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Bound-state band reconstruction and resonance in a spin-1/2 Bose gas with one-dimensional
spin-orbit coupling
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In this paper, we study two-body bound states in two-component Bose gas with a one-dimensional spin-
orbit coupling induced by Raman lasers. The finite Raman coupling strength generates coupling among three
spin channels, resulting in the reconstruction of three bound-state bands. In addition, multiple resonances can
be induced at finite scattering lengths. By tuning the interaction in one intraspecies channel, one bound-state
band can be lifted and three resonances can be achieved, which can be observable under current experimental
conditions in 87Rb atoms. This induced resonance is helpful for imaging the density modulation in the stripe
phase.
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I. INTRODUCTION

Synthetic spin-orbit coupling (SOC) is an important tool
in the study ultracold quantum gases. There have been a lot
of experimental and theoretical studies on spin-orbit coupled
quantum gases during the past decade [1–4]. One-dimensional
(1D) SOC was first generated by dressing two hyperfine spin
states with a pair of lasers in a 87Rb Bose-Einstein condensate
[5]. A similar scheme was also used to generate 1D SOC
in 40K [6] and 6Li [7] Fermi gases. Two-dimensional SOC
has been experimentally realized in 40K gases with three
Raman lasers [8] and in 87Rb atoms with an optical Raman
lattice [9]. Bose gases with 1D SOC can condense into the
stripe phase, magnetized phase, or nonmagnetized phase for
different SOC parameters [5,10,11]. The stripe phase breaks
the translational and U(1) symmetries simultaneously, consis-
tent with the definition of the supersolid phase. Although it
has been observed experimentally [5,10,12–15], the density
modulation has not been directly imaged so far. Fermi gases
with SOC were predicted to be unconventional superfluid at
low temperatures [16–18]. Condensation of two-body bound
states was predicted not only in Fermi gases [19,20], but also
in Bose gases with SOC [21,22].

How SOC affects bound-state formation and atom scat-
tering generally in a Bose gas with SOC is an important
and unanswered problem. Interactions between atoms can
be strongly altered by the light dressed as in Refs. [23,24].
Previous studies showed that, in the case of fermions with
1D SOC, finite Raman strength can shift the location of the
Feshbach resonance [24–27]. In a Bose gas with anisotropic
SOC, one can induce resonance by tuning the anisotropy
of SOC strengths [28]. In the case with Rashba SOC, the
resonance position can only be shifted in intraspecies channels
[21]. In the case with Weyl SOC, resonance positions of all
three scattering channels are shifted [22]. Nonetheless, in the
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case of 1D SOC with vanishing Raman coupling, the SOC
does not change either the resonance position or bound-state
binding energy.

In this paper, we study two-body bound states in spin-1/2
Bose gas with 1D SOC at finite Raman coupling. The Raman
coupling can be viewed as the effective Zeeman field that
causes spin-flipping processes. We find that three scattering
channels are coupled together, resulting in the formation of
three new bound-state bands. The finite Raman coupling also
induces resonances at finite scattering lengths. By tuning the
scattering length in one intraspecies channel, one bound-state
band can be lifted up and the resonance locations can be
shifted. We propose a scheme to observe this resonance in
the 87Rb system, which can be helpful to directly image the
periodic structure in the stripe phase.

II. ENERGY BANDS OF TWO-BODY BOUND STATES IN
THE PRESENCE OF 1D SOC

A. Model

We consider a two-component homogeneous Bose gas with
a Raman-induced SOC, described by the Hamiltonian H =
H0 + Hint. The single-particle term is given by

H0 =
∑
kρρ ′

[
εkδρρ ′ + �

2
σxρρ ′ +

(
h̄2k0

m
kx + δz

2

)
σzρρ ′

]
c†

kρckρ ′ ,

(1)

where c†
kρ is the creation operator of a boson with momentum

h̄k and spin component ρ =↑ or ↓, � is the Raman coupling
strength, k0 is the SOC strength, and δz is the detuning energy,
σx and σz are Pauli matrices, and εk = h̄2k2/(2m). The re-
coil energy is defined as Er = h̄2k2

0/(2m). The single-particle
Hamiltonian H0 can be diagonalized, yielding two helical ex-
citation branches ε±

k = εk ±
√

�2/4 + (h̄2k0kx/m + δz/2)2.
Note that the single-particle Hamiltonian H0 is written in
the moving frame of reference where the momentum h̄k
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corresponds to the momentum h̄(k − k0) for spin-up atoms
or h̄(k + k0) for spin-down atoms in the laboratory frame.
For simplicity, we just consider the case with zero detuning
δz = 0. The energy minimum of the lower branch ε−

k is
given by

Emin =
{
ε−
±q0

= −Er − �2/(16Er ), � < 4Er

ε−
0 = −�/2, � > 4Er

, (2)

where q0 = k0

√
1 − �2/(4Er )2 and k0 = k0x̂. The spin-

dependent s-wave interactions between bosons are given by

Hint = 1

2V

∑
kk′qρρ ′

gρρ ′c†
q+k′ρc†

q−k′ρ ′cq−kρ ′cq+kρ, (3)

where the s-wave coupling constant gρρ ′ is related to the
scattering length in the absence of SOC aρρ ′ by the renormal-
ization relation 1/gρρ ′ = 1/gρ ′ρ = m(4π h̄2aρρ ′ )−1 − 	 with
	 = ∫

d3k(2π )−3(2εk )−1.

B. Two-body bound state

The eigenequation of a two-body bound state
is given by H |ϕ〉 = E2q |ϕ〉, where E2q and |ϕ〉 =
1
2

∑
kρρ ′ φρρ ′ (q, k)c†

q+kρc†
q−kρ ′ |0〉 are the bound-state

eigenenergy and eigenstate with center-of-mass momentum
(COMM) 2q. From the eigenequation, we obtain a set of
linear equations for the coefficient φρρ ′ (q, k):

Mkq�kq = G
1

V

∑
p

�pq, (4)

where�kq = [φ↑↑(q, k), φ↓↓(q, k), φ↑↓(q, k), φ↓↑(q, k)]ᵀ,
and the matrix Mkq is given by⎛
⎜⎝

ξkq − δz − 2hqx 0 −�/2 −�/2
0 ξkq + δz + 2hqx −�/2 −�/2

−�/2 −�/2 ξkq − 2hkx 0
−�/2 −�/2 0 ξkq + 2hkx

⎞
⎟⎠

with ξkq = E2q − εk+q − εk−q, hkx = h̄2k0kx/m, and the cou-
pling matrix G is given by Gi j = (g↑↑δi1 + g↓↓δi2 + g↑↓δi3 +
g↑↓δi4)δi j . Equation (4) can be further written as

� = G
1

V

∑
k

M−1
kq �, (5)

where � = G 1
V

∑
p �pq. The eigenenergy E2q can be deter-

mined from the secular equation

det

(
G

1

V

∑
k

M−1
kq − I

)
= 0. (6)

Eigenenergies of both two-boson and two-fermion bound
states satisfy Eq. (6). For two-boson bound state, Eq. (6) can
be further written as

det

⎛
⎝A1 − 1/a↑↑

√
2C1 C3√

2C1 A3 − 1/a↑↓
√

2C2

C3

√
2C2 A2 − 1/a↓↓

⎞
⎠ = 0, (7)

where A1,2,3 and C1,2,3 are functions of energy E2q, momen-
tum 2h̄q, and �, as given below:

mA1,2

4π h̄2 = 1

V

∑
k

(ξkq ± 2hqx )
(
ξ 2

kq − 4h2
kx

) − ξkq�
2/2(

ξ 2
kq − 4h2

qx

)(
ξ 2

kq − 4h2
kx

) − ξ 2
kq�

2
+ 	,

mA3

4π h̄2 = 1

V

∑
k

ξkq
(
ξ 2

kq − 4h2
qx

)
(
ξ 2

kq − 4h2
qx

)(
ξ 2

kq − 4h2
kx

) − ξ 2
kq�

2
+ 	,

mC1,2

4π h̄2 = 1

V

∑
k

ξkq(ξkq ± 2hqx )�/2(
ξ 2

kq − 4h2
qx

)(
ξ 2

kq − 4h2
kx

) − ξ 2
kq�

2
,

mC3

4π h̄2 = 1

V

∑
k

ξkq�
2/2(

ξ 2
kq − 4h2

qx

)(
ξ 2

kq − 4h2
kx

) − ξ 2
kq�

2
. (8)

When the Raman strength � is finite, all the off-diagonal
matrix elements in Eq. (7) are finite, indicating that in the
presence of Raman field the three spin channels ↑↑,↓↓, and
↑↓ mix together.

C. Energy bands

In the zero Raman strength limit, C1,2,3 = 0, Eq. (7) is
reduced to three independent equations. Three spin channels
are decoupled, and the bound-state energy depends only on
the scattering length of its spin channel, in the intraspecies
channel

E2q

2Er
= Emin

Er
− 1

k2
0a2

ρρ

+
(

1 ± qx

2k0

)2

+
(

qyz

2k0

)2

(9)

and in the interspecies channel

E2q

2Er
= Emin

Er
− 1

k2
0a2

↑↓
+

(
q

2k0

)2

. (10)

As shown in Fig. 1, the minimum of the bound-state band in
the intraspecies ↑↑ (↓↓) channel is located at COMM −2h̄k0

(+2h̄k0), while that in the interspecies ↑↓ channel is located
at zero COMM. Bound states composed of two spin-1/2
atoms behave as a single spin-1 particle with a pure 1D SOC,
h̄2k0kx

m Fz, where Fz is the z-component spin operator for the
spin-1 bound state.

When Raman coupling strength is finite, the three parabolic
bands are reconstructed to three new disjoint energy bands. As
shown in Fig. 1(a), with symmetric interactions a↑↑ = a↓↓ =
a↑↓ = a, the lowest band has three minimum points located
near ±2k0 and zero when � is very small. In such case, to
the first order of �, bound states can be approximated as a
spin-1 single particle with SOC described in Ref. [29]. As �

increases, two minimum points in the lowest band disappear
and only the one at zero is left, as shown in Fig. 1(b). When
� > 4Er , two minimum points in the middle band merge
into one, as shown in Fig. 1(c). When the scattering length
a increases, the bound states have less binding energy and all
the bands are lifted up, as shown in Fig. 1(d).

The bound-state bands also change with the asymmetry of
interactions. In an extreme case with a↓↓ = a↑↓ � a↑↑, one
band is lifted up with the band minimum located near COMM
−2h̄k0, as shown in Fig. 2(a). In another case with a↑↑ =
a↓↓ � a↑↓, one band is raised up with the band minimum
located at zero COMM, as shown in Fig. 2(b). In these two
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FIG. 1. Energy bands of two-body bound states with symmetric
interactions a↑↑ = a↓↓ = a↑↓ = a. The three parabolic dashed lines
in each figure are energy bands at zero Raman strength as a reference,
where the three spin channels are decoupled. The dimensionless
energy Ēq is defined as (Eq − 2Emin )/(2Er ). (a) Energy bands at � =
0.4Er and 1/(k0a) = 24, where the lowest band has three minima.
Formation of these new bands is due to couplings between spin
channels. (b) Energy bands at � = 2Er and 1/(k0a) = 24, where the
lowest band has only one minimum. (c) Energy bands at � = 4Er

and 1/(k0a) = 24, where two minima of the middle band are merged.
(d) Energy bands at � = 4Er and 1/(k0a) = 2.4, where all the bands
are lifted up due to the increase in a.

cases, the middle band has only one minimum while the
bottom band has one or two minima depending on the Raman
strength �. The minimum energies of these two lower bands
are almost the same as the case of symmetric interactions with
the same a↑↓.

The bound-state wave functions can also be solved [30].
In the case with asymmetric interactions a↑↑ � a↓↓ = a↑↓, we
find that at the bottom of the top band the bound state is largely
made of atom pairs with spin ↑↑ when the Raman strength is
weak, as shown in Table I. When the Raman strength increases
to the resonance point where the bound-state energy equals to

TABLE I. Bound states of the first band in the case of a↑↑ =
1500a0, a↓↓ = a↑↓ = 100a0, and 1/(k0a↓↓) = 24. The first two
columns are in units of Er . The momentum is in units of h̄k0.

� E2q − 2Emin 2q
∑

k |φ↑↑|2
∑

k |φ↓↓|2
∑

k |φ↑↓|2

2 −4.682 −2 0.995 0.00003 0.00234
2 −2.695 0 0.987 0.0004 0.0063
6.9 −1.08 −2 0.924 0.00548 0.0354
6.9 −0.811 −1 0.855 0.0186 0.0633
6.9 −0.0123 0 0.373 0.196 0.216
7.09 0 0 0.25 0.25 0.25

FIG. 2. Bound-state bands with asymmetric interactions at � =
0.4Er and 1/(k0a↓↓) = 24. (a) For a↓↓ = a↑↓ = 100a0, and a↑↑ =
1500a0, with the Bohr radius a0, the top band is shown with the
minimum located near −2k0 and the bottom two bands are shown
in the inset. (b) For a↓↓ = a↑↑ = 100a0, and a↑↓ = 1500a0, the top
band minimum is now located at zero momentum, while the bottom
band minima are located near ±2k0 as shown in the inset.

twice the lowest atom energy, the bound state consists of atom
pairs with all the spin configurations.

III. RESONANCE INDUCED BY SOC

A. Resonance condition

At zero Raman strength, the resonance condition is the
same as that without SOC, i.e., when the scattering length
diverges. At finite Raman strength, the resonance condition
changes due to the reconstruction of bound-state bands. In
experiments, atoms are often condensed in the two single-
particle states with the lowest energy. Since the different spin
channels are coupled at finite Raman strength, the resonance
occurs whenever the bound-state energy satisfies E±2q0 =
2Emin or E0 = 2Emin. As a result, multiple resonances can be
induced at finite scattering lengths with finite Raman strength.

For symmetric interactions a↑↑ = a↓↓ = a↑↓ = a, as shown
in Figs. 3(a) and 3(b), resonance conditions E2q0 = 2Emin

and E0 = 2Emin are satisfied in the top band at two differ-
ent scattering lengths for � < 4Er . There are in total three
different resonances that one can induce by tuning Raman
strength � for each band, but due to symmetry E2q0 = E−2q0

they are located at only two different scattering lengths. When
� > 4Er , there is only one induced resonance for each band
as q0 = 0.

With asymmetric interactions a↑↑ � a↓↓ = a↑↓, for fixed
a↓↓ and a↑↓, the bound-state energy displays different behavior
as a function of 1/(k0a↑↑) in different bands. When a↑↑
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FIG. 3. Induced resonance with symmetric interactions.
(a) Bound-state energy in the top band as a function of scattering
length a, where � = 2Er . The solid and dashed lines are
dimensionless bound-state energy Ēq = (Eq − 2Emin )/(2Er ) at
q = 2q0 and zero, respectively. (b) Scattering length a vs Raman
strength � at resonances. The solid and dashed lines are for COMM
2h̄q0 and zero, respectively. The resonances in the middle band (red
lines) occur almost simultaneously for � < 4Er , and the red dashed
line is simply described by

√−Emin/Er .

increases, only the top bound-state band can reach the lowest
scattering energy 2Emin. The other two bands are insensitive
to the change in a↑↑ as shown in Fig. 2(a). When � < 4Er ,
as shown in Fig. 4, there are three induced resonances with
COMM 0,±2h̄q0. When � > 4Er , there is only one induced
resonance.

B. T matrix and Bethe-Salpeter equation

With finite Raman strength, the effective interactions be-
tween atoms are no longer described by the bare coupling
constants, but given by the T matrix which satisfies the Bethe-
Salpeter equation, as shown in Fig. 5:

Tρ2ρ
′
2

ρ1ρ
′
1
(q; p → k)

= Gρ2ρ
′
2

ρ1ρ
′
1
+

∑
σσ ′ss′

i
∫

d4k′Gss′
ρ1ρ

′
1

× G0
sσ (q + k′)G0

s′σ ′ (q − k′)Tρ2ρ
′
2

σσ ′ (q; k′ → k), (11)

FIG. 4. Induced resonance with asymmetric interactions a↑↑ �
a↓↓ = a↑↓ and 1/(k0a↑↓) = 24. (a) Bound-state energy in the top band
as a function of scattering length a↑↑, where � = 2Er . The solid,
dashed, and dotted lines are dimensionless bound-state energy Ēq =
(Eq − 2Emin )/(2Er ) at q = −2q0, 0, 2q0, respectively. (b) Scattering
length a vs Raman strength � at resonances in the top band. The
solid, dashed, and dotted lines are for COMM −2h̄q0, zero, and
2h̄q0, respectively.

FIG. 5. The diagrams of the Bethe-Salpeter equation.

where ρρ ′, σσ ′, ss′ ∈ {↑↑,↓↓,↑↓,↓↑}; q is the center-of-
mass four-momentum; p, k, and k′ are the relative four-
momenta with k′0 = E ; and G is the coupling matrix. The
Green’s-function matrix G0(k, E ) is given by

G0(k, E ) =
[

E − εk − �

2
σx −

(
h̄2k0

m
kx + δ

2

)
σz

]−1

. (12)

As indicated in Eq. (11), T is independent of k′. Defining the
pair susceptibility function χ ,

χ
ρρ ′
ss′ (q) = i

∫
d4k′G0

ρs(q + k′)G0
ρ ′s′ (q − k′), (13)

we obtain

T = (I − Gχ )−1G. (14)

The coupling matrix can be separated according to statis-
tics, G = GBose + GFermi, where

GBose =

⎛
⎜⎝

g↑↑ 0 0 0
0 g↓↓ 0 0
0 0 g↑↓/2 g↑↓/2
0 0 g↑↓/2 g↑↓/2

⎞
⎟⎠ (15)

and

GFermi =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 g↑↓/2 −g↑↓/2
0 0 −g↑↓/2 g↑↓/2

⎞
⎟⎠. (16)

T matrices for bosons and fermions are decoupled. For
fermions, it is reduced to a scalar:

T−1
f = − m

4π h̄2

(
A3 − 2C3 − 1

a↑↓

)
. (17)

For bosons, it can be reduced to a 3 × 3 matrix based on Bose
statistics, (Tb)ρρ ′

σσ ′ = 1√
2
(Tρρ ′

σσ ′ + Tρρ ′
σ ′σ ), and we obtain

T−1
b = m

4π h̄2 (G′−1 − χ ′), (18)

where the modified susceptibility is given by

χ ′ =
⎛
⎝ A1 C3

√
2C1

C3 A2

√
2C2√

2C1

√
2C2 A3

⎞
⎠, (19)

with the expressions of Ai and Cj given by Eq. (8), and the
coupling matrix of bosons in this representation is given by

G′ =
⎛
⎝a↑↑ 0 0

0 a↓↓ 0
0 0 a↑↓

⎞
⎠. (20)
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Unsurprisingly the poles of the T matrix at energy below
2Emin agrees with the bound-state bands as given in Eq. (7). In
the absence of SOC, the T matrix is reduced to bare coupling
constants. In the presence of SOC, due to the finite Raman
coupling, the effective interaction is no longer given by the
bare coupling constants, and the resonance positions are no
longer at 1/aρρ ′ = 0.

C. Effective interactions near resonance

With symmetric interactions a↑↑ = a↓↓ = a↑↓ = a, the
coupling matrix G′ is proportional to the identity matrix and
Eq. (18) can be rewritten as

T−1
b = m

4π h̄2

(
1

a
I − χ ′

)
, (21)

where I is the identity matrix. From Eq. (21), the T matrix can
be solved explicitly:

T−1
b = m

4π h̄2 U
(

1

a
I − λ

)
U−1, (22)

where λ and U are eigenvalue and unitary transformation
matrices of χ ′, χ ′ = UλU−1, λi j = δi j (1/ai

res), and 1/ai
res is

the ith eigenvalue of χ ′. A resonance occurs whenever the
scattering length a is near ai

res. The effective interactions near
a resonance a = ai

res can be approximated by

(Tb)m
l ≈ 4π h̄2ai

resa

m
(
ai

res − a
)Ui

lU
i
m, (23)

where l, m, and i refer to the scattering channels ↑↑, ↓↓,
and ↑↓.

With asymmetric interactions a↑↑ � a↓↓ ≈ a↑↓, we obtain
each matrix element of Tb in the leading order of a↑↓ as
given by

(Tb)↑↑↑↑ = 4π h̄2

m

(
1

a↑↑
− χ ′↑↑

↑↑

)−1

,

(Tb)l
l = 4π h̄2

m
al ,

(Tb)↑↑l = T↑↑
↑↑χ ′l

↑↑al ,

(Tb)↑↓↓↓ = T↑↑
↑↑

[
χ ′↓↓

↑↓

(
1

a↑↑
− χ ′↑↑

↑↑

)
+ χ ′↓↓

↑↑χ ′↑↑
↑↓

]
a↓↓a↑↓, (24)

where l refers to either the scattering channel ↓↓ or ↑↓.
To the leading order of a↑↓, the dominant interaction near

resonance is in the ↑↑ channel, (Tb)↑↑↑↑ ≈ 4π h̄2

m ( 1
a↑↑

− A1)−1,

and the resonance occurs at a↑↑ = A−1
1 where A1 = χ ′↑↑

↑↑ is
given in Eq. (8).

IV. DISCUSSION AND CONCLUSION

In experiments, 87Rb atom gas with Raman-induced
SOC is a common platform for studying spin-orbit coupled
bosons [31], with a pair of Raman laser beams usually
coupling two hyperfine states, |↑〉 = |F = 1, mF = 0〉 and
|↓〉 = |F = 1, mF = −1〉. The scattering lengths of different
channels are almost equal: a↑↑ ≈ 100.8a0 and a↓↓ = a↑↓ ≈

100.4a0 [5,32]. For counterpropagating Raman laser wave-
length 804.1 nm, 1/(k0a↑↓) ≈ 24. The Raman strength can
be tuned up to the order of 10Er . At � = 10Er , we find for
symmetric interactions that the resonance position is at a =
780a0, much larger than the scattering lengths. It is difficult
to observe the induced resonance by adjusting SOC alone.
However, the scattering length a↑↑ is tunable by Feshbach
resonance [33]. It is possible to observe the induced resonance
in the region a↑↑ � a↑↓ ≈ a↓↓. For example, at � = 10Er , the
resonance position is given by a↑↑ = 1242a0, for 1/(k0a↑↓) =
24 shown in Fig. 4(b), available by Feshbach resonance in ex-
periments. When � < 4Er , three resonances can be observed
instead of one. The resonance induced by SOC has important
effects in a Bose gas. Near the resonance, severe particle loss
is expected to occur, which may be used as a tool to locate the
resonance. Over the resonance, the effective interaction turns
to be attractive, and the system is expected to collapse at low
temperatures. The effective interaction is strongly modified by
SOC near the resonance, and interaction-determined many-
body properties are expected to be different from predictions
of the simple mean-field theory.

The stripe phase of 87Rb atoms with SOC is a novel phase
which displays both density and superfluid orders, but the
density modulation has not been directly imaged so far due to
the limited contrast and wavelength of fringes [13,15,34,35].
The induced resonance can be very helpful to solve this
problem. Using Feshbach resonance, one can tune up a↑↑ to
increase the effective interaction T↑↑

↑↑, while T↓↓
↓↓ and T↑↓

↑↓ re-
main almost the same. A compensating detuning laser can be
added to offset mean-field shift of energy levels. For example,
for atom density about 1014/cm3 with vertically intersecting
Raman lasers of wavelength 804.1 nm, at � = 2.6Er and
T↑↑

↑↑ = 5 × 4π h̄2

m a↓↓, following the results from Refs. [34,35],
the maximum contrast of fringes in the stripe phase is 0.533
and the period of the stripe is 672 nm, which is observable
with current high-resolution-imaging techniques for ultracold
atoms [36–40]. Due to the resonance, the critical Raman
coupling at the transition from the stripe phase to the plane-
wave phase increases significantly to �c = 2.76Er from �c =
0.19Er . The interval length of detuning energy in the stripe
phase at � = 0Er is also increased to 1.75Er from 0.002Er .
These results are also helpful to image the stripe structure in
experiments.

In summary, we study bound-state bands and resonances
in a Bose gas with SOC. We find that finite Raman strength
generates coupling among different scattering channels, lead-
ing to the reconstruction of bound-state bands. The reso-
nance positions are also shifted due to finite Raman coupling
strength, and the effective interactions near these resonances
are obtained. We predict that by tuning the scattering length in
one intraspecies channel the resonance induced by SOC can
be observed in 87Rb systems, which is helpful to image the
density modulation in the stripe phase.
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