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K. Mukherjee,1,2 S. I. Mistakidis ,2 S. Majumder,1 and P. Schmelcher2,3

1Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
2Department of Physics, Center for Optical Quantum Technologies, University of Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany
3Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 24 October 2019; accepted 21 January 2020; published 20 February 2020)

We unravel the periodically driven dynamics of two repulsively interacting bosonic impurities within a
bosonic bath upon considering either the impact of a finite pulse or continuous shaking of the impurities
harmonic trap. Following a pulse driving of initially miscible components, we reveal a variety of dynamical
response regimes depending on the driving frequency. At resonant drivings, the impurities decouple from their
host, while if exposed to a high-frequency driving, they remain trapped in the bosonic gas. For continuous
shaking, we showcase that in the resonantly driven regime the impurities oscillate back and forth within and
outside the bosonic medium. In all cases, the bosonic bath is perturbed performing a collective dipole motion.
Referring to an immiscible initial state, we unveil that for moderate driving frequencies the impurities feature
a dispersive behavior while for a high-frequency driving they oscillate around the edges of the Thomas-Fermi
background. Energy transfer processes from the impurities to their environment are encountered, especially
for large driving frequencies. Additionally, coherence losses develop in the course of the evolution with the
impurities predominantly moving as a pair.
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I. INTRODUCTION

Ultracold atoms constitute a unique test bed for monitoring
the nonequilibrium quantum dynamics of strongly particle-
imbalanced multicomponent systems [1–5]. Recently, consid-
erable attention has been devoted to the study of impurities in
a many-body environment. The impurities are then dressed,
thereby forming quasiparticles [6,7] such as polarons [2,8].
Consequently, this dressing mechanism affects fundamental
properties of the impurities, e.g., their effective mass [9], mo-
bility [10,11], and induced interactions [2], and even allows
them to form bound states known as bipolarons [8,12,13].
The exquisite tunability of the ultracold environment, e.g.,
the manipulation of the interaction between the impurities
and their host using Feshbach resonances [14,15], enabled
the experimental realization of both Bose [16–19] and Fermi
[20–22] polarons and the consecutive probing of their char-
acteristics. These include, for instance, the quasiparticle ex-
citation spectrum via radio-frequency spectroscopy [21–24],
the impurities trajectory employing in situ imaging [18,19],
and the crucial involvement of higher order correlations [25]
for the adequate description of the polaronic states. Simulta-
neously, a vast amount of theoretical effort has been mainly
devoted to unraveling the stationary properties of polaronic
states [26], which range from the the Fröhlich model [12,27–
29] to advanced beyond-mean-field frameworks [16,26,30–
39] that include interparticle correlations.

Having established an adequate understanding of the sta-
tionary properties of polarons, a natural next step which has
been very recently put forward is to investigate their nonequi-
librium dynamics [40,41], revealing peculiar correlation

effects [36,40–46]. Indeed, the crucial involvement of inter-
particle correlations can lead to nonlinear structure formation
[43,47], alterations of the breathing frequency [48], the mani-
festation of orthogonality catastrophe phenomena [41,49,50],
dissipative motion of impurities in the many-body medium
[51], and also their relaxation dynamics [46,52]. Other appli-
cations address impurity transport in optical lattices [53–56],
their collisional dynamics when penetrating with a finite ve-
locity a gas of Tonks-Girardeau bosons [57–61], the effective
control of quantum coherence [62], and investigations of
three-body Effimov physics [63,64]. However, despite the
above-mentioned investigations, the impurities dynamics is
still largely unexplored, especially in the case of more than
a single impurity, while further theoretical understanding is
highly desirable and of growing interest with the aim to
exploit this knowledge in the future for specific physical
applications.

A promising driving protocol to study the emergent
nonequilibrium dynamics of impurities corresponds to a
periodic driving [65–67] of their external potential. Here,
the dependence of the impurities’ dynamical response on
the driving frequency is of immediate interest in order to
realize in which regimes [65,66,68,69] the impurities are
dynamically trapped in their host and in which they can
escape. Moreover, the initial state of the system charac-
terized as miscible when the impurities and the bath are
spatially overlapping or immiscible in the opposite case is
expected to crucially affect the dynamics. Another interesting
prospect is to reveal induced impurity-impurity interactions
[31,70] mediated by the environment despite the existence
of direct s-wave impurity-impurity repulsions. Furthermore,
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dynamical phase separation [71–73] and associated energy
exchange [74,75] processes are worth studying. To track the
driven nonequilibrium dynamics of the impurities capturing
all relevant interparticle correlations, we utilize the multilayer
multiconfiguration time-dependent Hartree method for atomic
mixtures (ML-MCTDHX) [76–78]. The latter is a nonpertur-
bative variational approach especially designed to treat the
correlated quantum dynamics of atomic mixtures exposed
to time-dependent modulations. In particular, we consider
two repulsively interacting bosonic impurities embedded in
a Bose-Einstein condensate (BEC) and trapped in an external
one-dimensional harmonic oscillator. To trigger the dynamics,
we apply a shaking of the harmonic potential of the impurities.
This shaking is either performed for two driving periods and
subsequently the system is left to evolve freely (pulse) or it
is maintained throughout the evolution (continuous driving).
The BEC is not impacted by the external driving. We focus on
the case where the impurities and the bosonic gas are initially
spatially overlapping (miscible components) while the case of
an initially immiscible state is discussed briefly.

Focusing on the case of a pulse and initially miscible com-
ponents, we unveil a variety of dynamical response regimes
of the impurities depending on the driving frequency. At
small driving frequencies, the impurities closely follow the
motion of their trap [65,66] and after the pulse they remain
trapped while oscillating inside the bosonic bath. Exposed to
a resonant pulse [65,68,69], namely the frequency of the finite
pulse similar to the one of the harmonic trap, the impurities
perform a complex motion, escaping and re-entering into
their host and finally decoupling from the latter. Entering the
strongly driven regime, the impurities remain trapped in the
bosonic gas and show a dispersive behavior for long evolution
times. Considering an immiscible initial state, we observe that
for moderate driving frequencies the impurities feature a dis-
persive behavior within the bosonic gas and when subjected
to a highly intense driving they oscillate around the edges of
the Thomas-Fermi background and the intercomponent spatial
separation remains intact.

For a continuous shaking of the impurities trap and mis-
cible components, we showcase that an overall similar phe-
nomenology to the noncontinuously driven case occurs for
very low and high driving frequencies. Interestingly, we
observe that in the resonantly driven regime the impurities
exhibit an irregular oscillatory motion, moving within and
escaping from the BEC background, while featuring collisions
with the latter. As a result of the impurities’ motion, the
bosonic gas is perturbed, performing a collective dipole mo-
tion independently of the driving frequency and the protocol,
a behavior that becomes more pronounced for high-frequency
drivings where the impurities predominantly reside within
the bath.

Moreover, we reveal that when the impurities reside
within the bosonic gas they dissipate energy into the latter
[32,51,74,75], a process which is more prominent for large
driving frequencies where the degree of inter- and intraspecies
correlations [43,51] is found to be enhanced. The develop-
ment of coherence losses is unveiled by monitoring the time
evolution of the one-body coherence function [62], while the
impurities’ two-body reduced density matrix shows that they
travel predominantly as a pair [31,43,56,70,79].

This work is structured as follows. Section II presents our
setup and driving protocol as well as the many-body wave-
function ansatz and the observables which are utilized for
the characterization of the periodically driven dynamics. In
Sec. III, we discuss the emergent periodically driven dynamics
of miscible components induced by a pulse acting on the
harmonic oscillator potential of the impurities. The driven
dynamics of initially immiscible components is showcased
in Sec. IV. Section V presents the periodically driven time
evolution of two miscible components corresponding to a
continuous shaking. We summarize our results and provide
an outlook in Sec. VI. In Appendix A, we show that the
dynamical response of the mixture is not significantly affected
when considering two heavy impurities. Appendix B elab-
orates on the ingredients of the numerical simulations and
delineates their convergence. Finally, Appendix C showcases
the dynamics of two bosons in a shaken harmonic trap.

II. THEORETICAL FRAMEWORK

A. Hamiltonian and driving protocol

We consider a highly particle-imbalanced bosonic mixture
consisting of NI = 2 and NB = 100 atoms such that NB � NI .
Both species possess the same mass, i.e., MI = MB = M,
and are confined in an one-dimensional harmonic oscillator
potential of frequency ωI = ωB ≡ ω = 0.3. Such a mass-
balanced mixture can be experimentally realized, e.g., by a
binary BEC of 87Rb atoms prepared in the hyperfine states
|F = 1, mF = −1〉 and |F = 2, mF = 1〉 [80]. The mixture is
initialized in its ground-state configuration (see also below)
and in order to trigger the out-of-equilibrium dynamics the
harmonic oscillator potential of the impurities is periodically
shaken while the potential of the bosonic gas remains unper-
turbed. The corresponding many-body Hamiltonian reads

H =
∑

σ=B,I

Nσ∑
i=1

− h̄2

2M

(
∂

∂xσ
i

)2

+
NB∑
i=1

1

2
Mω

(
xB

i

)2

+
NI∑

i=1

V I
sh

(
xI

i , t
) + gBB

∑
i� j

δ
(
xB

i − xB
j

)

+ gII

∑
i� j

δ
(
xI

i − xI
j

) + gBI

NB∑
i=1

NI∑
j=1

δ
(
xB

i − xI
j

)
. (1)

Here, the periodically driven harmonic oscillator potential of
the impurities takes the form

V I
sh(xI , t ) = 1

2 Mω2(xI − A sin(ωDt ))2, (2)

with A and ωD being the amplitude and the frequency of
the driving, respectively. Experimentally, this periodically
driven scheme can be accomplished, e.g,. via acousto-optical
modulators [81]. Moreover, we operate in the ultracold regime
and hence s-wave scattering constitutes the dominant inter-
action process. Consequently, both the intra- and the inter-
species interactions are modeled by a contact potential with
effective coupling constants gBB, gII , and gBI . The effective
one-dimensional coupling strength [82] acquires the form

gσσ ′ = 2h̄2as
σσ ′

μa2
⊥

[1 − |ζ (1/2)|as
σσ ′/

√
2a⊥]

−1
, with σ, σ ′ = B, I ,
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μ = M
2 being the reduced mass, and ζ being the Riemann ζ

function. The transverse length scale is set by a⊥ = √
h̄/Mω⊥,

where ω⊥ is the frequency of the transverse confinement. Ad-
ditionally, as

σσ ′ is the three-dimensional s-wave intraspecies
(σ = σ ′) or interspecies (σ �= σ ′) scattering length. As a
result, gσσ ′ can be tuned experimentally via as

σσ ′ through
Feshbach resonances [14,15] or by manipulating ω⊥ with the
aid of confinement-induced resonances [82].

For convenience, below, the many-body Hamiltonian of
Eq. (1) is cast in units of h̄ω⊥. Consequently, the length, time,
and the interaction strength are rescaled in units of

√
h̄/Mω⊥,

ω−1
⊥ , and

√
h̄3ω⊥/M , respectively. Also, the frequency ω of

the harmonic oscillator and the driving frequency ωD are
expressed in terms of ω⊥. To restrict the spatial extent of the
system, we employ hard-wall boundary conditions at x± =
±50 which do not affect the dynamics since there is not any
appreciable density population beyond x± = ±25.

Our system consisting of NI = 2 impurities and NB = 100
atoms in the bosonic bath is initially prepared in its many-
body ground state described by the Hamiltonian of Eq. (1)
with ω = 0.3, ωD = 0, and A = 0. Throughout this work, the
intraspecies interaction strengths are kept fixed to the values
gII = 0.4 and gBB = 0.5, unless it is stated otherwise. Having
obtained the many-body ground state of the system with the
above-mentioned parameters, we induce its nonequilibrium
dynamics by considering a periodic driving of the impurities
harmonic oscillator potential [Eq. (2)] while the bosonic bath
remains undriven. In particular, we employ two different
driving protocols. Namely, in the first one, which we shall
term below the pulse driving, the potential of the impurities
is periodically driven for only two driving periods, i.e., until
t f = 4π/ωD, and afterward the system is let to evolve freely.
However, in the second scenario, the impurities are continu-
ously driven throughout the dynamics.

B. Many-body wave-function ansatz

To unravel the periodically driven dynamics of the binary
bosonic mixture, we employ the variational ML-MCTDHX
[76–78] method. It is based on expanding the total many-body
wave function of the system with respect to a time-dependent
and variationally optimized basis set. This allows us to take
into account both the intra- and interspecies correlations of the
binary system using a numerically feasible size of the basis
set. The total many-body wave function can be expressed in
the form of a truncated Schmidt decomposition [83] of rank d
as follows:

�MB(	xB, 	xI ; t ) =
D∑

k=1

√
λk (t )�B

k (	xB; t )�I
k (	xI ; t ). (3)

The time-dependent basis states �σ
k (	xσ ; t ) form an orthonor-

mal Nσ -body wave-function set in a subspace of the σ -species
Hilbert space Hσ and are known as the species functions of
the σ species. Moreover, the Schmidt coefficients λk (t ) in
decreasing order are referred to as the natural species popu-
lations of the kth species function. These coefficients signify
the presence of entanglement of the system. In particular, if
there is only one nonvanishing Schmidt coefficient, then the
total many-body state of Eq. (3) is a direct product of the

two-species states and the system is not entangled. In contrast,
when at least two λk (t ) possess a nonzero value, the system is
termed entangled or interspecies correlated [84].

Next, in order to incorporate intraspecies correlations into
our many-body ansatz, we expand each of the species func-
tions �σ

k (	xσ ; t ) with respect to permanents of dσ distinct
time-dependent single-particle functions (SPFs) ϕσ

1 , . . . , ϕσ
dσ

.
Then, �σ

k (	xσ ; t ) reads

�σ
k (	xσ ; t ) =

∑
l1, . . . , ldσ∑

li = N

Ck,(l1,...,ldσ )(t )

×
Nσ !∑
i=1

Pi

⎡
⎣ l1∏

j=1

ϕσ
1 (x j ; t ) · · ·

ldσ∏
j=1

ϕσ
dσ

(xK (dσ )+ j ; t )

⎤
⎦.

(4)

Here, P is the permutation operator which exchanges the
particle positions xσ

ν , ν = 1, . . . , Nσ within the SPFs. Also,
K (r) ≡ ∑r−1

ν=1 lν , with lν being the occupation of the νth
SPF and r ∈ {1, 2, . . . , dσ } and ck,(l1,...,ldσ )(t ) are the time-
dependent expansion coefficients. The eigenfunctions of the
σ -species one-body reduced density matrix ρ (1)

σ (x, x′; t ) =
〈�MB(t )|�̂σ†(x)�̂σ (x′)|�MB(t )〉 are termed natural orbitals
φσ

i (x; t ). Note that �̂σ (x) is the σ -species bosonic field oper-
ator. The natural orbitals are related to the SPFs by employing
a unitary transformation that diagonalizes ρ (1)

σ (x, x′; t ) when
it is expressed in the basis of SPFs; see also Refs. [76–78]
for details. The eigenvalues of ρ (1)

σ (x, x′; t ) are the so-called
natural populations nσ

i (t ) and provide a measure for the
occurrence of the σ -species intraspecies correlations. Indeed,
the σ -species subsystem is intraspecies correlated if more than
one eigenvalue is macroscopically occupied; otherwise, it is
termed fully coherent.

Having specified the many-body wave-function ansatz
introduced in Eqs. (3) and (4), one determines the cor-
responding ML-MCTDHX equations of motion [76,85]
of the constituents λk (t ), ck,(l1,...,ldσ )(t ) and φσ

j (xσ ; t ). In-
deed, by utilizing, e.g., the Dirac-Frenkel variational
principle [86,87], one arrives at a set of D2 linear
differential equations for the coefficients λk (t ), which
are coupled to D[(NB + dB − 1)!/NB!(dB − 1)! + (NI + dI −
1)!/NI !(dI − 1)!] nonlinear integrodifferential equations for
ck,(l1,...,ldσ )(t ) and dI + dB nonlinear integrodifferential equa-
tions for the SPFs. Note that for all many-body simulations,
to be presented below, we use D = 10 species functions
and dB = 3, dI = 6 single-particle functions. In this way,
numerical convergence is achieved; see Appendix B for a
more elaborate discussion. For explicit derivations and further
details, we refer the reader to Refs. [76–78].

C. Observables of interest

We next introduce the main observables which will be
employed for the interpretation of the periodically driven
dynamics of the bosonic mixture. To estimate the degree of
spatial one-body coherence in the course of the evolution, we
invoke the normalized spatial first-order correlation function
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[71,88,89]

g(1)
σ (x, x′; t ) = ρ (1)

σ (x, x′; t )√
ρ

(1)
σ (x; t )ρ (1)

σ (x′; t )
. (5)

Here, the σ -species one-body reduced density matrix
is defined as ρ (1)

σ (x, x′; t ) = 〈�MB(t )|�̂σ†(x)�̂σ (x′)|�MB(t )〉
whose diagonal corresponds to the one-body density
ρ (1)

σ (x; t ) ≡ ρ (1)
σ (x, x′ = x; t ), which is accessible in cold-

atom experiments via in situ imaging [18,19]. Also, �̂σ†(x)
[�̂σ (x)] is the bosonic field operator that creates (annihilates)
a σ -species boson at position x. |g(1)

σ (x, x′; t )| takes values in
the interval [0,1] and indicates the proximity of the many-
body state to a mean-field product state for a specific set of
spatial coordinates x, x′. Moreover, two distinct spatial regions
D, D′, i.e., D ∩ D′ = ∅, are termed perfectly incoherent
or fully coherent if |g(1)

σ (x, x′; t )| = 0 and |g(1)
σ (x, x′; t )| = 1

respectively with x ∈ D and x′ ∈ D′. Additionally, in the case
of partial incoherence, namely 0 < |g(1)

σ (x, x′; t )| < 1, we can
infer the development of one-body intraspecies correlations
while full coherence |g(1)

σ (x, x′; t )| = 1 for every x, x′ desig-
nates their absence.

To quantify the degree of impurity-BEC interspecies corre-
lations or entanglement during the time evolution, we exploit
the so-called von Neumann entropy [18,72,83]

SV N (t ) = −
D∑

k=1

λk (t ) ln[λk (t )]. (6)

where λk (t ) denote the Schmidt coefficients [Eq. (3)]. The lat-
ter are the eigenvalues of the species reduced density matrix,
e.g., ρ (NB )(	xB, 	x′B; t ) = ∫

dxI�∗
MB(	xB, xI ; t )�MB(	x′B, xI ; t ),

where 	xB = (xB
1 , . . . , xB

NB−1
). The binary system is species

entangled or interspecies correlated if more than a single
eigenvalue of ρ (NB ) possess a nonzero value; otherwise, it
is not entangled [see also Eq. (3)]. For instance, within
the mean-field approximation, λ1(t ) = 1 and λk (t ) = 0,
k = 2, 3, . . . , D and therefore SV N (t ) = 0, while for a
many-body state where λk>1 �= 0 it holds that SV N (t ) �= 0.

The eigenfunctions of the σ -species one-body reduced
density matrix ρ (1)

σ (x, x′; t ) are the so-called σ -species nat-
ural orbitals, φσ

i (x; t ), and natural populations ησ
i (t ) ∈ [0, 1]

respectively. Each bosonic subsystem is said to be fragmented
or intraspecies correlated if more than one natural population
possesses a macroscopic occupation; otherwise, the corre-
sponding subsystem is fully coherent. Indeed, if the natural
populations obey ησ

1 (t ) = 1, ησ
i �=0(t ) = 0 [see also Eqs. (3)

and (4)], then the first natural orbital φσ
1 becomes the Gross-

Pitaevskii wave function φσ (xσ ; t ) [90]. Accordingly, we in-
voke as a measure of the σ -species intraspecies correlations
the deviation

Fσ (t ) = 1 − ησ
1 (t ). (7)

It provides a theoretical tool for the identification of the occu-
pation of the dσ > 1 least occupied bosonic natural orbitals,
and therefore of the deviation of the many-body wavefunction
from a product state when Fσ (t ) > 0 [91–93].

To monitor the position of the center of mass of the σ

species during the nonequilibrium dynamics, we resort to its

spatially averaged mean position

〈Xσ (t )〉 = 〈�MB(t )|x̂σ |�MB(t )〉 . (8)

In this expression, x̂σ = ∫
R dxxσ �̂σ†(x)�̂σ (x) represents a

one-body operator and R is the spatial extension of the
σ -species one-body density. This quantity, 〈Xσ (t )〉, can be
assessed experimentally by relying on spin-resolved single-
shot absorption images [18,19]. More precisely, each individ-
ual image gives an estimate of the σ -species position while
〈Xσ (t )〉 can be retrieved by averaging over several such images
[51,71,93].

III. DRIVING WITH A TWO-PERIOD PULSE

In this section, we discuss the nonequilibrium dynamics
of the bosonic mixture induced by a two-period pulse driving
of the harmonic oscillator of the impurity atoms. The system
consisting of NB = 100 bosons and NI = 2 impurities, both
confined in the same harmonic potential of frequency ω =
0.3, is initially prepared in its many-body ground state with
gBB = 0.5, gII = 0.4, and gBI = 0.2. Note that this choice of
the interaction parameters ensures that the system initially
(t = 0) resides within the miscible phase since gBI <

√
gBBgII

[73,94]. To trigger the dynamics, the harmonic oscillator
potential of the impurities is periodically shaken according
to Eq. (2) for two driving periods, i.e., up to a finite time
t f = 4π/ωD, where ωD is the driving frequency. Also here
we consider an oscillation amplitude A = 20 � RTF with
RTF ≈ 8.3 denoting the Thomas-Fermi radius of the bosonic
gas. Then for t > t f the system is left to evolve freely, namely
without any external driving, while keeping fixed all other
parameters for a specific ωD.

Moreover, we cover a wide range of driving frequencies
lying in the interval ωD ∈ [0.025, 2]. Let us note in passing
that the overall phenomenology, to be presented below, does
not significantly depend on the value of the driving amplitude
A. We have verified this by inspecting the dynamics also for
A = 10 and A = 5 (not shown for brevity).

A. Single-particle density evolution

In order to inspect the periodically driven dynamics, we
first invoke the time evolution of the σ -species single-particle
density, ρ (1)

σ (x; t ), shown in Fig. 1 for specific driving fre-
quencies covering the low- to high-frequency regimes. For
low frequencies such as ωD = 0.075, the impurities which are
initially located at the trap center follow the motion of their
external trapping potential, moving toward the left edge of
the bosonic gas [Fig. 1(b1)]. In this time interval, ρ

(1)
I (x; t )

becomes more squeezed than ρ
(1)
I (x; t = 0) [compare the

width of ρ
(1)
I (x; t = 5) and ρ

(1)
I (x; t = 0) in Fig. 1(b1)] due to

the interaction of the finite velocity impurities with the BEC
background. Then, at t = 9.2 the impurities escape from their
host reaching the position x = 27 at t = 16 [Fig. 1(b1)], which
lies beyond the driving amplitude (A = 20) and consequently
they are reflected back due to the presence of the trap. During
this latter motion, they scatter back for a short time interval
when approaching the bosonic gas [see the white dashed
rectangle in Fig. 1(b1)] and then reverse again their direction
traveling toward the BEC, which they penetrate at t = 40.
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(a2)

(b2) (b3) (b4)

(a3) (a4)(a1)
ωD = 1.15 ωD = 1.5ωD = 0.3ωD = 0.075

FIG. 1. Time evolution of the σ -species single-particle density ρ (1)
σ (x; t ) of [(a1)–(a4)] the bosonic bath (σ = B) and [(b1)–(b4)] the two

impurities (σ = I) for specific driving frequencies ωD (see legends). The shaking of the external potential of the impurities is maintained
up to t f = 4π/ωD (see the dashed vertical line) and then the system is left to evolve. The bosonic mixture consists of NB = 100 atoms
with gBB = 0.5 and NI = 2 interacting gII = 0.4 impurities and it is trapped in a harmonic oscillator of frequency ω = 0.3. The interspecies
repulsion is gBI = 0.2 and the system is prepared in its ground state. The dashed horizontal and vertical lines in panels (b1)–(b4) indicate
the location of the Thomas-Fermi radius of the bosonic gas and the time instant (t = t f ) of the termination of the shaking. The white dashed
rectangles in panels (b1) and (b2) mark the back-scattering events of the impurities. The dashed circle and ellipse in (b2) mark the splitting
of ρ

(1)
I (x; t ) and the portion of the impurities deposited at x < 0 respectively for t > t f , while the rectangle in panel (b4) indicates the density

notch of ρ
(1)
I (x; t ).

Note here that this weak-amplitude back-scattering event is
mainly caused by the driving of the harmonic trap. In partic-
ular, it stems from the difference between the instantaneous
velocity of the impurities and the external driving at specific
spatial regions. Moreover, this event is only slightly enhanced
by the presence of the repulsive gBI ; see also Appendix C.

Afterward, the impurities dive into the bosonic bath, reach
its right edge, and subsequently escape, performing a motion
similar to the above-described back-and-forth motion caused
by the driven harmonic oscillator until they are again injected
into the bosonic medium [Fig. 1(b1)]. In this way, the first os-
cillation of the external driving potential is completed. During
the second oscillation period, the same overall phenomenol-
ogy described above occurs until t f = 166.07 where the driv-
ing is terminated; see the dashed vertical line in Fig. 1(b1).
Subsequently, the impurities remain confined within the BEC,
exhibiting an oscillatory motion characterized by an ampli-
tude of the order of the Thomas-Fermi radius of the bosonic
gas and do not escape from the latter (see also the discussion
in Sec. III B). As a consequence of the impurities’ motion
and their interaction with the BEC background, ρ

(1)
B (x; t ) ex-

hibits weak distortions from its original Thomas-Fermi profile
[51] manifested by a small-amplitude collective dipole mode
[Fig. 1(a1)] in the course of time.

When increasing the driving frequency to ωD = ω = 0.3
(resonant driving), the impurities show a much more complex
dynamical response [Fig. 1(b2)]. More precisely, at the initial
stages of the dynamics, they travel in the direction of the driv-
ing toward the left edge of the BEC and escape from the latter
at t = 6. Consequently, they move until reaching x = 33.28
where they are reflected back due to the driven harmonic
trap and exhibit a back-and-forth motion, experiencing two
back-scattering events when approaching the boundary of the
bosonic bath; see the white dashed rectangle in Fig. 1(b2). As

time evolves, the impurities are again injected into the bath at
t = 24.8 and interact with the latter.

Later on, they reach the right edge of the BEC at t =
38.1 and escape, moving outward until they arrive at the
position x = 33.3, where they feel the external oscillator
and are reflected backward. During this backward motion,
the external driving stops at t = 41.87 [dashed vertical line
in Fig. 1(b2)], and when the impurities approach the right
edge of the bosonic gas, they interact with the latter and
split into two fragments [see the dashed circle in Fig. 1(b2)]
from which one transmits through the BEC (x > −RTF) and
the other one is reflected back (x < RTF). The reflected part
[see the dashed ellipse in Fig. 1(b2)] possesses the major
population and it remains in the right region outside of the
bath throughout the evolution, showing a dispersive behavior.
On the other hand, the transmitted portion of ρ

(1)
I (x, t ) per-

forms a large-amplitude oscillatory motion, penetrating and
escaping ρ

(1)
B (x, t ) during the time evolution. Therefore, after

the driving, the major portion of the impurities is deposited
outside the right edge of the bath and as a consequence the
symmetry of the population of the impurities with respect
to the trap center is broken for ωD = ω. The bosonic bath
remains essentially unperturbed during the dynamics since the
impurities are most of the time out of their host; see Fig. 1(a2).

Next, we turn our attention to relatively fast drivings such
that ωD � ω [Figs. 1(b3) and 1(b4)], where the timescale of
the shaking 1/ωD is much shorter than all the other relevant
time scales of the system. Note that in this case it is exceed-
ingly difficult for the impurities to adjust their motion to the
external periodic variation of the position of the trap minimum
and therefore the spatial extension of ρ

(1)
I (x, t ) is limited to

a much smaller spatial region than the driving amplitude A
[65,66,68]. To support our arguments, we present exemplarily
the time evolution of ρ

(1)
I (x, t ) corresponding to frequencies
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ωD = 1.15 [Fig. 1(b3)] and ωD = 1.5 [Fig. 1(b4)]. Evidently,
the oscillation amplitude of ρ

(1)
I (x; t ) in both cases is smaller

than A. For instance, when ωD = 1.15, ρ
(1)
I (x; t ) remains

inside the bath within the time period of the shaking (t <

t f = 10.92) while for t > t f it exhibits a periodic oscillation
with an amplitude that exceeds the Thomas-Fermi radius of
the BEC. Moreover, ρ (1)

I (x; t ) has a localized shape for t < 44
and later on it is gradually smeared out, showing a relatively
delocalized behavior for the time intervals that the impurities
lie within the bosonic gas; see Fig. 1(b3). This delocalized
behavior ρ

(1)
I (x; t ) is caused by the interaction of the impuri-

ties with the atoms of the bath. However, when the impurities
reside outside the edges of the BEC, ρ

(1)
I (x; t ) forms localized

spikes [Fig. 1(b3)]. The above-described dynamical response
of the impurities, occurring for fast drivings, becomes more
pronounced for even larger driving frequencies, e.g., ωD =
1.5 shown in Fig. 1 (b4). Indeed, ρ

(1)
I (x; t ) remains localized

while oscillating mostly within the bosonic cloud throughout
the dynamics and a decay of its oscillation amplitude occurs as
time evolves. Additionally, as a consequence of the impurity-
BEC interaction, a density notch builds upon ρ

(1)
I (x; t ) for t >

105 [see the red square box in Fig. 1(b4)], which essentially
indicates the involvement of excited states in the dynamics of
the impurities. For these fast drivings, the impurities’ motion
leaves its traces on the bosonic bath manifested by the striped
patterns observed in ρ

(1)
B (x; t ); see Figs. 1(a3) and 1(a4). These

stripe patterns reveal that the bosonic gas becomes excited
due to its interaction with the impurities [43,51] and they are
visualized as weak distortions from its original Thomas-Fermi
profile. Most important, we can deduce that the excitations of
the bosonic medium are much more prominent for fast driving
frequencies compared to weak ones since in the former case
the impurities mostly reside within the majority species’ cloud
in the course of the evolution [Figs. 1(a3) and 1(a4)], while
in the latter case they escape from the BEC background
[Figs. 1(a1) and 1(a2)].

A remark regarding the dynamical dressing of the impuri-
ties from the excitations of the BEC background is appropriate
at this point. Indeed, the above-described response of the
impurities to their external driving suggests that their dynam-
ical dressing and therefore the probability to form a quasi-
particle, here the Bose polaron, is enhanced for high driving
frequencies where they mainly reside within the bosonic bath.
However, for resonant drivings (ωD = ω), the impurities after
the termination of the driving lie outside the BEC background
[Fig. 1(b2)] and as a result we can ensure that no quasiparticle
is formed [2,8,24,40].

B. Time evolution of the center-of-mass

To gain a better understanding of the dynamical response
of each species to the periodic driving of the impurities’
external potential, we subsequently inspect the position of
the σ -species center-of-mass motion captured via 〈Xσ (t )〉
[Eq. (8)] for different ωD [Figs. 2(a1)–2(a4) and 2(b1)–2(b4)].
Below, we first analyze 〈XI (t )〉 since the impurities undergo a
much more involved dynamics than the bosonic gas as argued
previously. Recall that the impurities are directly exposed to
the external driving protocol while the bath is only indirectly
affected by their motion.
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FIG. 2. Temporal evolution of the center-of-mass 〈Xσ (t )〉 of the
impurities (σ = I) and the bath (σ = B) at selective driving fre-
quencies [(a1), (b1)] ωD = 0.075, [(a2), (b2)] ωD = 0.3, [(a3), (b3)]
ωD = 1.15, and [(a4), (b4)] ωD = 1.5. The dynamics is triggered by
shaking the harmonic oscillator of the impurities for t f = 4π/ωD

(see the dashed vertical lines) and then the system is left to evolve
unperturbed. Recall that the Thomas-Fermi radius of the bosonic gas
is RTF ≈ 8.3. All other system parameters are the same as in Fig. 1.

Focusing on low driving frequencies, i.e., ωD = 0.075 �
ω, we observe that the dynamics of 〈XI (t )〉 closely resembles
the evolution of ρ

(1)
I (x; t ); compare Figs. 1(b1) and Fig. 2(b1).

This is a consequence of the fact that for such low driv-
ing frequencies the impurities can adequately adapt to the
externally driven trapping potential and therefore ρ

(1)
I (x, t )

remains well localized at the instantaneous trap minimum. In
particular, for t < t f , 〈XI (t )〉 shows an “irregular” oscillatory
behavior with an amplitude larger than the actual driving
amplitude A = 20 [Fig. 2(b1)]. However, when the driving
is terminated at t f = 166.47, the oscillation amplitude of
〈XI (t )〉 decreases drastically, being much smaller than the
Thomas-Fermi radius, indicating that the impurities remain
inside the BEC. Note also that in this latter time interval
the oscillation of 〈XI (t )〉 possesses predominantly a single
frequency. A similar “irregular” oscillatory pattern of 〈XI (t )〉
takes place also for resonant drivings ωD = 0.3 when t < t f =
41.87 but with a comparatively larger oscillation amplitude
than ωD = 0.075; see Fig. 2(b2). Subsequently, for t > t f

the center-of-mass oscillation amplitude of the impurities is
greatly suppressed and in particular 〈XI (t )〉 is restricted within
the x < −RTF ≈ −8.3 region, e.g., 〈XI (t = 195)〉 ≈ −11 in
Fig. 2(b2), i.e., outside the right edge of the majority species
cloud. Note that at ωD = ω and t > t f the impurities are
distributed asymmetrically with respect to the bath and the
major portion of their single-particle density is located at
x < −RTF [Fig. 1(b2)].

In contrast to the ωD = ω case for fast driving frequen-
cies, e.g., ωD = 1.15 [Fig. 2(b3)] and ωD = 1.5 [Fig. 2(b4)],
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the postshaking (t > t f ) time evolution of 〈XI (t )〉 shows a
symmetric with respect to x = 0 oscillatory pattern. More
precisely, in both cases, the oscillation amplitude of 〈XI (t )〉
slightly increases shortly after the termination of the shaking,
e.g., 0 < t < 30 in Fig. 2(b3), and then exhibits a decaying
behavior in the course of time. Interestingly, a close compar-
ison of 〈XI (t )〉 between ωD = 1.15 and ωD = 1.5 reveals that
the decay of its amplitude is slower in the latter case since for
ωD = 1.15 the impurities become more delocalized within the
majority species in the long-time dynamics.

Subsequently, we examine the dynamics of the center of
mass of the BEC background, 〈XB(t )〉, for a varying driving
frequency illustrated in Figs. 2(a1)–2(a4). Note that despite
the fact that no external dynamical perturbation is directly
applied to the majority species, the motion of the impurities is
imprinted in the BEC as a dipole mode due to the existence of
finite interspecies interactions. Indeed, 〈XB(t )〉 exhibits a mul-
tifrequency oscillatory behavior independently of ωD being
characterized by a much smaller amplitude than 〈XI (t )〉. The
oscillation amplitude of 〈XB(t )〉 acquires its smallest value for
ωD = ω = 0.3 [Fig. 2(a2)], which is attributed to the fact that
for ωD = 0.3 the impurities mainly reside outside the bosonic
gas when the shaking is terminated; see also Fig. 1(b2).

C. Interspecies energy transfer

To unveil possible energy exchange processes between
the impurities and the BEC background during the
periodically driven dynamics below, we analyze the
behavior of the individual intra- and interspecies
energy contributions [43,74,75]. The latter include
the normalized or excess energy of the bath EB(t ) =
〈�MB(t )| T̂B + V̂B(x) + ĤBB |�MB(t )〉 − 〈�MB(0)| T̂B +
V̂B(x) + ĤBB |�MB(0)〉, the energy of the impurities EI (t ) =
〈�MB(t )| T̂I + V̂I (x) + ĤII |�MB(t )〉, and the interspecies
interaction energy EBI (t ) = 〈�MB(t )| ĤBI |�MB(t )〉. In
these expressions, the kinetic and potential energy
operators are T̂σ = − ∫

dx�̂σ†(x) h̄2

2m ( d
dxσ )2�̂σ (x) and

V̂σ = − ∫
dx�̂σ†(x)V σ (xσ , t )�̂σ (x) respectively. Also,

the operators of the intra- and interspecies interactions
correspond to Ĥσσ = gσσ

∫
dx�̂σ†(x)�̂σ†(x)�̂σ (x)�̂σ (x)

and ĤBI = gBI
∫

dx�̂B†(x)�̂I†(x)�̂B(x)�̂I (x).
The temporal evolution of the above-described energy

terms is illustrated in Fig. 3 for distinct driving frequencies
ωD. As can be seen, in the course of the shaking, i.e., t < t f ,
the energy of the impurities EI (t ) overall increases for every
ωD [Figs. 3(a1)–3(a4)] since they are externally driven and
therefore their kinetic energy becomes larger. Simultaneously,
the energy of the bosonic bath EB(t ) exhibits an increasing
tendency [Figs. 3(c1)–3(c4)] while the impurity-BEC interac-
tion energy EBI (t ) decreases [Figs. 3(b1)–3(b4)]. Notice that
for low driving frequencies, namely ωD = 0.075 and ωD =
0.3, when EBI (t ) tends to zero signifies that the impurities
escape from the bosonic bath [e.g., see Figs. 1(b1) and 3(b1)],
while the subsequent abrupt increase of EBI (t ) from zero to
a finite value is caused by the re-enterance of the impurities
into the bath. For instance, at ωD = 0.3, the impurities remain
within the bath in the time intervals 0 � t � 6 and 24.8 � t �
38.1 [Fig. 1(b2)], exchanging a small amount of energy with
the bath [Fig. 3(b2)], resulting in the negligible increase of

a b

b

b

a

a

a b c

c

c

c

FIG. 3. Time evolution of the individual energy contributions
of [(a1)–(a4)] the impurities EI (t ), [(b1)–(b4)] the interspecies in-
teraction energy EBI (t ), and [(c1), (c2)] the bosonic bath EB(t ) at
different driving frequencies ωD (see legends). The dashed vertical
lines mark the time instant, t = t f , of the termination of the shaking.
The remaining system parameters are the same as in Fig. 1.

EB(t ) [Fig. 3(c2)]. This behavior of the individual energy con-
tributions suggests an energy transfer process [32,43,74,75]
from the impurities to the bosonic gas, e.g., imprinted in
the density of the latter as a center-of-mass dipole mode.
Moreover, after the application of the driving, i.e., for t > t f ,
EI is augmented as depicted in Figs. 3(a1)–3(a4) while EB(t )
acquires larger values since for t > t f the impurities reside
within the BEC and thus convey energy to the latter. In the
same time interval, the corresponding interspecies interaction
energy EBI (t ) shows an oscillatory behavior. In particular,
when the impurities travel toward the edge of the bath [see
also Fig. 1(b2)], they acquire more kinetic energy, and thus
EI (t ) increases, and transfer energy to the BEC, resulting in
an increase of EB(t ) while EBI (t ) decreases and vice versa.
Note also that the impurities possess a maximum energy value
in the case of resonant driving ωD = ω and as a consequence
they are able to move far away from the Thomas-Fermi radius
of the BEC [Fig. 1(b2)].

Additionally, at large driving frequencies such as ωD =
1.15 and ωD = 1.5, the energy gain of the bath is maximum
since the impurities remain mostly within the BEC and con-
tinuously transfer energy to the latter [see Figs. 3(c3) and
3(c4)]. For this reason, also the excitations of the bath are
enhanced for such large driving frequencies and its center-of-
mass oscillations possess their largest amplitude [Figs. 2(a3)
and 2(a4)].

D. Development of intra- and interspecies correlations

To estimate the degree of intra- and interspecies (entan-
glement) correlations in the course of the nonequilibrium
dynamics of the bosonic mixture, we resort to the deviation
from unity of the first natural population Fσ (t ) [Eq. (7)] and
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(a)

(b) (c)

FIG. 4. Dynamics of (a) the von Neumann entropy SV N (t ) and
the deviation from unity of the first natural population of (b) the
impurities FI (t ) and (c) the bosonic gas FB(t ) for varying driving fre-
quency ωD. The white curves indicate the duration t = t f = 4π/ωD

of the periodic shaking of the potential of the impurities for different
driving frequencies ωD.

the von Neumann entropy SV N (t ) [Eq. (6)] respectively. It
is worth mentioning that Fσ (t ) > 0 signifies the emergence
of σ -species intraspecies correlations (see also Sec. II C),
while SV N (t ) �= 0 indicates the appearance of interspecies
entanglement into the system [71,72].

Figure 4 depicts the dynamics of the von Neumann entropy
SV N (t ) and the degree of σ -species intraspecies correlations
Fσ (t ) for a relevant interval of the driving frequency ωD.
For weak and intermediate driving frequencies, i.e., 0 <

ωD < 0.7, and referring to the time interval of the shak-
ing (see the dashed white line in Fig. 4), the entanglement
between the species [Fig. 4(a)] and the impurity-impurity
correlations [Fig. 4(b)] are small since max[SV N (t < t f )] <

0.1 and max[FI (t < t f )] < 0.12. However, for later times,
we observe the buildup of finite entanglement at particu-
lar values of ωD and strong impurity-impurity correlations
almost for every 0 < ωD < 0.7. For instance, at ωD = 0.1,
SV N (t = 10) ≈ 0.03 while SV N (t = 60) ≈ 0.24 and SV N (t =
180) ≈ 1.15 [Fig. 4(a)], indicating the growth of entangle-
ment via SV N (t ) as time evolves. Similarly, at ωD = 0.1,
FI (t = 10) ≈ 0.01 and FI (t = 60) ≈ 0.07, FI (t = 180) ≈
0.27 [Fig. 4(b)], designating the development of impurity-
impurity correlations during the evolution. Recall that in the
resonantly driven region, i.e., 0.2 < ωD < 0.45, the impuri-
ties are expelled outside the bosonic bath, leading to weak
interspecies correlations. Entering the high-frequency driving
regime, and in particular 0.75 < ωD < 1.7, both SV N (t ) and
FI (t ) acquire larger values especially for t > t f , indicating
the existence of non-negligible interspecies entanglement and
impurity intraspecies correlations. Note here that again in
the course of the shaking, i.e., t < t f , max[SV N (t < t f )] <

0.1 and max[FI (t < t f )] < 0.05, implying that impurity-BEC

and impurity-impurity correlations are mainly suppressed.
We remark that the interspecies entanglement is maximized
in the driving regime 0.75 < ωD < 1.7 [Fig. 4(a)] since for
such driving frequencies the impurities mostly reside within
the bath; see, e.g., Figs. 1(a3) and 1(b3), and therefore the
impurity-BEC overlap is larger as compared to a smaller ωD.
Turning to the driving regime ωD > 1.8, we can deduce that
the degree of the above-mentioned correlations almost van-
ishes since max[SV N (t )] < 0.1 as well as max[FI (t )] < 0.05
during the entire evolution. This can be attributed to the fact
that for such a high-frequency driving the impurities cannot
adapt their motion to the external driving, thus remaining to a
large extent unperturbed [66,68,69].

Interestingly, by inspecting FB(t ) [Fig. 4(c)], we can de-
duce that the intraspecies correlations of the bosonic gas are
generally suppressed independently of the driving frequency.
Indeed, only in the driving region 0.75 < ωD < 1.7 do we
observe a small amount of intraspecies correlations of the bath
where max[FB(t )] = 0.07, which occurs around ωD = 1.475.
Otherwise, it mostly holds that FB(t ) < 0.02 throughout the
evolution. This behavior essentially indicates that the first
natural population of the bath ηB

1 (t ) remains close to unity
during the time evolution, which can be partly attributed to
the considered large number of NB = 100 particles.

Summarizing, we deduce that for driving frequencies lying
in the interval 0.75 < ωD < 1.7 the dynamics is characterized
by a significant amount of both intra- and interspecies cor-
relations (Fig. 4). As a consequence, a many-body treatment
is essential for the adequate description of the dynamics.
However, for 0 < ωD < 0.7 the degree of intraspecies BEC
and impurity-BEC correlations is in general suppressed while
impurity-impurity correlations are finite for t > t f (Fig. 4). In
this sense, the total many-body wave function and the wave
function of the BEC can be well approximated by a mean-field
product ansatz, i.e., λ1(t ) = 1 in Eq. (3) and nB

1 (t ) = 1 in
Eq. (4). However, the wave function of the impurities cannot
be written as a product state since nI

i>1(t ) > 0. Finally, when
ωD > 1.8 all correlations are mainly vanishing and therefore
the driven dynamics of the system can be adequately captured
within a corresponding mean-field treatment.

E. Spatial coherence

To elucidate further the underlying intraspecies correla-
tion properties of the driven bosonic mixture, we investi-
gate the σ -species one-body coherence function g(1)

σ (x, x′; t )
[71,88,93] introduced in Eq. (5). Recall that the situation
with g(1)

σ (x, x′; t ) = 1 signifies that the σ -species many-body
state is identical to a mean-field product ansatz. Therefore,
g(1)

σ (x, x′; t ) < 1 indicates the necessity of a beyond mean-
field treatment of the dynamics. Figures 5(a1)–5(a4) and
5(b1)–5(b4) present g(1)

B (x, x′, t ) and g(1)
I (x, x′; t ) respectively

for selected time instants of the pulse driven dynamics with
ωD = 1.15. Note here that we focus on large driving frequen-
cies since the degree of correlations is enhanced in this region
as we have identified in Sec. III D; see also Fig. 4.

Regarding the bosonic gas, we observe that partial (i.e.,
very limited) losses of coherence occur between its right
(x > 0) and left (x > 0) spatial regions since the off-diagonal
elements of the coherence function take values smaller than
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FIG. 5. Snapshots of the one-body coherence function
g(1)

σ (x, x′; t ) of [(a1)–(a4)] the bosonic bath (σ = B) and [(b1)–(b4)]
the impurities (σ = I). The dynamics is induced by shaking
the harmonic oscillator potential of the impurities at frequency
ωD = 1.15 until t = t f = 4π/ωD, i.e., for two periods. All other
system parameters are the same as in Fig. 1.

unity, i.e., g(1)
B (x, x′ �= x; t ) < 1 throughout the evolution; see

Figs. 5(a1)–5(a4). Even the initial state of the bath is not
perfectly coherent; see, e.g., g(1)

B (x = 4, x′ = −4; t = 0) ≈
0.96 in Fig. 5(a1). Moreover, as time evolves, the afore-
mentioned losses of coherence become more prominent, for
instance, g(1)

B (x = 4.0, x′ = −2.5; t = 50) ≈ 0.91 [Fig. 5(a2)]
and g(1)

B (x = 4.0, x′ = −2.5; t = 175) ≈ 0.88 [Fig. 5(a4)], but
remain very limited. It is also worth mentioning that the
development of coherence losses in the bath during the dy-
namics is caused in part by the motion and interaction of
the impurities within the BEC since the latter is not directly
affected by the driving. Turning to the impurities, we can
deduce that initially small coherence losses are present be-
tween the edges of their cloud; see, e.g., g(1)

I (x = 4, x′ =
−4; t = 0) ≈ 0.95 in Fig. 5(b1). In the course of the time
evolution, the shaking introduces a large amount of coherence
losses [62], e.g., g(1)

I (x = 2.8, x′ = −4.5; t = 50) ≈ 0.80 in
Fig. 5(b2), which become substantial deeper in the evolu-
tion. The latter can be directly inferred from the vanishing
tendency of the off-diagonal elements of the one-body co-
herence function. Indeed, g(1)

I (x = 2.8, x′ = −4.5; t = 75) ≈
0.57 [Fig. 5(b3)] and g(1)

I (x = 2.8, x′ = −4.5; t = 175) ≈
0.39 [Fig. 5(b4)]. We remark that the spatial fluctuations of
g(1)

I (x, x′ �= x; t ) at long evolution times [e.g., at t = 175 in
Fig. 5(b4)] are pronounced due to the delocalized shape of
the corresponding ρ

(1)
I (x; t ); see Fig. 1(b3). Note also that the

amount of coherence losses of the impurities is significantly
larger than the corresponding ones occurring for the bosonic
gas.

F. Effect of the intraspecies interaction of the BEC
on the dynamics

To infer whether the intraspecies interaction of the bosonic
bath can alter the above-described pulse-driven dynamics,
we next investigate the dynamical response of the system
for a specific ωD and different values of gBB. For simplic-
ity, we focus on large driving frequencies, e.g., ωD = 1.5,
where the impurity dynamics shows a more regular behavior
[Fig. 1(b4)] compared to a smaller ωD; see, for instance,
Fig. 1(b2), and also the degree of correlations is enhanced
(Fig. 4). Figure 6 presents the resulting time evolution of
the impurities single-particle density ρ

(1)
I (x; t ) for gBB = 0.2

(a)

(c) (d)

(b)

FIG. 6. Single-particle density evolution of the two periodically
driven impurities with ωD = 1.5 for (a) gBB = 0.2 and (b) gBB = 0.8.
Dynamics of (c) 〈XB(t )〉 and (d) 〈XI (t )〉 for different intraspecies
interaction strengths gBB of the bath (see legend) when ωD = 1.5.
The external driving of the harmonic oscillator of the impurities is
performed up to t f = 4π/ωD, i.e., for two periods (see the dashed
vertical line). The mixture consists of NB = 100 bosons with gBB =
0.5 and NI = 2 interacting gII = 0.4 impurities trapped in a harmonic
oscillator of frequency ω = 0.3. The interspecies repulsion is gBI =
0.2 and the system is initialized in its ground state. The dashed
horizontal lines in panels (a) and (b) mark the location of the
Thomas-Fermi radius of the bosonic gas.

[Fig. 6(a)] and gBB = 0.8 [Fig. 6(b)] for ωD = 1.5. As can be
seen, for a weakly interacting BEC background the impurities
show a relatively dispersive behavior identified by the highly
delocalized shape of ρ

(1)
I (x; t ) which becomes very prominent

deep in the evolution; see Fig. 6(a). However, upon increasing
the intraspecies interaction of the bath, ρ

(1)
I (x; t ) undergoes a

decaying amplitude oscillatory motion within ρ
(1)
B (x; t ) while

possessing a localized shape throughout the evolution as
illustrated in Fig. 6(b). Recall that this latter behavior of
the impurities for gBB = 0.8 persists also when gBB = 0.5
[Fig. 1(b4)]. For weak repulsive interactions such as gBB = 0.2
and, of course, the same NB, the bosonic bath is more dense
and its Thomas-Fermi radius is smaller than for a stronger
gBB. Accordingly, the interatomic distance for a weak gBB is
smaller compared to the case of a strong gBB and therefore the
impurities experience more scattering events with the atoms
of the bath, resulting in the observed dispersive behavior of
ρ

(1)
I (x; t ).

In order to further elucidate the dynamical response of
the binary system for distinct values of gBB, we also inspect
the underlying center-of-mass motion of both the bosonic
bath 〈XB(t )〉 [Fig. 6(c)] and the impurities 〈XI (t )〉 [Fig. 6(d)].
Regarding the impurities, we observe that 〈XI (t )〉 performs a
decaying-amplitude single-frequency oscillatory motion inde-
pendently of gBB. Additionally, the oscillation amplitude of
〈XI (t )〉 is smaller and its decay is more dramatic for a de-
creasing gBB; see Fig. 6(d). Indeed, the Thomas-Fermi radius
of the BEC reduces for a smaller gBB, e.g., RTF ≈ 6.5 for
gBB = 0.2 and RTF ≈ 9.5 when gBB = 0.8. As a consequence,
the oscillation amplitude of 〈XI (t )〉 is smaller for a decreasing
gBB since for such high-frequency drivings the impurities
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FIG. 7. (a) Ground-state single-particle density profiles ρ (1)
σ (x)

of the bosonic gas (σ = B) and the impurities (σ = I). Evolution
of [(b), (c)] ρ

(1)
B (x; t ) and [(d), (e)] ρ

(1)
I (x; t ) for different driving

frequencies (see legends). The periodic driving of the impurities
harmonic oscillator is maintained up to t f = 4π/ωD (see the dashed
vertical lines) and then the system evolves freely. The harmonically
trapped (ω = 0.3) bosonic mixture comprises NB = 100 atoms and
NI = 2 impurities with intra- and interspecies repulsions gBB = 0.5,
gII = 0.4 and gBI = 1.0 respectively and it is prepared in its ground
state. The dashed horizontal lines in panels (d) and (e) indicate
the location of the Thomas-Fermi radius of the bosonic gas while
the gray dashed rectangle in panel (d) marks the bunching of the
impurities around x = 0.

oscillate within the bosonic bath whose size becomes smaller.
On the other hand, the center of mass of the bosonic bath
as already explained in Secs. III A and III B undergoes an
irregular oscillatory behavior due to the collective dipole
mode caused by the motion of the impurities inside the bath.
Here we can infer that the oscillation amplitude of 〈XB(t )〉 is
mainly increased for a stronger gBB as in the case of 〈XI (t )〉;
see Fig. 6(d). However, this behavior is not valid in general
and notable exceptions occur during the evolution.

IV. PULSE-DRIVEN DYNAMICS OF
IMMISCIBLE COMPONENTS

Having analyzed in detail the driven dynamics of two mis-
cible species whose interactions satisfy the condition g2

BI �
gII gBB [73,94], we then discuss the corresponding nonequilib-
rium dynamics initializing the binary system in an immiscible
state. As in Sec. III, the highly imbalanced mixture comprises
NB = 100 bosons and NI = 2 impurities and both species are
trapped in the same harmonic potential with ω = 0.3. In order
to realize an immiscible initial configuration, we consider the
same intraspecies interactions as before, namely gBB = 0.5
and gII = 0.4, but a stronger interspecies repulsion gBI = 1.0
such that the immiscibility condition g2

BI � gII gBB is satisfied.
The system is initially prepared into its many-body ground
state where the single-particle densities of the individual
species are spatially phase separated as shown in Fig. 7(a). In
particular, ρ

(1)
B (x) resides around the trap center while ρ

(1)
I (x)

forms a two-density hump structure with each hump located

at an edge of the Thomas-Fermi radius, RTF ≈ 8.3, of the
bosonic gas.

The nonequilibrium dynamics is induced by considering a
pulse shaking of the impurities harmonic oscillator described
by Eq. (2) where the system is periodically driven for two
driving periods, t f = 4π/ωD, and then is left to evolve without
any external perturbation. The driving amplitude is A = 20 �
RTF. For simplicity, we study below the cases of large driving
frequencies, namely ωD = 0.6 and ωD = 1.5, since for weak
ωD < 0.5 the resulting dynamics of the impurities is found
to be highly dispersive; i.e., ρ

(1)
I (x; t ) exhibits a strongly

delocalized behavior within and outside the BEC background
(results not shown here for brevity). Note also that the driving
frequencies ωD = 0.6 and ωD = 1.5 are representative of the
so-called intermediate and high-frequency driving regimes
respectively.

Figures 7(b) and 7(d) and Figs. 7(c) and 7(e) depict
the time evolution of the σ -species single-particle density
following a periodic driving with ωD = 0.6 and ωD = 1.5
respectively. For ωD = 0.6 and referring to t < t f = 20.9 [see
the dashed line in Fig. 7(d)], we observe that both density
humps of ρ

(1)
I (x; t ) ensure their external trap until it reaches

its maximum displacement A for the first time. Then, as the
harmonic oscillator turns toward x = 0, the density humps
collide while emitting small-amplitude density fragments due
to their interaction with the atoms of the bath and at t =
t f ρ

(1)
I (x; t ) is predominantly concentrated at the origin x = 0;

see the gray dashed rectangle in Fig. 7(d). Subsequently, for
t > t f , the impurities are predominantly trapped into ρ

(1)
B (x; t )

throughout the dynamics and therefore the species are com-
pletely mixed. In particular, ρ

(1)
I (x; t ) shortly after t f exhibits

a delocalized behavior [Fig. 7(d)] inside ρ
(1)
B (x; t ) while for

t > 120 it shows a tendency to segregate into two fragments
symmetrically placed around x = 0 and located around the
edges of the BEC background [Fig. 7(b)]. Moreover the
motion of the impurities within ρ

(1)
B (x; t ) perturb the bath,

which in turn performs a collective dipole motion [Fig. 7(b)].
It is worth noticing here that besides the inherent tendency of
the two species to remain spatially separated due to the strong
gBI , the driving enforces the impurities to infuse into the BEC
in the course of dynamics [Fig. 7(d)].

In contrast to the above-described mixing dynamics, a suf-
ficiently high-frequency driving, e.g., ωD = 1.5 [see Figs. 7(c)
and 7(e)], preserves the phase separation in the course of the
evolution even after t = t f = 8.37. Indeed, the initial density
humps of ρ

(1)
I (x; t ) remain while oscillating at the edges of

the bosonic gas throughout the dynamics. Interestingly, the
structures building upon each density hump of ρ

(1)
I (x; t ) are

not identical; for instance, ρ
(1)
I (x) is fragmented in the upper

(x > 0) hump within 22 < t < 45 but not in the lower (x < 0)
one [Fig. 7(e)]. This difference is caused by the location of
each density hump at t = t f . Indeed, the upper hump at t = t f

resides within the bath and therefore it interacts with the latter
while the lower hump lies at the edge of the BEC, thus hardly
interacting with it. On the other hand, the bosonic gas due to
its collisions with ρ

(1)
I (x; t ) at the edges of ρ

(1)
B (x; t ) undergoes

a dipole motion [Fig. 7(c)].
We also remark here that an energy transfer process from

the impurities to the bosonic bath occurs in both driving
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FIG. 8. Dynamics of the σ -species single-particle density ρ (1)
σ (x; t ) of [(a1)–(a4)] the bosonic bath (σ = B) and [(b1)–(b4)] the two

impurities (σ = I) for selected shaking frequencies ωD (see legends). The shaking of the harmonic oscillator potential of the impurities is
maintained throughout the evolution. The system contains NB = 100 bosons and NI = 2 impurities with intra- and interspecies interactions
gBB = 0.5, gII = 0.4, and gBI = 0.2 respectively. It is confined in a harmonic trap of frequency ω = 0.3 and it is initialized into its ground
state. The dashed horizontal lines in panels (b1)–(b4) indicate the location of the Thomas-Fermi radius of the bosonic bath. The white dashed
rectangles in panels (b1) and (b2) and the red circles in panel (b2) mark specific back-scattering events of the impurities during the driving.

scenarios (results not shown here for brevity). Here, the
energy gain of the bath is significantly enhanced for ωD =
0.6 where the components are miscible during the evolution
while for ωD = 1.5 EB(t ) mainly increases for t < t f since the
components overlap and remains almost constant for t > t f ,
where the immiscibility is preserved. Additionally, let us note
in passing that a similar overall phenomenology regarding the
dynamical response of both the bosonic bath and the impu-
rities takes place for a continuous shaking of the impurities
harmonic oscillator (results not shown for brevity).

V. CONTINUOUS SHAKING OF THE TRAP POTENTIAL

Next, we unravel the emergent nonequilibrium dynamics of
the binary bosonic system when considering that the periodic
driving of the harmonic trap of the impurities is maintained
throughout the evolution and not for just two periods of the
pulse driving as in Sec. III. The system parameters are the
same as in Sec. III; namely, the bath comprises NB = 100
bosons with gBB = 0.5 and NI = 2 impurities where gII =
0.4. The impurity-BEC interaction is gBI = 0.2 and thus the
species are initially (t = 0) miscible. Both species are trapped
in a harmonic oscillator of frequency ω = 0.3 and the system
is initialized in its many-body ground state. Subsequently,
from t = 0 on, the harmonic oscillator of the impurities is
periodically driven [see Eq. (2)] for the entire time evolu-
tion. The oscillation amplitude is assumed to be A = 20 �
RTF ≈ 8.3.

A. Dynamics of the single-particle density
and the center of mass

To visualize the nonequilibrium dynamics of the system
subjected to a continuous shaking, we resort to the time
evolution of the single-particle density and the position of the
center of mass of the σ species presented in Figs. 8 and 9

a

a

a

a

b

b

b

b

(c)

FIG. 9. Evolution of the center of mass of [(a1)–(a4)] the bath
〈XB(t )〉 and [(b1)–(b4)] the impurities 〈XI (t )〉 at distinct driving
frequencies ωD (see legends). (c) Damping rate, λ, of 〈XI (t )〉 with
varying driving frequency for ωD > 0.6. The shaking of the impuri-
ties is maintained for the entire evolution. The Thomas-Fermi radius
of the bosonic gas is RTF ≈ 8.3. Other system parameters are the
same as in Fig. 8.
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respectively for selective driving frequencies as in Sec. III. For
low driving frequencies, e.g., ωD = 0.075, the impurities per-
form an “irregular” oscillatory motion overall following their
driven potential [Fig. 8(b1)]. Note that the observed dynamical
response of the impurities is reminiscent of the corresponding
response of the case of pulse driving for t < t f (i.e., before
its termination) discussed in Sec. III; see also Fig. 1(b1).
Importantly, here, the motion taking place during the first
oscillation period of the external potential is periodically
repeated within each driving cycle [Fig. 8(b1)]. This behavior
of the impurities is also imprinted in their trajectory presented
in Fig. 9(b1). We remark that this time periodic behavior of
ρ

(1)
I (x; t ) is caused by the continuous driving and it is in

contrast to the pulse-driven case where after the termination
of the driving the impurities oscillate well inside the bosonic
medium; see also Fig. 1(b1). Also note here that due to the
continuous driving the oscillation amplitude of ρ

(1)
I (x; t ) is

slightly increased every driving period, e.g., ρ
(1)
I (x, t = 99)

reaches x = 29.5 while it is located at x = 33.4 when t =
182.5 [Fig. 8(b1)]. Moreover, the BEC background ρ

(1)
B (x; t )

shows weak distortions from its initial Thomas-Fermi profile
being imprinted as a small-amplitude collective dipole motion
[Fig. 8(a1)] during the dynamics. This latter motion is directly
captured by the time evolution of the center of mass which
exhibits multifrequency oscillations as shown in Fig. 9(a1).

For resonant driving frequencies, i.e., ωD = ω = 0.3, the
impurities exhibit an oscillatory behavior moving inside and
outside the bosonic bath [Fig. 8(b2)] during the dynamics.
Initially they move toward the left edge of the BEC, escaping
from the latter at t ≈ 20.2, and reach x ≈ 33.6 where they
experience during their motion two back-scattering events
due to the external driving [see the white dashed rectangle
in Fig. 8(b2)]. Later on, they penetrate the BEC background,
interacting with its atoms and featuring a dramatic back-
scattering event at x ≈ 0 manifested by the prominent density
hump of ρ

(1)
I (x; t ) [see the red circle in Fig. 8(b2)]. This be-

havior suggests that the impurities slow down at this location
and bunch momentarily before moving to the opposite edge
of the bath. Afterward, the impurities undergo a similar to
the above-described dynamical behavior, i.e., moving outside
the right edge of the BEC and being reflected backward,
until the first driving period is completed. As time evolves,
the impurities repeat the same pattern within every driving
period; see Fig. 8(b2). Indeed, inspecting the trajectory of
the impurities shown in Fig. 9(b2), we can directly infer
their oscillatory behavior characterized by a slightly decaying
amplitude. The latter signals the dissipation of energy into the
bosonic bath, as we shall argue in the following section. We
remark that compared to the pulse driving case the dynamical
response of the impurities remains the same for t < t f but it is
significantly altered for t > t f where the driving is terminated
and the impurities are mainly deposited outside the edge of
the bath throughout the evolution [Fig. 1(b1)]. On the other
hand, the shape of the bosonic single-particle density is to a
large extent unperturbed, see Fig. 8(a2), because the impuri-
ties reside predominantly outside of ρ

(1)
I (x; t ). However, the

disturbances caused by the motion of the impurities within
the bosonic bath are imprinted into the latter as a collective
dipole mode identified by the oscillatory behavior of 〈XB(t )〉
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FIG. 10. Time evolution of [(a1)–(a4)] the energy of the impuri-
ties EI (t ), [(b1)–(b4)] the interspecies interaction energy EBI (t ), and
[(c1), (c2]) the energy of the bath EB(t ) at distinct driving frequencies
ωD (see legends). The shaking of the harmonic oscillator of the
impurities is maintained throughout the dynamics. The remaining
system parameters are the same as in Fig. 8.

depicted in Fig. 9(a2). Interestingly, the oscillation amplitude
of 〈XB(t )〉 is amplified over time, a behavior that stems from
the continuous nature of the driving [66,68,69].

Consequently, we inspect the impurities dynamics for large
driving frequencies, namely ωD � ω. Here, due to the fast
shaking of the harmonic oscillator, it is very difficult for the
impurities to instantaneously follow their external potential
and as a result their motion is restricted to a spatial region
which is smaller than the actual driving amplitude A. The
resulting time evolution of ρ

(1)
I (x, t ) is presented in Figs. 8(b3)

and 8(b4) for driving frequencies ωD = 1.15 and ωD = 1.5
respectively. As can be seen, ρ

(1)
I (x; t ) performs in both cases

a decaying amplitude oscillatory motion within the bosonic
bath throughout the dynamics. This dynamical response of
the impurities is also evident in the time evolution of their
trajectory shown in Figs. 9(b3) and 9(b4). Additionally, we
can deduce that the decay of the oscillation amplitude of
the impurities is more pronounced for ωD = 1.15 than ωD =
1.5, a behavior that is clearly captured in both the dynam-
ics of ρ

(1)
I (x; t ) [Figs. 8(b3) and 8(b4)] and the impurities

trajectory [Figs. 9(b3) and 9(b4)]. We remark that the larger
decay amplitude, e.g., of 〈XI (t )〉 for ωD = 1.15 compared to
ωD = 1.5, is caused by the enhanced degree of interspecies
correlations in the former case, leading to a faster dephasing
of the underlying many-body state; see also Fig. 11(a) and
the discussion below. It is also worth mentioning that for
ωD = 1.15 and at the initial stages of the dynamics ρ

(1)
I (x; t )

possesses a localized distribution. However, deeper in the
evolution, t > 100 in Fig. 8(b3), where the impurities feature
multiple collisions with the atoms of the bosonic gas, ρ (1)

I (x; t )
exhibits a rather delocalized shape. Interestingly, for even
larger driving frequencies, e.g., ωD = 1.5, ρ

(1)
I (x; t ) exhibits

a relatively localized configuration. We remark that compared

023615-12



PULSE- AND CONTINUOUSLY DRIVEN MANY-BODY … PHYSICAL REVIEW A 101, 023615 (2020)

FIG. 11. Temporal evolution of (a) the von Neumann entropy
SV N (t ) and the deviation from unity of the first natural population
of (b) the impurities FI (t ) and (c) the bosonic gas FB(t ) as a
function of the driving frequency ωD. The harmonic oscillator of the
two impurities is subjected to a continuous shaking. The remaining
system parameters are the same as in Fig. 8.

to the pulse-driving scenario [Figs. 1(b3) and 1(b4)] the im-
purities exposed to a continuous shaking remain to a larger
extent trapped inside their host during the evolution and the
decay of their oscillation amplitude is more pronounced; see,
e.g., Figs. 2(b3) and 9(b3). Moreover, as a result of the motion
of the impurities within the bosonic gas, density dips build
upon ρ

(1)
B (x; t ) [Figs. 8(a3) and 8(a4)] at the instantaneous

location of the density humps of ρ
(1)
I (x; t ). Notice that these

density dips of ρ
(1)
B (x; t ) become very shallow for ωD = 1.5.

Overall, the bosonic medium undergoes a multifrequency
dipole motion which is captured by its center-of-mass motion
presented in Figs. 9(a3) and 9(a4). Also, here the amplitude
of this dipole motion seems quite insensitive to the driving
frequency; compare Figs. 9(a3) and 9(a4).

We have identified that the impurities subjected to a con-
tinuous shaking of their harmonic trap remain completely
trapped in their host only for large driving frequencies, and in
particular for ωD > 0.6. As a result, we are able to model the
decaying motion of the impurities inside the bosonic medium
according to the well-known effective damped equation of
motion

ẍ + λẋ + ω2
eff x = F0 sin(ωDt ). (9)

In this expression, λ is the damping parameter of the im-
purities, and ωeff denotes the effective trapping due to the
presence of the bath and the external harmonic confinement.
F0 = Aω2

eff is the amplitude of the external driving force.
Moreover, by solving Eq. (9), it can be easily shown that the

mean position of the impurities reads

〈XI (t )〉 = e− λ
2 t

[
x0 cos(ω0t ) + u0 + λ

2 x0

ω0

× sin(ω0t )

]
+ F0 sin(ωDt + δ)(

ω2
eff − ω2

D

)2 + ω2
Dλ2

, (10)

where ω0 =
√

(ωeff )2 − ( λ
2 )2 , x0 ≡ 〈�(0)|x̂|�(0)〉,

u0 = AωD, and δ is a phase factor. Evidently, in this
equation the unknown parameters are λ, ωeff , and δ. In
order to determine these parameters, we perform a fitting
of the analytical form of 〈XI (t )〉 provided by Eq. (10)
with the numerically obtained result of 〈XI (t )〉. Figure 9(c)
shows the value of the damping term λ obtained through
the above-described fitting procedure with respect to the
driving frequency. We observe that λ increases within the
interval ωD ∈ {0.6, 0.85} and subsequently shows an overall
decreasing tendency. This behavior of λ is also in line with
the growth of the average degree of interspecies correlations
captured by S̄V N ≡ (1/T )

∫ T
0 dtSV N (t ). The latter increases

for ωD ∈ {0.6, 0.85} and afterward decreases; see also
Fig. 11(a). Accordingly, for ωD > 1.5 where S̄V N → 0 also
λ → 0.

B. Energy exchange processes

In order to infer whether impurity-BEC energy transfer
mechanisms [41,51,75] occur in the course of the continu-
ously driven dynamics, we inspect the underlying intra- and
interspecies energy terms, namely the energy of the bath EB(t )
and the impurities EI (t ) as well as the interspecies interaction
energy EBI (t ) introduced in Sec. III C. Figure 10 illustrates
the dynamics of the above-mentioned energy contributions
for different driving frequencies. We can deduce that inde-
pendent of ωD the energy of the impurities EI (t ) shows an
oscillatory behavior [Figs. 10(a1)–10(a4)] while the energy of
the bosonic bath EB(t ) overall increases [Figs. 10(c1)–10(c4)].
More precisely, for a larger ωD the oscillatory pattern of EI (t )
involves a larger number of frequencies [see Figs. 10(a1) and
10(a4)] and the increase of EB(t ) becomes more enhanced;
e.g., compare Fig. 10(c1) with Fig. 10(c4). We remark that the
oscillations of EI (t ) essentially reflect the impurities motion
and in particular when they move to the edge of the BEC
they possess a larger kinetic energy than if they are close to
the trap center, resulting in an increasing tendency of EI (t ).
Notice also that EI (t ) maximizes for ωD = ω [65,66,68],
which explains the fact that the impurities exhibit the larger
oscillation amplitude [Fig. 9(b2)].

Most important, the simultaneous enhancement of EB(t )
accompanied by a reduction of EBI (t ) [Figs. 10(b1)–10(b4)]
indicates the dissipation of energy from the impurity to its
BEC background [43,51,74] manifested in the density of the
latter as a collective dipole motion. Additionally, it is worth
commenting that EBI (t ) shows a significantly distinct behavior
for low and high driving frequencies. For instance, in the
former case EBI (t ) becomes zero at specific time intervals
[Fig. 10(b2)], where the impurities escape from the bosonic
gas [Fig. 8(b2)] and as a consequence EB(t ) shows a constant
plateau in the same time frame [Figs. 10(c1) and 10(c2)].
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However, for fast drivings EBI (t ) performs irregular os-
cillations while remaining finite throughout the evolution
[Fig. 10(b4)] since the impurities reside well inside the BEC
background [Fig. 8(b4)].

C. Intra- and interspecies correlations

To testify the importance of beyond-mean-field intra- and
interspecies correlations during the evolution of the system,
we next employ Fσ (t ) [Eq. (7)] and SV N (t ) [Eq. (6)] re-
spectively. Recall that Fσ (t ) > 0 indicates the existence of
σ -species intraspecies correlations and SV N (t ) �= 0 designates
the occurrence of interspecies ones [43,71]. Figure 11 show-
cases both SV N (t ) and Fσ (t ) for a wide range of ωD. Evidently,
for short evolution times t < 40 both intra- and interspecies
correlations of the system are suppressed since Fσ (t ) and
SV N (t ) deviate only slightly from zero, e.g., FB(t = 20) ≈
0.015, FI (t = 20) ≈ 0.02, and SV N (t = 20) ≈ 0.04 at ωD =
0.1. However, for t > 40, we observe a significant devel-
opment of impurity-BEC [Fig. 11(a)] and impurity-impurity
[Fig. 11(b)] correlations while the intraspecies correlations
of the bosonic gas remain adequately small for every ωD

[Fig. 11(c)]. Indeed, the largest value of FB(t ) occurs around
ωD = 1.25, where FB(t = 180) ≈ 0.07. In particular, the
impurity-BEC and impurity-impurity correlations, as captured
via SV N (t ) and FI (t ), are maximized in the range 0.6 < ωD <

1.7 and 0.1 < ωD < 1.5 respectively. The predominantly neg-
ligible entanglement for ωD < 0.3 can be attributed to the fact
that the impurities mostly lie outside of the BEC background
in the course of the evolution. Note also here that despite
the weak entanglement the impurities appear to be strongly
correlated for these driving frequencies. Furthermore, for
0.6 < ωD < 1.7 [Fig. 11(a)] the impurities are trapped within
the bath throughout the evolution [Fig. 8(b4)], testifying to the
increasing tendency of SV N (t ) compared to other values of ωD.
At ωD > 1.7, both SV N (t ) and FI (t ) acquire very small values,
a behavior that is attributed to the high-frequency driving
where the impurities’ motion cannot be synchronized with the
external driving.

In view of the above, for 0.6 < ωD < 1.7 intra- and in-
terspecies correlations are finite, testifying the necessity of
a beyond-mean-field treatment of the dynamics. For ωD <

0.7 since SV N (t ) and FB(t ) are suppressed, a corresponding
product state on the species and the BEC level constitutes
an adequate approximation. However, the impurities’ wave
function is a superposition of the different single-particle
states due to FI (t ) > 0. Finally, for ωD > 1.7 all interparticle
correlations almost vanish and therefore the dynamics of the
mixture can be modeled to a good approximation within a
corresponding mean-field treatment, i.e., λ1(t ) = 1 in Eq. (3)
and nB

1 (t ) = nI
1 = 1 in Eq. (4).

D. Coherence losses

Subsequently, we unravel losses of the σ -species spa-
tial coherence [43,71,88,93] by invoking the corresponding
one-body coherence function g(1)

σ (x, x′; t ) [Eq. (5)]. As in
Sec. III E, we showcase the case of a large driving fre-
quency, ωD = 1.15, due to the significant role of correla-
tions in this driving regime compared to the others; see also
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FIG. 12. One-body coherence function g(1)
σ (x, x′; t ) of [(a1)–(a4)]

the bosonic bath and [(b1)–(b4)] the impurities at specific time
instants of the evolution (see legends). The dynamics is induced
by a continuous shaking of the harmonic oscillator potential of the
impurities at a driving frequency ωD = 1.15. The remaining system
parameters are the same as in Fig. 8.

Fig. 11. Snapshots of g(1)
B (x, x′, t ) and g(1)

I (x, x′; t ) are shown
in Figs. 12(a1)–12(a4) and Figs. 12(b1)–12(b4) respectively.
Closely inspecting g(1)

B (x, x′, t ), we can infer that only very
small coherence losses take place between the spatial regions
0 < x < 6 and −6 < x′ < 0. These losses of coherence are
almost negligible for t < 50, e.g., g(1)

B (x = 5, x′ = −1, t =
50) ≈ 0.97 in Fig. 12(a2), and later on become relatively
pronounced; see, e.g., g(1)

B (x = 5, x′ = −6, t = 175) ≈ 0.82
in Fig. 12(a4). Note that this behavior of g(1)

B (x, x′, t ) is
in line with the suppressed degree of intraspecies correla-
tions of the bath presented in Fig. 11(c). Also, the amount
of coherence losses is slightly increased when compared
to the pulse driving scenario [Figs. 5(a1)–5(a4)]. Regard-
ing the impurities, we observe that at t = 0 they are al-
most perfectly coherent since g(1)

I (x, x′; t = 0) > 0.98 for ev-
ery x, x′. However, as time evolves, a systematic buildup
of coherence losses [62] for x �= x′ occurs, e.g., g(1)

I (x =
2, x′ = 3; t = 50) ≈ 0.95 in Fig. 12(b2), which becomes
enhanced for longer times, e.g., g(1)

I (x = 2; x′ = −2; t =
150) ≈ 0.18 [Fig. 12(b3)] and g(1)

I (x = 2.5, x′ = −2.5; t =
175) ≈ 0.3 [Fig. 12(b4)]. As previously, the emergent coher-
ence losses are visualized in g(1)

I (x; x′; t ) via the suppression
of its off-diagonal elements.

E. Two-body dynamics of the impurities

Next, we monitor the spatially resolved dynamics of the
two impurities with respect to one another by resorting to the

FIG. 13. Instantaneous two-body reduced density matrix of the
impurities at different time instants of the evolution (see legends)
following a continuous shaking of the harmonic oscillator at fre-
quency ωD = 1.15. The remaining system parameters are the same
as in Fig. 8.
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diagonal of the two-body bosonic reduced density matrix

ρ
(2)
II (x1, x2; t ) = 〈�MB(t )| �̂I†(x1)�̂I†(x2)

× �̂I (x1)�̂I (x2) |�MB(t )〉 . (11)

In this expression, �̂I (x1) is the corresponding bosonic field
operator that annihilates a boson at position x1. Recall that
ρ

(2)
II (x1, x2; t ) provides the probability of measuring simul-

taneously one boson to be located at x1 and the other one
at x2 [43,71,88]. For our investigation, we focus on large
driving frequencies where the impurities reside within the
bosonic gas throughout the evolution [see also Figs. 8(b3) and
8(b4)] and also the interparticle correlations of the system are
enhanced (Fig. 11). Moreover, since the impurities are trapped
within the bosonic gas, they are dressed by its excitations
forming quasiparticles. Consequently, these quasiparticles can
either move independently or interact, thereby forming a pair
[31,56,70,79].

Figure 13 depicts ρ
(2)
II (x1, x2; t ) at certain time instants of

the evolution upon considering a continuous shaking of the
impurities harmonic oscillator at ωD = 1.15. Initially t = 0
[Fig. 13(a)], the two bosons reside together at the trap cen-
ter as ρ

(2)
II (−2 < x1 < 2,−2 < x2 < 2; t = 0) exhibits a high

two-body probability peak in the domain −2 < x1, x2 < 2. As
time evolves, the impurities oscillate within the bosonic bath
[see also Fig. 8(b3)] as a pair since ρ

(2)
II (−8 < x1 < −2,−8 <

x2 < −2; t = 50) is predominantly populated [Fig. 13(b)].
Simultaneously, signatures of a delocalized behavior are
observed due to the small values of the off-diagonal ele-
ments of ρ

(2)
II (x1, x2; t = 50). Entering deeper in the evo-

lution, the aforementioned delocalization of the impurities
becomes more prominent since ρ

(2)
II (x1, x2; t ) disperses as

shown in Figs. 13(c) and 13(d). This dispersive behavior
of ρ

(2)
II (x1, x2; t ) is inherently related to the one exhibited

by ρ
(1)
I (x, t ) in Fig. 8(c), suggesting from a two-body per-

spective the involvement of excited states in the impurity
dynamics. Most important, the diagonal of ρ

(2)
II (x1, x2; t ) is

predominantly populated [Figs. 13(c) and 13(d)], which is
suggestive of the presence of attractive induced impurity-
impurity interactions [31,43,56,70,79]. Similar pairing mech-
anisms of bosonic impurities mainly concentrating on the
stationary properties of bosonic mixtures have been discussed
in Refs. [13,31,95].

VI. CONCLUSIONS

We have investigated the driven dynamics of two repul-
sively interacting impurities immersed in a bosonic bath fol-
lowing two different shaking protocols of the harmonic trap
of the impurities. Namely, the shaking is either performed via
a pulse consisting of two driving periods and then the system
is left to evolve unperturbed or it is maintained throughout the
evolution corresponding to a continuous driving. A particular
focus has been placed on setups where the impurities and the
bath are initially spatially overlapping (miscible components)
while the case of initially immiscible components has also
been briefly discussed. Moreover, the dynamical response of
the impurities has been carefully explored for a wide range
of driving frequencies ranging from low- to high-frequency
driving and has been characterized by utilizing several diag-

nostics including one- and two-body observables as well as
the individual energy contributions of the species.

Regarding the pulse-driving scenario and for initially mis-
cible (overlapping) components, we have identified different
dynamical response regimes of the impurities depending on
the driving frequency as compared to the frequency of the
harmonic trap. For low driving frequencies, in the course of
the shaking the impurities oscillate in space within and outside
their host, closely following the motion of their trap. However,
after the termination of the pulse, their oscillation amplitude
decays and they are trapped in the bosonic gas. Entering the
resonant driving regime, i.e., for a driving frequency close to
the harmonic oscillator one, the impurities undergo a more
complex dynamics. Namely, in the duration of the shaking
they perform large-amplitude irregular oscillations, escaping
and re-entering into the bosonic gas, while afterward they
essentially decouple from the bath. For large driving frequen-
cies, much larger than the external trap frequency, it is shown
that the impurities remain predominantly trapped within the
bosonic gas especially after the pulse has terminated and ex-
hibit a dispersive behavior for long evolution times. Turning to
initially immiscible components, we have shown that despite
the intricate tendency for zero spatial overlap, the impurities
subjected to moderate drivings feature a dispersive behavior
within the bosonic gas after the pulse is terminated. However,
a vigorous shaking causes the impurities to oscillate around
the edges of the Thomas-Fermi background of the bosonic
bath, thus preserving their spatial separation with the bath
almost intact.

Considering a continuous shaking of the trap of the im-
purities for miscible components, we observed that a similar
overall phenomenology as for the pulse-driven case takes
place, especially for very low and high driving frequencies.
However, the dynamical response of the impurities here is
periodically repeated in time due to the driving protocol,
and regarding the high-frequency driving, the impurities are
found to be better trapped into their host compared to the
pulse driving. Most important, it is showcased that in the
resonantly driven regime the impurities perform a periodic
oscillatory motion, moving within and escaping from the BEC
background, while featuring multiple collision events with the
latter. Furthermore, independent of the driving frequency and
the protocol, the motion of the impurities perturbs the bosonic
bath, which is subsequently excited, performing a collective
dipole motion. Also, these excitations are more prominent for
high-frequency drivings where the impurities mostly reside
within their host.

Examining the individual energy contributions of each
species, we reveal that when the impurities are trapped into the
bosonic bath they transfer energy to the latter, a behavior that
is more pronounced for large driving frequencies. We expose
the participation of inter- and intraspecies correlations during
the dynamics and show that their degree is enhanced for high
driving frequencies. The development of coherence losses
both in the bosonic gas and the impurities is unveiled and most
important it is found that the impurities predominantly move
as a pair and not individually.

There are several promising research directions, based on
the present work, to be considered in future endeavors. A
straightforward one is to employ two fermionic impurities
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immersed in either a bosonic or a fermionic environment
and investigate the emergent periodically driven dynamics
induced by the protocol used herein. Another interesting per-
spective is to construct in the continuous low-frequency driv-
ing case an effective model according to which the impurities
are dressed by the excitations of the BEC when they lie inside
the latter but they are undressed during the time intervals
that they reside outside their host. Within such a model, it
might be possible to identify the corresponding polaronic
properties of the impurities such as their effective mass and
induced interactions [40,70]. Moreover, the driven dynamics
of impurities trapped in an optical lattice [96] instead of a
harmonic trap in order to control their transport properties is
an interesting perspective. Finally, in the framework of the
present work, the simulation of the corresponding contrast
by considering spinor impurities in order to identify possibly
emerging polaronic states [32] is definitely worth pursuing.
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APPENDIX A: PERIODICALLY DRIVEN DYNAMICS OF A
MASS-IMBALANCED MIXTURE

In the main text, all of the presented results have been
focusing on mass-balanced mixtures. Another interesting sce-
nario is to consider a mass-imbalanced system and in particu-
lar the case of heavy impurities immersed in the bosonic bath
in order to inspect whether the mass imbalance can potentially
alter the nonequilibrium dynamics discussed in Sec. V. Such
a typical mass-imbalanced bosonic mixture corresponds to a
87Rb bath and two 133Cs impurities prepared at the hyperfine
states |F = 1, mF = 0〉 and |F = 3, mF = 2〉 respectively and
trapped in the same harmonic oscillator [97].

The time evolution of the center-of-mass oscillation of the
impurities 〈XI (t )〉 and the bosonic gas 〈XB(t )〉, following a
pulse shaking of the harmonic trap of the impurities, is shown
in Fig. 14 for selective driving frequencies and for both a
mass-balanced and a mass-imbalanced mixture. Overall, we
observe that the dynamical response of both the bosonic gas
and the impurities is not significantly affected by the mass
imbalance. More specifically, for low driving frequencies
ωD = 0.075 both 〈XB(t )〉 [Fig. 14(a)] and 〈XI (t )〉 [Fig. 14(c)]
are seen to be essentially insensitive to the considered mass
ratio. A similar behavior is encountered for high driving
frequencies, e.g., ωD = 1.5, but here the oscillation amplitude
of 〈XB(t )〉 is slightly larger in the mass-imbalanced case
[Fig. 14(b)]. This is an expected behavior because the heavy
impurities can perturb their host to a larger extent compared to
the lighter ones due to mCs > mRb. Moreover, tiny deviations
occur also in the oscillation amplitude of 〈XI (t )〉 [Fig. 14(d)]
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FIG. 14. Comparison of the temporal evolution of the center of
mass of the bosonic bath 〈XB(t )〉 (upper panels) and the impuri-
ties 〈XI (t )〉 (lower panels) between a mass-balanced and a mass-
imbalanced mixture (see legend) at different driving frequencies ωD

(see legend). The pulse shaking of the harmonic trap of the impurities
is performed for two driving periods until t = t f = 4π/ωD (see the
vertical lines) and afterward the system is left to evolve unperturbed.
The remaining system parameters are the same as in Fig. 1.

between the mass-balanced and mass-imbalanced cases but
with no major tendency.

APPENDIX B: REMARKS ON THE MANY-BODY
COMPUTATIONAL METHODOLOGY

As we discussed in Sec. II B, in order to study the pe-
riodically driven nonequilibrium dynamics of the bosonic
mixture, we rely on the multilayer multiconfigurational
time-dependent Hartree method for atomic mixtures (ML-
MCTDHX) [76–78]. It is an ab initio approach for solving
the time-dependent Schrödinger equation of multicomponent
systems with bosonic [71,91–93] or fermionic [55,98] con-
stituents including also spin degrees of freedom [41,98]. The
main facet of this numerical approach is that the many-body
wave function is expanded with respect to a time-dependent
and variationally optimized basis. The latter enables us to span
the relevant subspace of the Hilbert space at each time instant
of the dynamics in a more efficient manner when compared
to methods employing a time-independent basis. Furthermore,
its multilayer ansatz for the total wave function is tailored to
capture both the intra- and interspecies correlations emerging
during the nonequilibrium dynamics of a multicomponent
system.

Within this methodology, the underlying Hilbert space
truncation is designated by the used orbital configuration
space C = (D; dB; dI ). In this notation, d and dB, dI refer to
the number of species functions [Eq. (3)] and single-particle
functions [Eq. (4)] of each species. For our numerical sim-
ulations, a primitive basis corresponding to a sine discrete
variable representation involving 500 grid points is employed.
Note also that this sine discrete variable representation intrin-
sically introduces hard-wall boundary conditions which are
imposed herein at x± = ±50. Their locations do not affect
the presented results since there are no appreciable densities
beyond x± = ±25. To infer the convergence of the many-body
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FIG. 15. Time evolution of the center of mass of (a) the two
interacting impurities 〈XI (t )〉 and (b) the bosonic gas 〈XB(t )〉 for
different orbital configurations (D; dB; dI ) (see legend) at a high
driving frequency ωD = 1.5. Dynamics of the deviation of the von
Neumann entropy between the C = (10; 3; 6) and other orbital com-
binations (D; dB; dI ) (see legend) for driving frequency (c) ωD =
0.3 and (d) ωD = 1.15. The shaking of the harmonic oscillator of
the impurities is performed throughout the evolution. The mixture
consists of NB = 100 bosons with gBB = 0.5 and NI = 2 interacting
gII = 0.4 impurities in a harmonic trap of frequency ω = 0.3. The
interspecies repulsion is gBI = 0.2 and the mixture is prepared in its
ground state.

simulations, we systematically vary the numerical configura-
tion space C = (D; dB; dI ) and ensure that all observables of
interest become up to a certain level of accuracy insensitive.
We remark that all many-body simulations discussed in the
main text have been performed using C = (10; 3; 6).

To showcase the numerical convergence, we exemplarily
demonstrate the behavior of the center-of-mass motion of the
impurities 〈XI (t )〉 and of the bosonic bath 〈XB(t )〉 following
a continuous periodic driving at ωD = 1.5 for distinct orbital
configurations C′ = (D′; d ′

B; d ′
I ) in Fig. 15. Recall that at such

high driving frequencies the degree of correlations inherent
in the system is maximized (Fig. 11). Inspecting Fig. 15, it
can readily seen that both 〈XI (t )〉 [Fig. 15(a)] and 〈XB(t )〉
[Fig. 15(b)] are adequately converged since they are insen-
sitive to the variation of the orbital configuration space C =
(D; dB; dI ). For instance, the maximum deviation of 〈XI (t )〉
[〈XB(t )〉] between the C = (10; 3; 6) and C′ = (10; 3; 4) in the
course of the time evolution is at most 0.2% (0.1%).

Moreover, we present the numerical convergence of the
von Neumann entropy during the dynamics for a continuous
driving characterized by ωD = 0.3 (resonant driving) and

ωD = 1.15 (fast driving). Note here that for ωD = 1.15 the
von Neumann entropy becomes maximal; see also Fig. 11(a).
To this end, we illustrate the relative difference of SV N (t )
calculated within the C = (10; 3; 6) and different orbital con-
figurations C′ = (D′; d ′

B; d ′
I ), i.e.,

�SV N (t )C,C′ = |SV N (t )C − SV N (t )C′ |
SV N (t )C

. (B1)

The time evolution of �SV N (t )C,C′ is shown in Fig. 15 at
resonant driving frequencies ωD = 0.3 [Fig. 15(c)] and fast
drivings with ωD = 1.15 [Fig. 15(d)] for a variety of or-
bital configurations C′ and fixed C = (10; 3; 6). Inspecting
�SV N (t )C,C′ , we deduce that SV N (t ) is converged at both ωD =
0.3 and ωD = 1.15. For instance, at ωD = 0.3 the deviation
of �SV N (t )C,C′ with C = (10; 3; 6) and C′ = (10; 2; 6) [C =
(8; 2; 6)] is smaller than 1% (4%) throughout the evolution
[Fig. 15(c)]. Turning to ωD = 1.15 [Fig. 7(d)], we observe that
�SV N (t )C,C′ between the orbital configurations C = (10; 3; 6)
and C′ = (10; 2; 6) [C′ = (8; 2; 6)] acquires a maximum value
of the order of 1% (5%) in the course of the time evolution.
Additionally, let us comment that the same analysis has been
done for all other observables and driving frequencies dis-
cussed in the main text and found to be sufficiently converged
as well (results not shown here for brevity).

APPENDIX C: SHAKING DYNAMICS OF TWO BOSONS

To expose the effects caused by the presence of the bosonic
bath on the dynamical response of the impurities described in
the main text, we briefly discuss the dynamics of two bosons
trapped in a continuously shaken harmonic trap. In particular,
we consider two (N = 2) repulsively interacting bosons in a
harmonic trap of frequency ω = 0.3. The system is initialized
into its ground state with interparticle interaction strength g =
0.4. To induce the dynamics, the harmonic trap is periodically
shaken throughout the time evolution and the system obeys
the following Hamiltonian:

H =
N∑

i=1

− h̄2

2M

(
∂

∂xi

)2

+
N∑

i=1

1

2
Mω2x2

i

+ 1

2
Mω2

N∑
i=1

[xi − A sin(ωDt )]2 + g
∑
i� j

δ(xi − x j ).

(C1)

In this expression, A and ωD refer to the amplitude and the
frequency of the driving respectively. To perform a direct
comparison with the observations made in Sec. V, we use A =
20 and study the dynamics for different driving frequencies
ωD while keeping fixed all other parameters of the system.

The resulting time evolution of the two-boson single-
particle density ρ (1)(x; t ) is illustrated in Fig. 16 for dif-
ferent driving frequencies. As can be seen in Fig. 16(a),
for small driving frequencies such as ωD = 0.075 the two
bosons follow their driven potential and undergo an overall
oscillatory motion. At the initial evolution times, ρ (1)(x; t )
moves to the x > 0 direction, reaching (x ≈ 27) � (A = 20)
at t ≈ 16, and then turns toward x < 0 due to the presence
of the trap while featuring a backward motion around t ≈
27. Subsequently ρ (1)(x; t ) moves to the x < 0 direction,
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FIG. 16. Time evolution of the single-particle density of two
bosons trapped in a continuously shaken harmonic oscillator poten-
tial for specific driving frequencies ωD (see legends). The system
consists of N = 2 repulsively interacting bosons with g = 0.4. It is
trapped in a harmonic oscillator with frequency ω = 0.3 and it is
initialized into its ground state.

performing a similar to the above-mentioned backward and
forward motion until it arrives at x ≈ −27, where it again
turns its motion to the trap center. In this way, the first
oscillation period of the driving is completed and afterward
a motion similar to the above-described occurs within each
driving cycle [Fig. 16(a)]. Note that for these weak driving

frequencies the two-boson dynamical response is similar to
the one of the two impurities immersed in a BEC background;
compare Figs. 8(b1) and 16(a). A notable difference occurring
in the response of the aforementioned setups is that the shape
of the single-particle density of the two impurities changes
in the course of the time evolution due to their collisions
with the BEC medium, see, e.g., Fig. 8(b1) at t ≈ 34, an event
that is absent in the dynamics of the two bosons. We remark
that a similar overall phenomenology regarding the shaken
dynamics of two impurities inside a BEC and the two bosons
takes place also for driving frequencies ωD < 0.6.

However, when entering the driving regime with ωD > 0.5,
significant alterations between the responses of these setups
occur. To exemplify these differences, we showcase ρ (1)(x; t )
of two bosons for ωD = 1.15 and ωD = 1.5 in Figs. 16(b) and
16(c), respectively. Indeed, in both cases ρ (1)(x; t ) performs
a multifrequency oscillatory behavior of constant amplitude.
This is in sharp contrast to the time evolution of two impurities
shown in Figs. 8(b3) and 8(b4), where ρ

(1)
I (x; t ) exhibits a de-

caying amplitude oscillatory motion within the bosonic bath
throughout the dynamics. Also, ρ

(1)
I (x; t ) due to impurity-

BEC interactions shows a spatially delocalized behavior for
t > 100 [Fig. 8(b3) and 8(b4)] while ρ (1)(x; t ) exhibits a local-
ized shape throughout the evolution [Figs. 16(b) and 16(d)].
In summary, we deduce that for ωD > 0.6 the dynamical
response of two shaken bosonic impurities is very different
from the one of two bosons. This behavior can be explained
by the fact that for a fast shaking (ωD > 0.6) of the harmonic
trap, the impurities’ motion is mainly restricted within their
host and therefore impurity-BEC interaction effects dominate
the dynamics.
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