. INTRODUCTION

Superradiance is a quantum interference phenomenon in
the emission amplitudes of an ensemble of dipoles [1,2],
which is accompanied by a macroscopic coherence within the
ensemble [2]. Superradiant enhancement is intimately related
to spontaneous synchronization of quantum systems [3] and
can also be observed when a collection of dipoles is spatially
confined within their resonance wave length and/or when
they interact with the resonant mode of a cavity [4–6]. In
these settings lasing at the frequency and linewidth of the
collective dipole can be observed: this regime has been also
denoted by stationary superradiance [7–12] and can reach
ultranarrow linewidths [9–15]. The dynamical properties can
be cast in terms of a Kuramoto model [16–20]. When the
collective oscillations are sustained by the interplay between
an incoherent pump and the long-range interaction between
the dipoles, the collective dipole locks to a frequency de-
termined by the rate of the incoherent pump. In this case
the dynamics exhibits the principal features of a time crystal
[20] in a driven-dissipative setup [21–23]. Recent works have
analyzed stationary superradiance in solid-state, inhomoge-
neously broadened environments [24].

In this work we analyze the stability and dynamics of
stationary superradiance when the emitters are atoms or
molecules whose dipolar transitions couple to the mode of

a lossy standing-wave resonator. The setup we consider is
illustrated in Fig. 1. Here, the atoms are incoherently pumped,
and therefore no coherence is established by the process
pumping energy into the system. The system parameters are
in the regime where stationary superradiant emission (SSR)
is predicted [10]. In these settings, theoretical studies based
on semiclassical models predicted cooling of the atomic mo-
tion to ultralow temperatures [25–27], and in particular to
the regime in which the atoms form correlations between
internal and external degrees of freedom that allow them to
synchronize [26]. In the present work we derive and discuss
a model which allows us to study the effect of semiclassical
and quantum fluctuations on stationary superradiance. The
present study is based and complements the work presented
in Ref. [28]. We analyze in detail the regime of validity of
the quantum mean-field model of Ref. [28]. In the regime
of validity we then analyze in detail the phases emerging
from the optomechanical coupling with collective spin and
atomic motion, which are summarized in the diagram of
Fig. 2. This diagram shows the absolute value of the collective
dipole of the asymptotic state found when atoms forming a
Bose-Einstein condensate (BEC) are coupled to a resonator
in the manner shown in Fig. 1. The axes of the diagram are
the incoherent pump rate w and the superradiant decay rate
�, both presented in units of the recoil frequency ωR. In the
absence of optomechanical effects the standard regime of SSR
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FIG. 1. (a) A cold atomic gas is confined within a standing-wave
resonator that decays at rate κ . Photons are emitted into the cavity
by a metastable dipolar transition, which is broadened by the cavity
field and which is incoherently pumped at rate w. We analyze the
properties of the light when the mechanical effect of cavity photon-
atom interactions is considered. (b) Sketch of the relevant atomic
levels and their coupling rates. The ground and excited states are |g〉
and |e〉, respectively; gcos(kx) is the strength of the coupling with
the resonator, which is modulated by the spatial mode with wave
number k along x. The incoherent pump w is effectively realized by
optical pumping via a third level, as experimentally demonstrated in
Ref. [9].

[7] is the entire region � > w, which in the diagram is above
the diagonal line. Below the diagonal line superradiance is
suppressed because of strong incoherent driving. However,
the optomechanical coupling reduces the parameter region
where SSR occurs, as indicated by the “coherent” region (see
Fig. 2). In this coherent phase the dipoles build up a stationary
nonvanishing collective dipole. The optomechanical coupling
gives also rise to two novel phases that we call “chaotic” and
“incoherent.” In the incoherent phase, after the superradiant
emission, the particles cannot stabilize a nonvanishing collec-
tive dipole in steady state. For parameters in the region of the
chaotic phase, the collective dipole does not reach a stationary
state but its amplitude and phase are oscillating even for very
long times. Further details of this phase diagram are discussed
in Sec. IV.

This paper has the following structure. In Sec. II we present
the derivation of the quantum mean-field model starting from
the full master equation and determine the regime of va-
lidity of the mean-field treatment. In Sec. III we determine
the steady state by means of a stability analysis. Drawing
from this model we determine the stationary state and the
dynamics that leads to it for a thermal gas. In Sec. IV we
assume that the atoms initially form a Bose-Einstein conden-
sate and study the dynamics across the coherent-incoherent
and coherent-chaotic phases of the phase diagram in Fig. 2.
We then discuss the experimental parameter regimes where
these dynamics can be observed. The conclusions are drawn
in Sec. V, while the appendices provide details of the calcula-
tions presented in Secs. II, III, and IV.

II. DERIVATION OF A QUANTUM MEAN-FIELD MODEL

In this section we introduce a model consisting of N atoms
whose dipolar transition couples to a single-mode cavity and
is incoherently driven by an external pump field. The scheme,
as sketched in Fig. 1, contains dynamics that includes the
mechanical effects of resonant light in the cavity standing-
wave field on the atomic motion. We then derive an effective
mean-field model that makes up the basis of our studies.

FIG. 2. Phases due to the optomechanical dynamics in the w-�
plane (rates in units of ωR). The phases are labeled by the corre-
sponding coherence properties of the emitted light; the color scale
in the coherent and incoherent phases indicates the value of the
order parameter X (and thus of the emitted field) at steady state.
The initial state is an ideal Bose gas at temperature T = 0, and the
phases are found for the asymptotic state of the dynamics described
by Eq. (15) for � = κ/2. In the absence of optomechanical coupling
one also finds the same region of “no superradiant emission,” while
the other half of the diagram would be characterized by coherent light
whose properties are independent of the ratios �/ωR and w/ωR. See
Sec. IV.

A. Master equation

We consider a gas of N atoms or molecules of mass m
confined within an optical resonator. The relevant internal
atomic degrees of freedom are the ground state |g〉 and the
metastable excited state |e〉, which form a dipolar transition
at frequency ωa. The dipole is transversally pumped by an
incoherent field at rate w and couples to the standing-wave
mode of a cavity at frequency ωc and wave vector �k = k�ex.
Here, �ex is the unit vector pointing along the x (cavity)
axis. In the following we assume that the atomic motion is
considered to be tightly confined along the cavity axis, so
that we restrict our analysis to one dimension along �ex. We
denote the canonically conjugate positions and momenta of
the atoms by x̂ j and p̂ j , respectively ( j = 1, . . . , N), with the
usual commutation relation [x̂l , p̂m] = ih̄δl,m.

The dynamics of the density operator ρ̂ of the cavity mode
and of the atoms’ internal and external degrees of freedom
results from the interplay between the coherent interactions
and the incoherent processes. This is governed by the Born-
Markov master equation

∂ρ̂

∂t
= 1

ih̄
[Ĥ, ρ̂] + κL[â]ρ̂ + w

N∑
j=1

L[σ̂ †
j ]ρ̂, (1)
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where the first term on the right-hand side describes the
coherent dynamics, while the second and third terms describe
cavity dissipation and incoherent atom pumping, respectively.
Here, κ is the cavity loss rate, w is the rate of incoherent
pumping, and the dissipative superoperator is given in the
usual form by

L[Ô = â, σ̂
†
j ]ρ̂ = − 1

2 (Ô†Ôρ̂ + ρ̂Ô†Ô − 2Ôρ̂Ô†).

The field operators â and â† annihilate and create, respec-
tively, a cavity photon, with [â, â†] = 1. The atomic operators
σ̂ j = |g〉 j〈e| and σ̂

†
j = |e〉 j〈g| deexcite and excite, respec-

tively, the electron of the jth atom.
In the absence of incoherent processes, the total energy

of atoms and cavity photons is composed of the sum of the
atoms, field, and interaction energy (in the electric-dipole
and rotating-wave approximation), and is described by the
Hamiltonian

Ĥ =
N∑

j=1

p̂2
j

2m
+ h̄�â†â + h̄

g

2

N∑
j=1

cos(kx̂ j )(â
†σ̂ j + H.c.),

(2)

which is here reported in the interaction picture rotating at
the atomic frequency ωa. In this reference frame the free
atomic energy is the kinetic energy, while the cavity frequency
is shifted by ωa, and is given by the cavity-atom detuning
� = ωc − ωa. The coupling with photons and atoms is scaled
by the vacuum Rabi frequency g and is sinusoidally modulated
by the spatial envelope of the cavity field at position x j

according to the mode function cos(kx). This modulation can
be included in the definition of the collective dipole X̂ that
couples to the cavity field:

X̂ = 1

N

N∑
j=1

cos(kx̂ j )σ̂ j . (3)

Because of thermal and/or quantum fluctuations the ampli-
tudes cos(kx̂ j ) are dynamical variables; therefore the decom-
position of the collective dipole into single atomic excitations
varies with time.

B. Timescale separation and effective dynamics

In the regime in which the cavity dissipation rate is the
largest frequency characterizing the dynamics, it is possible
to adiabatically eliminate the cavity degrees of freedom from
the dynamics of the atoms. This results in a long-range atom-
atom force that has a dispersive and a dissipative component
[29,30]. For the case in which the atoms’ internal degrees of
freedom are described by spins, the resulting master equation
reads [28]

∂ρ̂N

∂t
= 1

ih̄
[Ĥeff , ρ̂N ] + N�L[X̂ ]ρ̂N + w

N∑
j=1

L[σ̂ †
j ]ρ̂N . (4)

Herein the coherent dynamics is governed by the effective
Hamiltonian

Ĥeff =
N∑

j=1

p̂2
j

2m
− h̄N�

2

�

κ/2
X̂ †X̂ , (5)

and we have introduced the characteristic frequency
parameter

� = Ng2κ/4

�2 + κ2/4
. (6)

Equation (5) illustrates that in this regime the total energy is
a sum of the kinetic energies of every atom and a collective
spin-spin coupling that is described by X̂ †X̂ . The incoherent
dynamics shown in Eq. (4) is governed by both the incoherent
repumping of every atom and by the collective decay of X̂
with rate �. In Appendix A we report the details of the
derivation starting from Eq. (4) using the projector method
[31].

We here remark that the theoretical perturbation treatment,
which leads to Eq. (4), is based on the assumption that
the cavity field dynamics follows adiabatically the state of
the atom. In this limit, by solving the Heisenberg-Langevin
equations corresponding to the dynamics of Eq. (1) in the
Schrödinger picture, the field operator â takes the form [26]

â(t ) ≈ −i
gN/2

i� + κ/2
X̂ (t ) + F̂ (t ). (7)

Here F̂ (t ) describes the quantum noise within a coarse-
grained time-interval treatment, such that 〈F̂〉 = 0 and only
two-time correlators can be nonzero [26,32]. Hence, for
〈X̂ (t )〉 �= 0 the electric field amplitude does not vanish, and
〈â(t )〉 ∝ 〈X̂ (t )〉 �= 0. For 〈X̂ (t )〉 = 0, instead, the field mean
value vanishes and its intensity is dominated by shot-noise
fluctuations. In this case the light that is produced is incoher-
ent.

C. Mean-field model

Even though, as we have just shown, it is possible to
eliminate the cavity degrees of freedom, the full dynamics
described by Eq. (4) is still intractable. The global-range
interactions, on the other hand, motivate application of a
mean-field approach. The mean-field model can be justified
by deriving the dynamics of the single-particle density matrix

ρ̂1 = TrN−1(ρ̂N ), (8)

that is obtained by tracing out N − 1 degrees of freedom of
the N-particle density matrix ρ̂N . Applying the partial trace
TrN−1(. . .) onto Eq. (4) we obtain the following equation of
motion:

∂ρ̂1

∂t
= Lmf [ρ̂1]ρ̂1 + D1[ĝ2]. (9)

This equation has been derived by decomposing the two-
particle density matrix into

ρ̂2 = ρ̂1 ⊗ ρ̂1 + ĝ2, (10)

where the first term is a mean-field term and ĝ2 describes
correlations beyond mean field.

The first, mean-field term in Eq. (9) is given by

Lmf [ρ̂1]ρ̂1 = 1

ih̄
[Ĥmf , ρ̂1] + �

N
L[σ̂ cos(kx̂)]ρ̂1 + wL[σ̂ †]ρ̂1,

(11)
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with the effective mean-field Hamiltonian

Ĥmf = p̂2

2m
− h̄�

2N tan χ
σ̂ †σ̂ cos2(kx̂)

− h̄�

2 sin χ
(e−iχ X [ρ̂1]∗σ̂ + eiχ X [ρ̂1]σ̂ †) cos(kx̂). (12)

Here, we make use of the definition

tan χ = κ

2�
(13)

and we have defined the mean-field order parameter

X = X [ρ̂1] = Tr(Ĵ1ρ̂1), (14)

with J1 = σ̂ cos(kx̂) following the definition in Eq. (B3).
The second term in Eq. (9) describes the coupling of

the single-particle density matrix to two-particle and higher-
particle correlations. The mean-field approximation relies
on the assumption that this term is negligibly small. This
can be justified for an initial factorized state ρ̂N (0) =
ρ̂1(0) ⊗ ρ̂1(0) ⊗ · · · ⊗ ρ̂1(0), implying that ĝ2(0) = 0. Fur-
thermore, the mean-field approximation requires that the typ-
ical timescale for the buildup of correlations is sufficiently
long. As we show in Appendix B, ĝ2 ∼ O(1/N ) for times
t � N/� while the typical timescale for ρ̂1 is determined by
1/�. Therefore the timescale for the buildup of correlations
and the typical timescale for the mean-field dynamics can be
separated in the limit N → ∞. For the remainder of this work
we consider the limit N → ∞ while keeping � constant and
we can therefore drop the contribution of ĝ2.

III. MEAN-FIELD ANALYSIS

We now consider the regime of validity of the mean-field
model and analyze the predictions of the mean-field master
equation for the single-particle density matrix ρ̂1,

∂ρ̂1

∂t
= 1

ih̄
[Ĥmf , ρ̂1] + wL[σ̂ †]ρ̂1, (15)

where Ĥmf is given in Eq. (12). We first analyze the stationary
states, namely, the solutions of the equation

∂t ρ̂1 = 0,

keeping in mind that this is strictly valid for N → ∞. For
finite but large N , the single-particle density matrix asymp-
totically approaches the quasistationary solution, which is
consistent with our approximation, as long as the timescale on
which they reach this is smaller than N/�. We then perform
the stability analysis of the states we identify and determine a
phase diagram.

A. Mean-field energy

We make first some preliminary considerations by studying
the dynamics of the mean-field energy of the system. The
mean value is given by

〈Ĥmf〉 = 〈p̂2〉
2m

− h̄
�

tan χ
|X (t )|2, (16)

where 〈Ô〉 = Tr{Ôρ̂1} and the order parameter depends on the
quantum state, and thus on time. Its time evolution is given by

the equation

d〈Ĥmf〉
dt

= Tr

{
Ĥmf

∂ρ̂

∂t

}
+ Tr

{
∂Ĥmf

∂t
ρ̂

}
. (17)

We then substitute Eq. (16) into the left-hand side and use
Eq. (15) to expand the right-hand side. By reordering the
resulting terms we can cast Eq. (17) into an equation for the
dynamics of the mean kinetic energy, which reads

d

dt

〈p̂2〉
2m

= h̄�

2

[(
w

tan χ
+ 2

dφ

dt

)
|X |2 + �

κ/2

d|X |2
dt

]
, (18)

where we have used the notation X (t ) = |X (t )|eiφ(t ). We
thus note that the dynamics of the mean kinetic energy is
determined by the time evolution of both the amplitude and
phase of the order parameter.

B. Stationary states

The nonlinear dependence of the coefficients of the Hamil-
tonian in Eq. (12) on ρ̂1 requires a careful approach in
determining the stationary solution (assuming that this exists).
We choose to first look for a class of solutions for which
X [ρ̂1] = 0, namely, where the nonlinearity vanishes. This
class of solutions corresponds to stationary states for which
the expectation value of the cavity field vanishes and the
intensity is dominated by shot-noise fluctuations. We denote
these states by ρ̂0. The corresponding stationary solution
solves the equation

1

ih̄

[
p̂2

2m
, ρ̂0

]
+ Lw[σ̂ †]ρ̂0 = 0, (19)

and takes the general form

ρ̂0 = f ( p̂) ⊗ |e〉〈e| (20)

with f ( p̂) a density operator defined over the Hilbert space of
the external degrees of freedom. This density operator can be
cast in terms of an analytic function of the operator p̂ and thus
trivially commutes with the kinetic energy term.

We now search for stationary solutions that fulfill X �= 0.
In particular, we require that the absolute value of the order
parameter, |X |, is stationary. After imposing that the mean-
field energy becomes constant, the condition on |X | neces-
sarily implies that the mean kinetic energy becomes constant,
i.e., d〈p̂2〉/dt = 0. We assume a stationary state and thus
set Eq. (17) to zero, with the prescription that X = |X |eiφ(t )

(where |X | > 0 and constant). We then obtain an equation for
the phase of the order parameter, which reads

dφ

dt
= − w

2 tan χ
. (21)

This shows that, in the regime in which the field is coherent,
it oscillates in the atomic reference frame at the frequency

ωw = − w

2 tan χ
= −�w

κ
, (22)

and thus at frequency ωa + ωw in the laboratory frame. We
denote the corresponding class of states by ρ̂X . These states
are solutions of the equation

∂ρ̂X

∂t
= 1

ih̄
[−h̄ωwσ̂ †σ̂ , ρ̂X ]
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or alternatively

Lmf [ρ̂X ]ρ̂X = 1

ih̄
[−h̄ωwσ̂ †σ̂ , ρ̂X ]. (23)

We remark that the frequency shift is proportional to the
incoherent pump rate. This result has already been reported
in Ref. [20] and was interpreted there as a signature of
synchronization.

C. Stability analysis

We now investigate the stability of the stationary states
that we have identified. To calculate the stability we consider
small fluctuations δρ̂ about the steady-state density matrix ρ̂st,
namely,

ρ̂1 = ρ̂st + δρ̂, (24)

where Tr{δρ̂} = 0.
We first consider the class of solutions ρ̂X with X �= 0. For

these solutions it is convenient to perform the stability analysis
in the reference frame rotating with the frequency ωw, namely,
ρ̃ = e−iωwt σ̂ †σ̂ ρ̂eiωwt σ̂ †σ̂ . In this reference frame X̃ = X [ ˆ̃ρ] =
e−iωwt X [ρ̂1] and ∂t ˆ̃ρX = 0. Moreover, we denote by L̃mf the
transformed mean-field Lindblad operator. Substituting now
Eq. (24) in the mean-field master equation and dropping terms
of second order in the fluctuations we get a linear equation for
the time evolution of δρ̂:

∂δ ˆ̃ρ

∂t

= L̃mf [ ˆ̃ρX ]δ ˆ̃ρ− h̄�

2ih̄ sin χ
[(e−iχδX̃ ∗σ̂ cos(kx̂) + H.c.), ˆ̃ρX ],

(25)

with δX̃ = X [δ ˆ̃ρ]. Equation (25) is reminiscent of the lin-
earized Vlasov equation [33] although here it has a quantum
character since it has been derived from the full quantum
master equation. In order to solve Eq. (25) we use the Laplace
transform,

L[ f ](s) =
∫ ∞

0
dt e−st f (t ); (26)

we apply it to both sides of Eq. (25):

sL[δ ˆ̃ρ] − δ ˆ̃ρ(0)

= L̃mf [ ˆ̃ρX ]L[δ ˆ̃ρ] + i
�

2 sin χ
(e−iχ L[δX̃ ∗][Ĵ1, ˆ̃ρX ]

+ eiχ L[δX̃ ][Ĵ†
1 , ˆ̃ρX ]), (27)

where we have used Eq. (B3) for � = 1. This equation is
conveniently rewritten in the form

L[δ ˆ̃ρ] = (s − L̃mf )−1δ ˆ̃ρ(0)

+ i
�

2 sin χ
e−iχ L[δX̃ ∗](s − L̃mf )−1[Ĵ1, ˆ̃ρX ]

+ i
�

2 sin χ
eiχ L[δX̃ ](s − L̃mf )−1[Ĵ†

1 , ˆ̃ρX ]. (28)

We now multiply by Ĵ1 and Ĵ†
1 , respectively, and take the

trace. Using the fact that L[δX̃ ] = Tr{L[δ ˆ̃ρ]J1} we obtain two

coupled equations, which can be cast into matrix form:

D(s)

(
L[δX̃ ](s)

L[δX̃ ∗](s)

)
= b(s). (29)

Here D(s) = 12 + C(s), where 12 is the 2 × 2 identity matrix,
C is defined by

C =
(

C11 C12

C21 C22

)
, (30)

and the vector b has the form

b =
(

b1

b2

)
. (31)

The corresponding entries are given in detail in Appendix C.
In the form of Eq. (29) the stability analysis consists now of

determining the first-order poles γ̃ of D(s)−1b(s). The poles,
in fact, determine the short-time dynamics of δX̃ (t ), δX̃ ∗(t )
according to δX̃ (t ) ∼ eγ̃ t , with δX (t ) ∼ eγ t , and

γ = γ̃ + iωw

is the pole in the reference frame rotating at the atomic
frequency. The stationary state is unstable if there exists a
solution with Re(γ̃ ) > 0. On the contrary, it is stable if the
real parts of all of the eigenvalues are negative.

We can now use this machinery to calculate the stability
of the state ρ̂0 [see Eq. (20)] assuming that the momentum
distribution is thermal,

f ( p̂) = 1

Z
exp

(
−β

p̂2

2m

)
, (32)

with Z = √
2mπ/β. In this case L̃mf describes the evolution

of free particles and thus an instability can only be due to the
singularities of the matrix D. We thus analyze

D(s) = det[D(s)] = 0. (33)

We note that Eq. (33) gives the dispersion relation in the stable
limit. In Appendix C we show that the dispersion relation
takes the form

y√
πσ 2

β

∫ ∞

−∞
du

exp
(− u2

σ 2
β

)
y2 + u2

= 4e−iχ sin χ, (34)

with y = [s − ieiχw/(2 sin χ ) − iωR]/� and σ 2
β = β̄/β, and

we have introduced the temperature scale

β̄−1 = h̄�2

2ωR
,

which depends on the ratio between the superradiant linewidth
� and the recoil frequency ωR. The physical meaning of this
temperature scale will be discussed in the following. We note
here that the solution of Eq. (34) depends solely on σβ and χ .

We now denote by γ ′ a solution of Eq. (34). Thus the
corresponding value of the pole γ̃ takes the form

γ̃ = γ ′ − w

2
+ i(ωR − ωw ). (35)
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We first analyze the form of the solution in the limit σβ � 1.
In this case we can solve Eq. (34) to first order in σβ and obtain

γ = �

4
− w

2
− 4� sin2 χ

β̄

β

+ i

(
ωR − �

4 tan χ
− 4 sin χ cos χ

β̄

β

)
. (36)

Let us first consider β → ∞, or equivalently T = 0: This is
the limit in which we neglect the thermal fluctuations. The
stationary solution ρ̂0 is then stable for w > �/2; otherwise
it becomes unstable. For w < �/2, in particular, small fluctu-
ations are amplified and lead to the growth of X and thus of
the intracavity field. We note that this bound coincides with
the one predicted by a semiclassical calculation for this setup
and a homogeneous medium [26]. Equation (36) also shows
that small thermal fluctuations tend to stabilize the state ρ̂0,
shifting the bound to lower values than �/2.

Figure 3 displays a contour plot of the real value of the
solutions γ of Eq. (34), which are found by numerically
solving the equations. Among all solutions, we plot the ones
that are characterized by the maximal real value for given
σβ and χ . The solutions are determined as a function of
β and of w, keeping constant all other physical parame-
ters (thus also � and β̄). The black line divides the region
where the state ρ̂0 is unstable from the region where it
is stable, thus corresponding to the solutions of Eq. (34)
for which the real value of the eigenvalues γ vanish, and
is in agreement with our analytical estimate, Eq. (36), for
β̄/β → 0. The instability corresponds to the fast growth
of the intracavity field, and thus to a superradiant pulse
emitted on a timescale on the order of 1/�. The plot also
shows that there is a critical temperature Tc above which
superradiant emission is suppressed. This temperature is
given by

kBTc ≈ 0.1β̄−1 = 0.1
h̄�2

2ωR
,

where kB is the Boltzmann constant. For T > Tc thermal
fluctuations suppress the quantum interference process that
lies at the basis of the superradiance mechanism.

The value of Tc depends also on the detuning �, as is
visible from Fig. 3(b). This figure displays the line w(β ),
below which there is superradiant emission, as a function
of � and shows that the temperature interval for which the
intracavity field initially grows increases monotonically with
�. All curves tend to the same value for β → ∞ (T → 0).

D. Numerical analysis

In this section we numerically integrate Eq. (15) and
analyze the dynamics of the order parameter X (t ), Eq. (14),
when the initial state is given by Eq. (20) and Eq. (32).
The simulations reported in this section are performed taking
kBT = 20h̄ωR, such that the dynamics is in the semiclassical
regime. Moreover, we take � = 40ωR, and therefore kBTc ≈
0.1h̄�2/(2ωR) = 80h̄ωR. The initial temperature is taken to
be below the threshold and warrants that the system evolves
toward superradiant emission provided that w < 0.5� for
� = κ/2; see Fig. 3. The numerical simulation is performed

FIG. 3. (a) Diagram in the β-w plane of the stability of the state
ρ̂0: when ρ̂0 is stable there is no superradiant emission. The contour
plot gives the maximal real value of the solutions γ of Eq. (34): when
these are positive (below the black solid line) the intracavity field
grows exponentially with rate Re(γ ). The rate γ and the incoherent
pump rate w are reported in units of �, the inverse temperature β

in units of β̄. The phase diagram has been calculated for � = κ/2,
corresponding to tan χ = 1. The inset displays Re(γ ) as a function
of w for β̄/β = 0.05. Panel (b) shows the curve w(β ) separating
the region of stability from the one of superradiant emission and for
different positive values of � (see inset).

on a grid of momentum states in the interval [−pmax, pmax]
with pmax = 16h̄k and discrete steps �p = h̄k/10. Here and
in the rest of this work the integration interval and grid are
chosen after checking the convergence of the dynamics of the
order parameter.

Figure 4(a) displays the dynamics of |X (t )| for different
values of w (in the interval where we expect superradiant
emission). All curves show an initial exponential growth, after
which they exhibit different behaviors (which we discuss later
when analyzing the results displayed in Fig. 5). We note that
the time has been rescaled by the real part of the exponent
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FIG. 4. Dynamics of (a) the absolute value of the mean-field
order parameter |X (t )| and (b) of the mean kinetic energy 〈 p̂2/(2m)〉
(in units of the recoil energy h̄ωR) for different values of the pump
w = 1ωR (solid line), w = 3ωR (dotted line), w = 6ωR (dashed-
dotted line), and w = 10ωR (dashed line); see the legend in the inset
of panel (b). The parameters and details of the simulation are given
in the text; the time is reported in units of Re(γ )−1, where γ has been
determined using Eq. (34) and depends on w.

γ , which we extract from Eq. (34), and thus depends on
w. This rescaling allows us to verify the correctness of our
stability analysis for short times: In fact, all curves collapse
on a single-exponential growth for short times. Figure 4(b)
displays the corresponding dynamics of the mean kinetic
energy. The latter slowly decreases over the timescale in
which |X | exponentially grows. It then decreases with larger
rates, but following a behavior that depends on w and that can
be understood analyzing |X (t )| and using Eq. (18).

For short timescales Eq. (18) allows us to determine the
conditions on the parameter that lead to the initial decrease
of the kinetic energy. For this purpose we use |X (t )| ≈
|δX (0)|eRe(γ )t and Eq. (36), which is valid for β � β̄, hence
for very low temperatures. We obtain

d

dt

〈p̂2〉
2m

≈ h̄�|δX |2[ωR − 8� sin χ cos χσ 2
β

]
, (37)

and thus the necessary condition for the initial decay of
the kinetic energy is that � > 0 (for which sin χ cos χ >

0). We then get an upper bound for σ 2
β , namely, σ 2

β <

ωR/[4� sin(2χ )], which shall be considered when it is much
smaller then unity, namely, when 4� sin(2χ ) � ωR.

FIG. 5. Dynamics of (a) the absolute value of the mean-field
order parameter |X (t )| and (b) of the mean kinetic energy 〈 p̂2/(2m)〉
(in units of the recoil energy h̄ωR) for different values of the pump
w, the same as in Fig. 4. The time is now reported in units of ω−1

R

and the dynamics is integrated more than ten times longer.

The dynamics of the order parameter and mean kinetic
energy for longer timescales is shown in Figs. 4(a) and 4(b).
For all considered values of w the time-averaged values of
the order parameter |X | and of the kinetic energy reach a
stationary value that is different from zero and that monotoni-
cally increases and decreases, respectively, with w. Moreover,
for w = 1, 3ωR we observe oscillations about the stationary
value, whose amplitudes become significantly larger for w =
ωR and which are evidently polychromatic.

We numerically determine the time-averaged mean values
by evaluating the quantity

|X |st = 1

tsim

∫ tsim

0
dt |X |(t ), (38)

〈p̂2〉st = 1

tsim

∫ tsim

0
dt〈p̂2〉(t ), (39)

where tsim is the time of the simulation, which is taken to be
tsim = 1200ω−1

R after checking the convergence of the results
over a sufficiently large sample of simulation intervals. Their
behavior as a function of w is displayed in Figs. 6(a) and
6(b). We compare them with the corresponding behavior of
|X (t )| and 〈p̂(t )2〉/(2m) at a specific instant of time, t =
400ω−1

R (circles), as well as with the solutions we extract by
analytically solving Eq. (23) (dashed line). This comparison
allows us to identify a threshold value of the pump strength
wc above which the three values agree, and below which
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FIG. 6. The time-averaged mean values (a) |X |st and
(b) 〈 p̂2〉st/(2m) as a function of w, as obtained by numerically
integrating Eq. (15) for the initial state in Eq. (20) (star symbols).
The circles correspond to the numerical values of (a) |X (t )| and
(b) of the kinetic energy at time t = 400ω−1

R . The dashed line gives
the stationary solution of Eq. (23). The vertical dotted line indicates
the threshold value wc ≈= 3.1ωR, below which the three curves do
not overlap, and which agrees with the value we find by solving
the dispersion relation [Eq. (33)] for the stationary state. The other
parameters are given in the text.

there are evidently discrepancies between the three solutions.
This threshold value agrees with the one we find by solving
Eq. (33) and is estimated to be wc ≈ 3.1ωR. Remarkably, for
w < wc, the time-averaged mean kinetic energy is well below
the stationary value determined analytically.

In order to gain insight into the oscillatory behavior at w <

wc we calculate the spectrum of X (t ), which we define as

F (ω) =
∣∣∣∣
∫ tsim

0
dteiωt X (t )

∣∣∣∣. (40)

This quantity squared is proportional to the power spectrum
at the cavity output and can thus be accessed by means of

FIG. 7. Contour plot of the spectrum F (ω), Eq. (40), as a func-
tion of the pump rate w and of the frequency ω (both in units of
ωR). For every value of w we normalize F (ω) with its maximum
value. The dashed black line corresponds to the frequency �w/κ ,
Eq. (21). The dashed-dotted gray horizontal line gives the value of
wc. The circles correspond to the imaginary part of the solutions γ

of Eq. (33). The other parameters are given in the text.

photodetection. Figure 7 displays the contour plot of F (ω)
in the w-ω plane. For clarity we indicate the value w = wc

with the horizontal dashed-dotted line. For w > wc it exhibits
a single frequency peak at the frequency �w/κ , in agree-
ment with the result of Eq. (21). At w = wc two sidebands
appear. Their frequency agrees with the imaginary parts of the
solutions γ of the dispersion relation (33). As w decreases
below wc an increasing number of sidebands appears, until the
spectrum becomes nearly continuous. This dynamics presents
the characteristic features of classical chaos. Despite the fact
that the mean kinetic energy seems to reach a stable value,
the momentum distribution has long tails. We will discuss this
behavior in more detail in the next section.

IV. SUPERRADIANCE IN A BOSE-EINSTEIN
CONDENSATE

We now study the effect of quantum fluctuations on station-
ary superradiance. For this purpose we focus on the regime
where the superradiant linewidth � takes values comparable
to the recoil frequency ωR and assume that the atoms form
initially an ideal Bose-Einstein condensed (BEC) gas and
occupy the state at momentum p = 0:

ρ̂1(0) = |e〉〈e| ⊗ |p = 0〉〈p = 0|. (41)

Since the mechanical effects of light result from the absorp-
tion and emission of cavity photons with linear momentum
±h̄k, the atomic momentum can take only the values |�0〉 =
|0〉 (the BEC) and |�n〉 = (|nh̄k〉 + | − nh̄k〉)/

√
2 (n =

1, 2, . . .). These states have kinetic energy Ekin,n = n2h̄ωR. On
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this grid we can numerically solve Eq. (23) as a function of w

and � and for the momentum cutoff pmax = 15h̄k. For this
purpose we use a seed X > 0, determine the corresponding
stationary value ρ̂0, and use it to determine the new value
of X = Tr[σ̂ cos(kx̂)ρ̂0]. We iterate this procedure until ρ̂0

and X have converged. We then determine the stability of the
solution using the dispersion relation of Eq. (33).

We identify four phases. One phase corresponds to the
situation where the initial state is stable. This is found for
w > �/2 and corresponds to the case in which there is no
superradiant emission. This result has already been discussed
in Sec. III and reported in Fig. 3. The other three phases are
found for w < �/2. Here, in absence of the optomechanical
coupling one expects stationary superradiance over the whole
interval and for any value of �. When taking into account
the mechanical effects of light on the dynamics, we recover
stationary superradiance, corresponding to the stable solution
X �= 0, for w < �/2 provided that both w as well as �

exceed threshold values on the order of the recoil frequency.
Below these threshold values the phase can be characterized
by a stable stationary solution at X = 0, which we denote as
an incoherent phase, or by the absence of stable solutions.
When there is no stable solution, both the incoherent and
the superradiant states are unstable. We denote this phase by
“chaotic” as will become clearer when analyzing the time-
dependent dynamics. Figure 2 displays the phase diagram in
the w-� plane; the phases are labeled by the properties of the
order parameter X , and thus of the field at the cavity output.

Below we discuss the behavior across the direct transition
from the incoherent to the coherent phase and from the
coherent to the chaotic phase. We remind the reader that
the transition is driven-dissipative; moreover, it is dynamical,
depends on the initial state, and occurs over a timescale on the
order of the superradiant decay time. After this timescale the
atoms organize so as to emit either coherent, incoherent, or
chaotic light.

A. Transition from incoherent to coherent phase

The phase diagram in Fig. 2 displays a parameter regime
where the solution of Eq. (23) predicts a direct transition be-
tween the incoherent and the coherent phase across the curve
�c(w). In order to analyze in detail the behavior we consider
a specific parameter variation that crosses the expected phase
transition line at the value �c = minw �c(w), and specifically
vary w and � together with the constraint w = �/4. The dy-
namics of |X (t )| along this line is summarized in the contour
plot of Fig. 8(a) in the �-t plane. Here, the timescale of the
first superradiant emission is visible in the first maximum of
|X (t )| as a function of time. Our stability analysis predicts
that this timescale depends on � according to an exponential
function and the position in time of this maximum is in agree-
ment with our analytical prediction. The stationary behavior
becomes visible after this maximum: below a certain value
of � the signal exhibits damped oscillations until it becomes
zero. Above this value, after few transient oscillations it tends
to a constant value different from zero, which increases with
�. The boundary between these two regimes can be drawn
according to various alternate criteria, which all locate the

FIG. 8. (a) Contour plot of |X (t )| as a function of the time t (in
units of ω−1

R ) and of � (in units of ωR) for w = �/4 and � = κ/2.
The dynamics of |X (t )| is calculated by numerically integrating
Eq. (15) with the initial state of Eq. (41) over a grid of momenta
with a cutoff at pmax = 15h̄k. (b) The asymptotic value of |X (t )| is
displayed as a function of � (in units of ωR). The dashed line is the
solution of Eq. (23); the circles correspond to X (t∗), as obtained by
integrating Eq. (15) until t∗ = 4 × 104ω−1

R . The red dashed-dotted
line in both panels indicates the critical value �c at which the steady
state solution of Eq. (23) predicts a transition from the incoherent to
the coherent phase.

transition point to be around 6ωR. In the figures we show the
boundary (red line) we extract from the solution of Eq. (23).

Figure 8(b) displays the asymptotic value of |X (t )| as a
function of � along the curve w = �/4. The asymptotic
value is here given by the solution of Eq. (23) (dashed line)
and is compared with the value of |X (t∗)| which we obtain
after integrating the master equation (15) for a sufficiently
long time t∗ = 4 × 104ω−1

R (circles). Both results are in good
agreement, except in the vicinity of the critical point � ≈ �c.
Here, we observe discrepancies that might be due to the finite
integration time t∗. We have verified, in fact, that the transition
point �∗

c , extracted from the behavior of |X (t∗)|, approaches
�c as t∗ is increased.

The corresponding behavior of the mean kinetic energy is
shown in Figs. 9(a) and 9(b). As is visible in panel (a), the first
superradiant emission is associated with a net increase of the
kinetic energy. This result is consistent with the stability anal-
ysis of Eq. (37), which predicts a positive slope for σβ = 0.
After this transient, in the incoherent phase the kinetic energy
undergoes damped oscillations as a function of time until it
reaches a stationary value, which is smaller than one recoil.
On the contrary, in the coherent phase the oscillations seem
overdamped and the stationary value is on the order of several
recoil energies. Panel (b) displays the kinetic energy from the
iterative solution of Eq. (23) and from the numerical value at
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FIG. 9. Panels (a) and (b) are the same as in Fig. 8 but for the
kinetic energy Ekin = 〈 p̂2〉/(2m) (in units of the recoil energy h̄ωR).
Panel (c) shows the kurtosis K(t ) [Eq. (42)] at t = t∗ (circles) for
different values of � in units of ωR. The dashed line displays the
corresponding value of the kurtosis, Eq. (23).

t = t∗, both as a function of �. As for the order parameter, the
two values of the kinetic energy are in good agreement expect
for the small region close to �c. This plot shows that in the
coherent phase the kinetic energy is significantly larger than in
the incoherent phase, and it seems to undergo a discontinuous
jump at the critical point.

It is interesting to analyze the momentum distribution more
in detail. For this purpose we analyze the kurtosis, namely the
ratio

K(t ) = 〈p̂4(t )〉
〈p̂2(t )〉2

(42)

that lets us distinguish between Gaussian (K = 3), short-tailed
(K < 3), or long-tailed (K > 3) momentum distributions. The
kurtosis is displayed in Fig. 9(c) at t = t∗, corresponding
to the mean kinetic energy of panel (b). For all considered
values of �/ωR the kurtosis is larger than 3, indicating that
the distribution is non-Gaussian and exhibits long tails.

It is important to point out that the increase of the kinetic
energy is associated with the fact that the atomic ensemble
has built up a matter-wave grating which diffracts the light.
In particular, for � < �c the dynamics is accompanied by
the formation of a statistical mixture of states |e, �2n〉 and
|e, �2n+1〉, which dephases the macroscopic dipole and leads
to suppression of the superradiant emission. For � > �c, on
the other hand, the field oscillates about a finite asymptotic
value and the atoms form a stable spatial pattern. The corre-
sponding state minimizes the entropy and exhibits entangle-
ment between internal and external degrees of freedom [28].
This entanglement is a signature of the locking between the
dynamics of external and internal degrees of freedom, which
maximizes the value of the order parameter X .

The picture in terms of discrete energy states
{|e, �n〉, |g, �n〉} allows one to understand the origin of
the critical value �c. In fact, the buildup of a stable pattern

requires that coherent transitions are driven between the
pair of states |e, �n〉 → |e, �n+2〉 (recall that � � �). We
estimate the dividing line separating the incoherent from the
coherent phase by determining where the coherent transition
amplitude T coupling the states |e, p = 0〉 and |e, p = ±2h̄k〉
is equal to their energy offset 4ωR, i.e., T ∼ 4ωR, so as
to allow those states to be populated. Using Eq. (15) and
the value of the order parameter which we find using the
semiclassical theory of Ref. [26], |X |2 ∼ w/(2�), we find

T ∼ (�|X |)2/
(
w2 + ω2

R

)
4ωR,

leading to the estimate �c ∼ 4ωR, which qualitatively agrees
with our numerical result.

B. Transition from coherent to chaotic phase

The “chaotic” phase of the diagram in Fig. 2 indicates
that there is a lower bound to the pump rate w, below which
there is no stationary superradiance. We remark that this lower
boundary results from the optomechanical coupling. In fact,
in the absence of coupling with the motion stationary super-
radiance is expected for w > �c = �/N (and in our mean-
field treatment �c → 0). For a finite number N of atoms,
the behaviors we discuss in what follows can be observed
provided that �c � ωR.

Figure 10(a) displays the contour plot of |X (t )| as a func-
tion of time and of w for a constant value � = 15ωR > �c.
The dynamics is initially characterized by the exponential
buildup of |X (t )|, whose timescale weakly depends on w. Af-
ter this timescale the dynamics strongly depends on w. In par-
ticular, we identify a threshold value wc below which |X (t )|
performs large-amplitude oscillations. In contrast, above wc,
|X (t )| converges rapidly to its stationary value. The vertical
line indicates the threshold value we extract from the solution
of Eq. (23). The features of this transition are also visible in
the comparison of |X (t∗)| evaluated at t∗ = 104ω−1

R (circles)
and the stationary values Xst found using Eq. (23) (dashed
line) in Fig. 10(b). While for w > wc, both results are in good
agreement, for w < wc, we observe discrepancies: |X (t∗)|
oscillates about its stationary value with an amplitude on the
order of |X |st.

The behavior of the kinetic energy is generally similar, as
shown in Fig. 11(a), even though in the chaotic phase the
oscillations are less pronounced than for |X (t )|. Panel (b) dis-
plays the asymptotic value: the kinetic energy is visibly higher
in the chaotic phase. As for |X (t )|, for w > wc, the mean
value Ekin,st calculated by solving iteratively Eq. (23) agrees
with the one found numerically. On the other hand, in the
chaotic phase, Ekin,st > Ekin(t∗) and the difference increases
for smaller values of w. In panel (c) we show the kurtosis
K(t ) [Eq. (42)] evaluated at t = t∗ across the coherent-chaotic
transition: the momentum distribution is non-Gaussian across
the transition point wc and for all considered values of w.

Numerical simulations show that for w < wc the density
grating becomes unstable and the system jumps back and
forth between a prevailing occupation of the set of states
corresponding to an even grating, {|e, �2n〉, |g, �2n+1〉, n =
0, 1, 2, . . .}, and the set of states corresponding to an odd grat-
ing, {|e, �2n+1〉, |g, �2n〉, n = 0, 1, 2, . . .}. While the states
within each set are coupled by coherent processes, the two
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FIG. 10. (a) Contour plot of |X (t )| as a function of the time t
(in units of ω−1

R ) and of w (in units of ωR) for � = 15ωR and � =
κ/2. The dynamics of |X (t )| is calculated by numerically integrating
Eq. (15) with the initial state ρ̂0, Eq. (41), over a grid of momenta
with a cutoff at pmax = 15h̄k. (b) The asymptotic value of |X (t )| is
displayed as a function of w (in units of ωR). The dashed line is the
solution of Eq. (23); the circles correspond to X (t∗), as obtained by
integrating Eq. (15) until t∗ = 4 × 104ω−1

R . The red dashed-dotted
line in both panels indicates the critical value wc at which the steady-
state solution of Eq. (23) predicts a transition from the chaotic to the
coherent phase.

FIG. 11. Panels (a) and (b) are the same as in Fig. 10 but for the
kinetic energy Ekin = 〈 p̂2〉/(2m) (in units of the recoil energy h̄ωR).
Panel (c) shows the kurtosis K(t ) [Eq. (42)] at t = t∗ (circles) for
different values of w in units of ωR. The dashed line displays the
corresponding value of the kurtosis, Eq. (23).

FIG. 12. The value of the elements in the set ϒ [Eq. (43)] for
different values of w (in units of ωR) evaluated in the interval [t0, t1]
with t0 = 9 × 103ω−1

R and t1 = 104ω−1
R [for w > wc we plot |X (t∗)|

for t = 104ω−1
R ]. The red, dashed-dotted (gray dashed) line corre-

sponds to the threshold value wc (|X |st) found by solving Eq. (23).
The other parameters are � = 15ωR and � = κ/2.

sets are only coupled to each other by the incoherent pump:
Thus, for w < wc the long-range optomechanical interactions
tend to form a grating, which locks the phase of the field,
while the incoherent pump induces quantum jumps between
different gratings. An analysis of the entanglement is possible
only from the coherent side, where the nonlinear master
equation has one stationary solution, and shows that internal
and external degrees of freedom are entangled for w > wc.

We now analyze whether the state of the system, which
we have denoted as chaotic, indeed exhibits true signatures of
chaos. We here note that in Ref. [28] we performed an analysis
of the spectrum similar to the one presented in Sec. III D. In
Ref. [28] we also characterized this transition by means of
the Lyapunov exponent. In the following we present a further
characterization. For this purpose, for a fixed value of w, we
determine the extrema of |X (t )| in an appropriate time interval
[t0, t1]. We then define the set

ϒ = {|X |ext = |X (t )| is local extremum for t ∈ [t0, t1]}.
(43)

The time interval is chosen such that the transient relaxation
stage of |X (t )| does not play a role. For every value of w

we plot all the points in ϒ . The results are displayed in
Fig. 12. For values w > wc we have checked that the set
ϒ is empty. Hence, here we have plotted |X (t∗)|, that is to
a good approximation the stationary value. At w ≈ wc we
observe a bifurcation. By decreasing w we notice further
bifurcations until the finite step size in w limits the resolution.
This might suggest that period doubling is leading the system
from a single stationary state to chaotic dynamics. Another
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remarkable feature is the gap that occurs for 0.8 � w � 0.9,
where the set ϒ shows only a few discrete points. Such
features are known in chaos theory and can also for example
be observed in the logistic map [34].

C. Spatiotemporal pattern

The phases resulting from the optomechanical coupling
between internal and external degrees of freedom can be
understood in terms of the stability of density gratings, which
diffract the emitted light. The coherent regime, in particular,
suggests a sort of phase locking between motion and spin,
which we elucidate in this section. For this purpose we
analyze the dynamics in time and position, and denote by
{|x〉} the eigenstates of the position operator x̂. Since the
Hamiltonian is periodic with period λ = 2π/k and we take
periodic boundary conditions, it is sufficient to analyze the
dynamics in the spatial interval (−λ/2, λ/2].

Using the completeness relation we now write the order
parameter as

X (t ) = 1

λ

∫ λ/2

−λ/2
dx Tr{σ̂ cos(kx̂)ρ̂1(t )|x〉〈x|}

= 1

λ

∫ λ/2

−λ/2
dx S(x, t ). (44)

In the second line we have introduced the amplitude

S(x, t ) = Tr{σ̂ cos(kx̂)ρ̂1(t )|x〉〈x|}, (45)

= |S(x, t )|eiφ(x,t ), (46)

where φ(x, t ) is its phase and |S(x, t )| its modulus. In the
absence of optomechanical coupling this quantity is inde-
pendent of position and S reduces to the order parameter
of synchronization [20]. The mechanical effects of light in-
duce the spatial dependence of the collective dipole and the
superradiant phase can therefore be understood as a phase-
locking between the dynamics of the internal and external
degrees of freedom. In the coherent phase, where the system
reaches stationary superradiance, this phase-locking shall be
stationary. We analyze this behavior by studying the relative
phase with respect to the phase at position x = 0:

�φ(x, t ) = φ(x, t ) − φ(0, t ). (47)

This definition implies that �φ(0, t ) = 0 at every instant of
time and for any initial condition. For |S(x, t )| �= 0 for some
position x, the necessary condition for which |X (t )| reaches
the maximum value at a given instant of time is �φ(x, t ) = 0.

Figure 13 displays cos[�φ(x, t )] for different values of
w across the chaotic-coherent transition. In the coherent
phase (c), �φ(x, t ) has a constant value in space, indicating
that motion and spin are stably phase locked. Close to the
threshold value wc, as shown in panel (b), the phase starts to
exhibit small-amplitude oscillations in time and space about
x ∼ ±λ/2. In panel (a), where w < wc, one observes that the
amplitude of these oscillations is maximum and the atoms
at the positions x ∼ ±λ/2 become out of phase with respect
to the atoms at x = 0. The corresponding modulus of the
collective spin is shown in Fig. 14. These plots show that in the
coherent phase (c), the atoms are stably trapped about x = 0.

FIG. 13. Dynamics of cos �φ(x, t ), Eq. (47), as a function of x
(in units 1/k) for (a) w = ωR, (b) w = 1.5ωR, and (c) w = 2.5ωR.
The other parameters are as in Fig. 10.

At the transition point (b), the distribution starts to oscillate
between being localized and centered, and spreading out over
the whole interval. In panel (a) this behavior is enhanced and
becomes irregular in time. These dynamics illustrate how
spatial patterns accompany superradiant emission of light. In
the chaotic phase the pattern is unstable; the appearance of the
black stripes in Fig. 13(a) is accompanied by a redistribution
of the atoms in a new pattern, which leads to a new configura-
tion of phase locking.

This behavior is also visible in Fig. 15, where we show the
dynamics of

φ̃(x, t ) = φ(x, t ) − ωwt (48)

in the frame rotating with ωw [see Eq. (22)] and with respect
to the initial value φ̃(0, 0) = φ(0, 0). As visible in Fig. 15(c),
in the coherent phase, φ̃(x, t ) is spatially constant and almost
stationary in time. This is in agreement with Eq. (21) that
predicts that in the coherent phase there will be a stationary
order parameter X in the frame oscillating with frequency ωw.
In the chaotic phase, as is visible in Figs. 15(a) and 15(b),
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FIG. 14. Same as in Fig. 13 but for the modulus |S(x, t )|.

φ̃(x, t ) shows several jumps that reflect the redistribution of
the atoms and the corresponding temporal locking to a new
phase.

D. Experimental parameters

The phase diagram we predict can be observed by tuning
the superradiant linewidth � and the pump rate w across
values on the order of the recoil frequency ωR. The phases
are signaled by the first-order correlation function of the
emitted light. These dynamics can be realized when the res-
onator linewidth κ exceeds ωR by several orders of magnitude
and when other incoherent processes can be discarded over
the timescales where the dynamical phase transition occurs.
Specifically, the spontaneous decay of the dipolar transition
and the particle-particle collision rate should be orders of
magnitude smaller than the recoil frequency, which can be
realized using a Raman transition between metastable hyper-
fine states and low densities, as for instance is demonstrated
in Refs. [9,35,36]. In order to provide some numbers, in the
experiment of Ref. [9] the cavity linewidth is κ ∼ 11 MHz,
and the recoil frequency is approximately ωR ∼ 4 kHz. For

FIG. 15. Same as in Fig. 13 but for cos[φ̃(x, t ) − φ̃(0, 0)] and
where φ̃ is defined in Eq. (48).

a single-atom cooperativity C ∼ 10−2, a tunable effective
single-particle linewidth γ ∼ 0.2–10 Hz, and a particle num-
ber N ∼ 106, one obtains for the collective linewidth � ∼
NCγ = 2–100 kHz, which is in the parameter regime for
observing the dynamics we predict.

A further note regards the effect of s-wave collisions,
which we have discarded in our treatment. For a BEC of Rb87

atoms with a density n ∼ 1014 cm−3 [37] and a scattering
length a ∼ 100a0 [38], with a0 the Bohr radius, we expect a
mean-field energy shift corresponding to gn/h = 2h̄asn/m ∼
10 Hz, which can be neglected for the timescales we consider.
Note that in our simulations we also neglect the contribution
of the atomic linewidth γ of the excited state.

V. CONCLUSIONS

We have analyzed the stability of stationary superradiance
in a standing-wave optical resonator when the optomechanical
coupling to the atomic motion is relevant to the dynamics. For
this purpose, we derived a mean-field model and studied its
predictions for a specific class of initial states. Our model was
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formulated for a situation where the atoms are all prepared
in the excited state (the medium exhibits perfect population
inversion) and the motion is in a thermal state. A stability
analysis allowed us to show that the parameter regime, where
the system can undergo a superradiant emission, depends
on the temperature. Moreover, we identified a critical initial
temperature above which superradiance is suppressed by the
atomic motion.

We then studied the case where the atomic motion can
be described by a semiclassical model and when instead
the atoms form an ideal Bose-Einstein condensed gas at
T = 0. Our mean-field treatment allowed us to identify three
different phases in the regime where one expects stationary
superradiance in the absence of motional effects. We indeed
recovered stationary superradiance when the relevant rates
(the superradiant emission rate and the incoherent pump rate)
exceed the recoil frequency. On the contrary, when they are
comparable to the recoil frequency, we identified threshold
values below which the system either dephases and stops
emitting (the “incoherent” phase), or it emits light which
exhibits chaotic features. This chaotic behavior is found also
in the semiclassical regime. We provided illustrative pic-
tures of the dynamics, showing that the onset of stationary
superradiance is accompanied by the formation of a stable
spatial pattern which diffracts the emitted light, while in
the chaotic phase there is an interplay between the coherent
emission, which establishes a pattern locked to the phase
of the field, and the incoherent pump, which destroys the
phase coherence. The dynamics shares analogy with superra-
diant emission in a Bose-Einstein condensate [39–42], where
superradiant gain can be understood as the diffraction of
photons from the density grating of the recoiling atoms, that
acts as an amplifying medium. In the case discussed here
there is no phase coherence between the incident and the
emitted light, the pump is incoherent, and the gratings are
spontaneously formed as a result of the interplay between
the noise of the pump, the long-range interactions mediated
by the cavity photons, and the dissipation due to cavity
losses.

We emphasize that in the asymptotic limit of the dynamics
the atoms do not form a Bose-Einstein condensate (BEC); in
the incoherent phase the atomic state is a statistical mixture,
in the chaotic phase the atoms temporally jump between
different gratings, and in the coherent phase they form a
grating. None of these states can be correctly classified as a
BEC. Moreover, the transition we observe is within the class
of metastable states that are reached by starting from a BEC
with all atoms in the excited state. We remark that the phases
would be generally different for different classes of initial
states, as is typical in the physics of long-range (nonadditive)
interacting systems [33]. The chaotic phase, in particular,
characterizes the asymptotic phase of an incoherent dynamics,
it emerges from the interplay between quantum fluctuations,
noise, and all-to-all, global interactions mediated by the cavity
field, and is thus qualitatively different from chaos reported in
the quantum dynamics of Hamiltonian all-to-all, global-range
interacting systems [43,44]. It is intriguing whether it presents
features which can be understood in terms of many-body
quantum chaos [45].
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

The dynamics of the density matrix ρ̂ is governed by the
Lindbladian

∂ρ̂

∂t
= Lρ̂.

The Lindbladian L can be cast into three terms

L = LF + LA + L1,

where the three terms take the forms

LF ρ̂ = 1

ih̄

[
h̄
(
� − i

κ

2

)
â†â

]
ρ̂ + H.c. + κ âρ̂â†,

LAρ̂ = 1

ih̄

⎡
⎣ p̂2

j

2m
− ih̄

w

2

∑
j

σ̂ j σ̂
†
j

⎤
⎦ρ̂ + H.c. + w

∑
j

σ̂
†
j ρ̂σ̂ j,

L1ρ̂ = 1

ih̄

⎡
⎣∑

j

h̄gcos(kx̂ j )

2
(â†σ̂ j + σ̂

†
j â)

⎤
⎦ρ̂ + H.c.

The Lindbladian LF describes dynamics of the cavity degrees
of freedom while LA describes the dynamics of the external
and internal degrees of freedom of the atoms. The last term L1

is a coupling between cavity and atomic degrees of freedom.
The purpose of this Appendix is to eliminate the cavity
degrees of freedom under the assumption that the coupling of
cavity and atomic degrees of freedom is weak in comparison
to the cavity decay rate κ . Moreover we assume that the
atomic degrees of freedom evolve very slowly such that also
the Doppler shift k�p/m and the incoherent pump rate w are
much smaller than κ .

In order to derive an effective master equation for the
atomic degrees of freedom we use the projector method [31].
For this purpose, we define the projector

P ρ̂ = |0〉〈0|ρ̂|0〉〈0| ≡ ρ̂red ⊗ |0〉〈0|,
with ρ̂red = 〈0|ρ̂|0〉, and the projector Q = 1 − P to its or-
thogonal space. We define further the matrices v̂ = P ρ̂ and
ŵ = Qρ̂. Applying now these projectors onto the master
equation we obtain two coupled equations for v̂ and ŵ:

∂ v̂

∂t
= PLF ŵ + PLAv̂ + PL1ŵ, (A1)

∂ŵ

∂t
= QLF ŵ + QLAŵ + QL1(v̂ + ŵ). (A2)
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We used here that LF v̂ = 0 and that LA commutes with
the corresponding projectors. All frequencies are taken in
reference to κ and �, and thus we use the following hierarchy
of orders of magnitudes. For the cavity degrees of freedom

LF ρ̂ ∼ O(1).

The approximation that the timescales between atomic motion
and cavity motion can be separated can be written as

LAρ̂ ∼ O(ε),

where ε ∼ k�p/m/κ,w/κ should be very small. If we fur-
thermore assume that the coupling between cavity and atomic
degrees of freedom is weak we may write

L1ρ̂ ∼ O(ε).

Here, we have used that ε ∼ g
√

n̄/κ , where n̄ denotes the
mean intracavity photon number. Hence a large photon num-
ber would violate this assumption. Our goal is to derive a
master equation that is correct to order O(ε2).

We now formally integrate ŵ and obtain a result that it is
of first order in ε,

ŵ(t ) =
∫ t

t0

dτ eQ(LF +LA+L1 )(t−τ )QL1v̂(τ ) ∼ O(ε).

This equation is now used in Eq. (A1), where we get the
following result:

∂ v̂

∂t
=PLAv̂(t ) + PL1

∫ �t

0
dτ eQ(LF +LA+L1 )τQL1v̂(t − τ )

+ PLF

∫ �t

0
dτ eQ(LF +LA+L1 )τQL1v̂(t − τ ). (A3)

Since the second term in the first line of Eq. (A3) is already
second order in ε we can drop the terms LA and L1 in the
exponential. In the second line of Eq. (A3) we expand the
exponential up to first order in ε to keep consistently all terms
up to second order in ε in Eq. (A3). We use the expansion of
the propagator

eQ(LF +LA+L1 )τ ≈ �0 + �1, (A4)

where

�0 = eQLF τ (A5)

describes the zeroth order in ε and

�1 = d

dε
eQ(LF +ε[LA+L1])τ |ε=0 (A6)

=
∫ τ

0
dτ ′eQLF τ ′

[LA + L1]eQLF (τ−τ ′ ) (A7)

is the first order in ε. Using these expressions in Eq. (A3) we
obtain

∂ v̂

∂t
= PLAv̂(t ) + PL1

∫ �t

0
dτ eQLF τQL1v̂(t − τ )

+ PLF

∫ �t

0
dτ

∫ τ

0
dτ ′ eQLF τ ′L1eQLF (τ−τ ′ )

× QL1v̂(t − τ ), (A8)

where we have already used the fact that the contribution
of �0 and LA in �1 vanish when applying the expansion
[Eq. (A4)] and inserting it in Eq. (A3). Because of the
timescale separation we may replace v̂(t − τ ) with v̂(t ) and

may exchange the integration time �t by infinity. Using v̂ =
ρ̂red ⊗ |0〉〈0| and tracing out the cavity field we finally get the
result shown in Eq. (4).

APPENDIX B: VALIDITY OF THE MEAN-FIELD
APPROXIMATION AND DYNAMICS BEYOND

MEAN FIELD

In this Appendix, we demonstrate the necessary con-
ditions to justify the mean-field approach. For this pur-
pose we first analyze the BBGKY (Bogoliubov-Born-Green-
Kirkwood-Yvon) hierarchy, truncating at the second-order
level of the correlation hierarchy. Starting from the master
equation for the N-particle density matrix, Eq. (4), we first
determine the master equation for the �-particle density matrix
ρ̂� with 1 � � � N . This density matrix is defined in the
�-particle Hilbert space H⊗� and is obtained by tracing out
the (N − �) degrees of freedom TrN−�(ρ̂N ) = ρ̂�. Its master
equation is derived by applying TrN−� onto both sides of
Eq. (4), to give

∂ρ̂�

∂t
= 1

ih̄
[Ĥ�, ρ̂�] + �

N
L[Ĵ�]ρ̂� +

�∑
j=1

wL[σ̂ j]ρ̂� + D�[ρ̂�+1],

(B1)

where the �-particle Hamiltonian reads

Ĥ� =
�∑

j=1

p̂2
j

2m
− h̄�

2(κ/2)

�

N
Ĵ†
� Ĵ�, (B2)

with

Ĵ� =
�∑

j=1

σ̂ j cos(kx̂ j ). (B3)

Moreover, ρ̂� is coupled to ρ̂�+1 by means of the superopera-
tor:

D�[ρ̂�+1] = i

(
1 − l

N

)
�

2 sin χ
e−iχ [Ĵ�, X̂ ∗

� [ρ̂�+1]] + H.c.,

(B4)

with

X̂�[ρ̂�+1] = Tr(�+1)[σ̂�+1 cos(kx̂�+1)ρ̂�+1]. (B5)

The linear mapping Tr(k) denotes the trace over the kth degree
of freedom.

We want to calculate now the dynamics of the single-
particle density matrix that is given by Eq. (B1) for � = 1. The
single-particle density matrix ρ̂1 couples to the two-particle
density matrix ρ̂2. Decomposing ρ̂2 using Eq. (10), we obtain
Eq. (9).

In what follows we will determine the dynamics of ĝ2. For
this we make use of

∂ ĝ2

∂t
= ∂ρ̂2

∂t
− ∂ρ̂1

∂t
⊗ ρ̂1 − ρ̂1 ⊗ ∂ρ̂1

∂t
. (B6)

Together with Eq. (B1) for � = 1 and � = 2 and Eq. (10) we
decompose the equation into the sum of two terms:

∂ ĝ2

∂t
= Â1 + Â2. (B7)
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The first term in this expansion, Â1, can be written with aid of
the two superscript operators Ô(1)

1 = Ô1 ⊗ 1̂ and Ô(2)
1 = 1̂ ⊗

Ô1 as

Â1 = 1

ih̄

[
2∑

l=1

p̂2
l

2m
, ĝ2

]
− 1

ih̄

⎡
⎣ 2∑

j=1

h̄�

2 sin χN
Ĵ†

2 Ĵ2, ĝ2

⎤
⎦

+ 1

ih̄

[
− h̄�

2 sin χN

[(
Ĵ (1)

1

)†
Ĵ (2)

1 + (
Ĵ (2)

1

)†
Ĵ (1)

1

]
, ρ̂1 ⊗ ρ̂1

]

− �

2N

([(
Ĵ (1)

1

)†
, Ĵ (2)

1 ρ̂1 ⊗ ρ̂1
] + [

ρ̂1 ⊗ ρ̂1
(
Ĵ (1)

1

)†
, Ĵ (2)

1

])
− �

2N

([(
Ĵ (2)

1

)†
, Ĵ (1)

1 ρ̂1 ⊗ ρ̂1
] + [

ρ̂1 ⊗ ρ̂1
(
Ĵ (2)

1

)†
, Ĵ (1)

1

])

−
2∑

j=1

w

2
(σ̂ j σ̂

†
j ĝ2 + ĝ2σ̂ j σ̂

†
j − 2σ̂

†
j g2σ̂ j )

−
2∑

j=1

�

2N
(Ĵ†

2 Ĵ2ĝ2 + ĝ2Ĵ†
2 Ĵ2 − 2Ĵ2ĝ2Ĵ†

2 ).

This represents the part that is not derived from the superop-
erator defined in Eq. (B4). The remaining component of the
expansion, Â2, is then given by

Â2 = i

(
1 − 2

N

)
�

2 sin χ
(e−iχ [Ĵ2, X̂ ∗

2 [ρ̂3]] − H.c.)

− i

(
1 − 1

N

)
�

2 sin χ
(e−iχ [Ĵ1, X̂ ∗

1 [ρ̂2]] ⊗ ρ̂1 − H.c.)

− i

(
1 − 1

N

)
�

2 sin χ
(e−iχ ρ̂1 ⊗ [Ĵ1, X̂ ∗

1 [ρ̂2]] − H.c.).

We now decompose ρ̂3 as

ρ̂3 = ρ̂1 ⊗ ρ̂1 ⊗ ρ̂1 +
3∑

j,k,l=1

|ε jkl |ĥ j,kl + ĝ3. (B8)

Here ĥ j,kl describes a correlation between the kth and lth
Hilbert space, with no correlation to j, and ε jkl is the Levi-
Civita tensor. The matrix ĝ3 describes three-particle corre-
lations. The quantity ĥ j,kl together with an arbitrary single-
particle operator Â acting on the jth Hilbert space and an
arbitrary two-particle operator B̂ acting on the kth and lth
Hilbert space fulfills the condition

Tr(ÂB̂ĥ j,kl ) = Tr(Âρ̂1)Tr(B̂ĝ2). (B9)

Using the decomposition of ρ̂3 in Eq. (B8) we get

Â2 = �

2 sin χ
â2,

with

â2 = i

(
1 − 2

N

)
(e−iχ [Ĵ2, X ∗ρ̂1 ⊗ ρ̂1] − H.c.)

+ i

(
1 − 2

N

) 3∑
j,k,l=1

|ε jkl |(e−iχ [Ĵ2, X̂ ∗
2 [ĥ j,kl ]] − H.c.)

+ i

(
1 − 2

N

)
(e−iχ [Ĵ2, X̂ ∗

2 [ĝ3]] − H.c.)

− i

(
1 − 1

N

)(
e−iχ

[
Ĵ (1)

1 , X ∗ρ̂1 ⊗ ρ̂1
] − H.c.

)

− i

(
1 − 1

N

)(
e−iχ

[
Ĵ (2)

1 , ρ̂1 ⊗ ρ̂1X ∗] − H.c.
)

− i

(
1 − 1

N

)(
e−iχ[

Ĵ (1)
1 , X̂ ∗

1 [ĝ2] ⊗ ρ1
] − H.c.

)

− i

(
1 − 1

N

)(
e−iχ[

Ĵ (2)
1 , ρ̂1 ⊗ X̂ ∗

1 [ĝ2]
] − H.c.

)
.

We now use Eq. (B9) to obtain

â2 = − i
1

N
[e−iχ X ∗Ĵ2 + eiχ Ĵ†

2 X, ρ̂1 ⊗ ρ̂1]

+ i(1 − 2/N )[e−iχ X ∗
0 Ĵ2 + eiχ Ĵ†

2 X, ĝ2]

+ i(1 − 1/N )(e−iχ X̂ ∗
1 [ĝ2] ⊗ [Ĵ1, ρ̂1] − H.c.)

+ i(1 − 1/N )(e−iχ [Ĵ1, ρ̂1] ⊗ X̂ ∗
1 [ĝ2] − H.c.)

− i
1

N
(e−iχ [Ĵ2, X̂ ∗

1 [ĝ2] ⊗ ρ̂1] − H.c.)

− i
1

N
(e−iχ [Ĵ2, ρ̂1 ⊗ X̂ ∗

1 [ĝ2]] − H.c.)

+ i(1 − 2/N )(e−iχ [Ĵ2, X̂ ∗
2 [ĝ3]] − H.c.),

where we have used the decomposition Ĵ2 = Ĵ (1)
1 + Ĵ (2)

1 . If we
now assume that ĝ2 and ĝ3 are at least of order 1/N we obtain

∂ ĝ2

∂t
= (id ⊗ Lmf [ρ̂1] + Lmf [ρ̂1] ⊗ id)ĝ2

+ i
�

2 sin χ
(e−iχ X̂ ∗

1 [ĝ2] ⊗ [Ĵ1, ρ̂1] − H.c.)

+ i
�

2 sin χ
(e−iχ [Ĵ1, ρ̂1] ⊗ X̂ ∗

1 [ĝ2] − H.c.)

+ i
�

2N sin χ
(e−iχ [Ĵ1, ρ̂1] ⊗ ρ̂1(Ĵ†

1 − X ∗1̂) − H.c.)

+ i
�

2N sin χ
(e−iχ ρ̂1(Ĵ†

1 − X ∗1̂) ⊗ [Ĵ1, ρ̂1] − H.c.)

+ i
�

2 sin χ
(e−iχ [Ĵ2, X̂ ∗

2 [ĝ3]] − H.c.). (B10)

This describes the time evolution of ĝ2 up to order 1/N .
Here, id is the identity superoperator that maps every operator
onto itself, 1̂ is the unity operator, and X = X [ρ̂1]. The
order of magnitude of the individual terms on the right-hand
side suggests that, under the assumption that ĝ2(0) = 0, then
ĝ2(t ) ∼ O(1/N ) for times t � N/�. Since the characteristic
timescale for the evolution of ρ̂1 is �−1, we can then identify a
timescale separation for N → ∞ and assume that ĝ2 remains
zero over the timescale on which we analyze the mean-field
dynamics. This requires us to choose the thermodynamic limit
where � is constant as N → ∞. These considerations and
analyses based on the mean-field model are founded on this
assumption and thus are only valid for timescales smaller than
N/�.

The role of particle-particle correlations becomes impor-
tant on timescales that are on the order of N/�. As an
example, the mean-field treatment predicts in the coherent
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superradiant phase that 〈[Ĵ (2)
1 (t )]†Ĵ (1)

1 (0)〉 = |X |2, and there-
fore a diverging coherence time or equivalently a vanishing
linewidth. However, as it has been shown in Ref. [7], in the ab-
sence of particle motion, this correlation function decays with
a rate that is on the order of �/N = �c. Therefore, in order
to derive the first nonvanishing contribution to the linewidth,
we need to include at least two-particle correlations. The
inclusion of those would be unavoidable for analyzing longer
timescales ∼�/N of the dynamics, correlation functions, and
in particular to investigate the role of the recoil frequency ωR

for the linewidth.

APPENDIX C: SUPPLEMENTAL INFORMATION TO THE
STABILITY ANALYSIS

The entries of the matrix in Eq. (30) are

C11 = −i
�eiχ

2 sin χ
Tr{Ĵ1(s − L̃mf )−1[Ĵ†

1 , ˆ̃ρX ]}

= −i
�eiχ

2 sin χ

∫ ∞

0
dt e−st〈[Ĵ1(t ), Ĵ†

1 (0)]〉, (C1)

C12 = −i
�e−iχ

2 sin χ
Tr{Ĵ1(s − L̃mf )−1[Ĵ1, ˆ̃ρX ]}

= −i
�e−iχ

2 sin χ

∫ ∞

0
dt e−st〈[Ĵ1(t ), Ĵ1(0)]〉, (C2)

C21 = −i
�eiχ

2 sin χ
Tr{Ĵ†

1 (s − L̃mf )−1[Ĵ†
1 , ˆ̃ρX ]}

= −i
�eiχ

2 sin χ

∫ ∞

0
dt e−st〈[Ĵ†

1 (t ), Ĵ†
1 (0)]〉, (C3)

C22 = −i
�e−iχ

2 sin χ
Tr{Ĵ†

1 (s − L̃mf )−1[Ĵ1, ˆ̃ρX ]}

= −i
�e−iχ

2 sin χ

∫ ∞

0
dt e−st〈[Ĵ1(t ), Ĵ†

1 (0)]〉. (C4)

The elements of vector b read

b1 = Tr{Ĵ1(s − L̃mf )−1δ ˆ̃ρ(0)} =
∫ ∞

0
dt e−stTr{Ĵ1(t )δ ˆ̃ρ(0)},

(C5)

b2 = Tr{Ĵ†
1 (s − L̃mf )−1δ ˆ̃ρ(0)} =

∫ ∞

0
dt e−stTr{Ĵ†

1 (t )δ ˆ̃ρ(0)}.
(C6)

Here, we have used that L̃mf = L̃mf [ ˆ̃ρX ] is time independent
and the Heisenberg picture to define

Ô(t ) = eL̃
‡
mf t Ô(0),

where L̃‡
mf is the adjoint of L̃mf that fulfills Tr(ÔL̃mf �̂) =

Tr(L̃‡
mf Ô�̂) for operators Ô and �̂.

Below we determine the matrix elements for the stationary
state ρ̂0 [see Eq. (20)]. For this specific state the matrix
in Eq. (30) becomes diagonal and the stability analysis is
reduced to solving the equation

1 + C11(s) = 0. (C7)

In fact, for X = 0 and in the reference frame rotating with ωw

we can write

Ĵ1(t ) = σ̂eieiχ w
2 t cos(kx̂ + k p̂t/m). (C8)

We now calculate the value of C11. Using Eqs. (C1)
and (C8) we get

C11 = i
�

2
eiχ

∫ ∞

0
dte−st+ieiχ w

2 t

〈
cos(kx̂) cos

(
kx̂ + k p̂

m
t

)〉
(C9)

= i
�

2
eiχ

∫ ∞

0
dte−st+ieiχ w

2 t+iωRt I, (C10)

where we have explicitly used that all particles are in the
excited state (therefore 〈σ̂ σ̂ †〉 = 0 holds). Moreover, we have
introduced

I =
∫ ∞

−∞
d p〈p| cos(kx̂)

eikx̂eik p̂/mt + e−ikx̂e−ik p̂/mt

2
f ( p̂)|p〉

= 1

4

∫ ∞

−∞
d p〈p| f ( p̂)|p〉(eikp/mt + e−ikp/mt )

+ 1

4
(〈h̄k| f ( p̂)| − h̄k〉 + 〈−h̄k| f ( p̂)|h̄k〉)e−i2ωRt , (C11)

where we have used that eikx̂+ik p̂/mt = eikx̂eik p̂/mt eiωRt , with
ωR = h̄k2/2m the recoil frequency, and eikx̂|p〉 = |p + h̄k〉.
Using Eq. (C11) we obtain

C11 = i
�

(
s − ieiχ w

2 − iωR
)

4
eiχ

×
∫ ∞

−∞
d p

〈p| f ( p̂)|p〉(
s − ieiχ w

2 − iωR
)2 + ( kp

m

)2

+ i
�

8
eiχ 〈h̄k| f ( p̂)| − h̄k〉 + 〈−h̄k| f ( p̂)|h̄k〉

s − ieiχ w
2 + iωR

. (C12)

For a thermal state [see Eq. (32)] the dispersion relation then
reads

1 + i
�y

4 sin(χ )
eiχ

∫ ∞

−∞
d p

√
β

2mπ

exp
(−β

p2

2m

)
y2 + ( kp

m

)2 = 0, (C13)

where y = s − ieiχw/(2 sin χ ) − iωR. Using the substitution
p = p̄u with p̄ = h̄k�/(2ωR) we can cast Eq. (C13) into the
form given by Eq. (34).
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