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We discuss the possibility to enhance the sensitivity of optical interferometric devices by increasing their
open area using an external field gradient that acts differently on the two arms of the interferometers. The
use of a combined electric and magnetic field cancels nonlinear terms that dephase the interferometer. This
is possible using well-defined (typically with n ∼ 20 Rydberg) states, a magnetic field of a few Tesla, and an
electric field gradient of ∼10 V/cm2. However, this allows for interaction times only on the order of tens of
microseconds, leading to a reachable accuracy of only 1 or 2 orders of magnitude higher than standard light-pulse
atom interferometers. Furthermore, the control of fields and states and three-dimensional (3D) trajectories puts
severe limits to the reachable accuracy. This idea is therefore not suitable for precision measurement but might
eventually be used for gravity or neutrality in antimatter studies.

DOI: 10.1103/PhysRevA.101.023606

I. INTRODUCTION

The effect of an external force (gravitation on neutral
particles, or electric and magnetic force on non-neutral par-
ticles) can be accurately measured using the phase acquired
in the potential of a suitably built interferometer, such as
demonstrated, for instance, in the classic Colella Overhauser
Werner’s experiment [1]. Nowadays, most of the interferome-
ters are based on mechanical gratings or optical manipulation
of internal states using gratings such as Mach-Zehnder [2,3],
Moiré [4], or Talbot(-Lau) [3,5,6]. Taking the gravity mea-
surement as a generic example, the rms statistical precision
δg on the measurement of the g value is quite generally
estimated [2] as δg

g = 1
C

√
Ndet

1
φ

, where φ is the phase difference
between the paths in the interferometer. C � 1 is the fringe
contrast and Ndet the number of events detected. In light-pulse
atom interferometry, the light gratings are applied at well-
defined times (for instance, 0, T

2 , T ); therefore, the phase shift
becomes independent of the atom velocity. For mechanical
grating, with d the grating pitch, the interferometric phase
shift φ is given by d

2
φ

2π
= 1

2 gT 2, and the contrast of such
interferometry can approach unity (the difficulty becomes
now to catch all atoms by the laser pulses) [2]. The sensitivity
of these devices increases with the measured phase difference
between the matter waves φ = m

h̄ A · g, which scales with
the enclosed interferometric area in space-time A = ∫

�xdt .
Increasing the area is therefore the key ingredient to improve
accuracy. In most of the interferometer (Ramsey-Brodé [7]
or Kasevitch-Chu [8] type) the atomic beams are coherently
split and later recombined using laser-pulse beam splitters that
transfer photon momentum h̄k (k = 2π/λ is the light wave
vector for a wavelength λ that plays the role of the grating
pitch d) [9,10]. In order to increase the area, large momentum
transfer interferometers have been demonstrated with A =
2N

∫
t h̄k/mdt = NT 2h̄k/m using N photon transfers from

the laser beams. Many methods are now available [10],
typically limited to N ∼ 100, such as Kapitza-Dirac [11],

Talbot-Lau [12,13], sequential Raman pulses [14], sequen-
tial two-photon Bragg diffraction [15], multiphoton Bragg
diffraction [16], Bloch oscillations [17,18], or adiabatic
passage [19].

In this article we would like to study another possibility,
which is to increase the area A by using an external field
acting differently on the two arms of the interferometer.
A proof-of-principle experiment has been realized in [20]
(see also [21–23]) by the use of an external magnetic field
gradient. Theoretically, only the simple ideal (pure gradient)
one-dimensional case has been studied in Refs. [24,25]. A
simple comparison can be done between this enhanced in-
terferometer, based on external electromagnetic accelerations
a where A ≈ ∫

at2/2dt ≈ aT 3/6, and a pure photon-recoil-
based light interferometer, with A = T 2h̄k/m. The gain exists
only when aT � h̄k/m so, with a very big and for a long
interrogation time T . For a typical wavelength of λ = 532 nm
and for hydrogen mass atoms, this leads to aT � 1 m/s.
Because strong acceleration can be created, for instance, in
Rydberg states under the effect of an electric field, the gain
is potentially enormous. For instance (see detailed formula
in the Appendix), a Rydberg state of n ∼ 30 and an electric
field gradient of 100 V/mm2 leads to a gain ∼105 on δg/g
compared to a standard interferometer even for very short
interrogation times of T = 100 μs. Furthermore, with lower
temperature, such as that achieved thanks to laser cooling
[26,27], the interrogation time can be longer and the gain
potentially much bigger. The enhanced interferometer has a
T 3 evolution compared to the T 2 evolution of a standard
interferometer, explaining why such an enhanced gradient
interferometer has seemed to be so promising [21–24,28,29].

In our study, we will first express some experimental
considerations of such gradient-enhanced interferometry and
show that it is not suitable for precision measurements but
may be interesting for experiments having high temperature
and low statistics, such as antimatter experiments. We then
first study the one-dimensional (1D) case and second a real
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three-dimensional (3D) case but in a simple cylindrical sym-
metry. We will show that, due to Maxwell’s equations, the 3D
case leads to extra terms in the phase that seem difficult to
cancel. This leads to difficulties that will strongly limit the
possible gain.

II. EXPERIMENTAL CONSIDERATIONS

A. Stability of the fields

For the following we assume that we can use electric
and/or magnetic external fields to act on the states. We first
stress the realization that a precision experiment using an
external field gradient appears very challenging because the
degree of control of the time and space values of the applied
fields have to be of the same order of magnitude than the
relative accuracy foreseen for δg. Because a magnetic or
electric field relative spatial homogeneity, or time stability,
on the 10−5 range may already seen challenging, an accuracy
of |δg/g| ≈ 10−5 seems already quite hard to achieve. This
is in stringent contrast to photon-recoil-based optical inter-
ferometers used for high-accuracy measurements where all
quantities T, k, and m can be known at very high accuracy. But
if |δg/g| ≈ 10−5 is well below the state-of-the-art |δg/g| ≈
10−9 accuracy for matter waves, it will present a tremendous
improvement for antimatter waves, the state of the art of which
is |δg/g| ≈ 100 [9,10,30–37].

B. Interest for antimatter systems

Therefore such a gradient interferometer may be used
to study neutral antimatter systems such as antihydrogen
H̄ = p̄ − e+, positronium Ps = e+ − e−, protonium Pn =
p̄ − p, antiprotonic helium, their muonic counterpart, antineu-
trons, etc., which, indeed, attracts more and more attention for
tests of Lorentz, CPT invariance [38–42], gravity [43–49], or
even for spectroscopic measurement [50]. Proposal of anti-
matter studies using interferometry dates back to the 1990s
[51–53]. Most proposals are based on imaging a first grating
by a second one and then detecting the particles either using
a third grating or a position-sensitive detector. The gratings
method has advantages regardless of the coherence of the
source [54]. That is another advantage for antimatter systems
because of the low production rate and high temperature of
the antimatter samples, meaning extended sources, large beam
divergence, and poor energy definition.

The interrogation time T is strongly related to the temper-
ature T0 of the atoms. Indeed, the particles will stay in the
(laser waist or apparatus) size w typically on the centimeter
scale only during a time T ≈ w

√
m/kBT0. For hydrogen at 1 K

this leads to time in the 100-μs range. This implies the use of
long-lived states such as ground hyperfine, 2s or nl Rydberg
states (lifetime ≈10−10n3(l + 1/2)2 s [55]). For such states
the typical acceleration verifies ma ∼ μBmF ∇B in a magnetic
field B, with μB the Bohr magneton and mF the total magnetic
quantum number. Thus, the aT � 1m/s condition indicates
that the enhanced interferometer has increased performances
compared to a light interferometer, as the one proposed in
[2,3], only with a (for hydrogen mass) mF ∇B � 1 T/m
magnetic field gradient or n2∇F ≈ 106 V/m2 for the electric

field. Both conditions seems easy to achieve and it is therefore
worth investigating the setup in more detail.

C. Simple example: 1D picture, pure gradient acting
in a two-arm interferometer

Even if we see that such a poorly accurate interferometer
will interest mostly only the antimatter community, our study
of a gradient-enhanced area interferometer will be more gen-
eral. We focus our general discussion on a simple two-arm
interferometer for the sake of simplicity, but most of the
discussion would be relevant for multiple arms or multiple
gratings. Different forces acting on the two arms of the inter-
ferometer requires at least two different internal states |1〉 and
|2〉 on which the external field produces different accelerations
a1 and a2. The force acting differentially on both states will
create two well spatially separated arms [31,56] with spatial
and internal states entangled. This has to be compared to the
Talbot-Lau setup or the classical moiré deflectometer, where
this entanglement does not exist and so the final measurement
has to be spatially resolved. In our case, the final measurement
at the output of the interferometer can be performed by a
simple internal state measurement. This allows us to work
with hotter beams and smaller spatial displacement compared
to a single internal state interferometer [3].

The simplest example uses two classical trajectory paths
(the internal state can change along the path) through the
interferometer with phase evolutions φ1 and φ2, where the
fringe phase shift will be given by �φ = φ1 − φ2. As studied
in Refs. [23,24], the simplest ideal case uses a 1D picture
with a pure field gradient E [electric or magnetic with E =
‖E‖ = E0 + E ′(z − z0)] and a linear field dependence on
the potential energy [Ep(E ) = Ep(E0) + E ′

p(E0)(E − E0) for
a given state]. This creates uniform, nonspatial neither time-
dependent acceleration ã1 and ã2 with ãi = E ′E ′

pot i
(E0)/m. So

including the gravity, the two internal states |1〉 and |2〉 have
different accelerations, a1 = g + ã1 and a2 = g + ã2.

To close in phase space the interferometer, several tim-
ings and accelerations are possible. Choosing one solution
or the other does not change the conclusions we are going
to derive. One possible solution is given in Ref. [21], where
(forgetting the gravity) the acceleration of the upper part
is ã,−ã, 0, 0 and 0, 0, ã,−ã for the lower path, leading to
�φ = −m

h̄ gaT 3/32, where T is the total time spent in the in-
terferometer. This solution uses three different accelerations,
so in principle three different internal states. Therefore, we
will use here the simpler solution proposed in Ref. [24] and
recently realized in Ref. [23] (with the π pulse being replaced
by field reversals), because it only requires two accelerations
ã1 and ã2. Following [24] we will thus create (by a π/2
pulse) the superposition at time 0 and then changing states
(π pulse) at time T/4, 3T/4 and recombining (π/2 pulse) at
T , as illustrated in the upper panel of Fig. 1.

This choice closes the interferometer both in position and
velocity, meaning that the classical path � linking the initial
to the final point, through Newton’s classical trajectories equa-
tion mẍi + ∂Ep

∂xi
= 0, ends at the same phase-space position for

both arms [24]. The phase imprinted by the lasers is φL =
φL(0) − 2φL(T/4) + 2φL(3T/4) − φL(T ) [24,57]. Because is
is zero if we are assuming no phase jump (coherent laser), we
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FIG. 1. Space-time diagram of the gradient-enhanced interfer-
ometer with four (short and copropagating Raman) laser pulses
at time 0, T/4, 3T/4, T . The two internal states are respectively
shown in solid-red and dashed-blue curves. If seen as a pure 1D
interferometer, a pure gradient interferometer can be closed in the
z coordinate (upper panel). However, when looking to 3D, or with
nonlinear terms, the situation is more complex, as shown for the
radial coordinate r (lower panel).

will neglect it in the following. Thus, in this simple case the
calculation of the phase evolution [see Eq. (2) detailed later]
is straightforward and leads to �φ = m

h̄ (a2
1 − a2

2)T 3/64 =
−gm

h̄ (ã1 − ã2)T 3/32 + m
h̄ (ã2

1 − ã2
2)T 3/64. This formula con-

firms that, in addition to the desired gravity-dependent phase,
another global phase, insensitive to gravity, arises. Because we
want the gravity term to be large, we want the accelerations to
be large and thus this second phase can also be quite large.
Using ã1 ≈ −ã2 limits the value of this extra phase. However,
without specific tricks it will be difficult to perfectly ensure
this equality experimentally, because ã1 and ã2 are sensitive
to field fluctuations. Consequently, the field fluctuations will
either reduce the contrast or even blur (if this extra phase is
bigger that 2π ) the interferometer.

D. Real 3D case

In addition to this important difficulty, another problem
exists. Indeed, the 1D picture is clearly not adequate because
Maxwell’s equation (or Gauss’s law) implies that an electric
or magnetic field gradient acts on a multidimensional space.
Therefore the electromagnetic force created by an external
field gradient is necessary acting on at least two directions.
This is important because to keep a good contrast, the tra-
jectories, and so the area, have to be the same for all initial
positions and velocities. This can be achieved, for instance,
if the particles are submitted to a force that does not depend
on positions or on velocities. As we will see, when combined

with the nonlinearity of the Stark or Zeeman effect, this puts
strong limits on the states and fields that could be chosen.

Maxwell’s equations for static electric and magnetic fields
in vacuum have the exact same form so we can treat both
fields in the same way. We shall thus first, for simplicity,
use an electric field and a simple cylindrical symmetry along
the vertical z axis. From the sole voltage along the axis
V (z), Maxwell’s equations imply a single solution for the 3D
potential (in cylindrical coordinates) V (ρ, z). Indeed, using
series notations V (z) = V0 − E0z − E ′z2/2 − E ′′z3/6 − · · ·
we find [58]

V (ρ, z) = V0 − E0z − E ′z2/2 − E ′′z3/6

+1/4r2(E ′ + E ′′z) + · · · .

The gradient gives the electric field E. Taking the series (in
E0 or similarly in r, z), up to the third order, for the norm E =
‖E‖ leads to

E = E0 + E ′z + E ′′

2
z2 + E ′2 − 2E0E ′′

8E0
r2

−E ′ E
′2 − 2E0E ′′

8E2
0

zr2.

Similarly, the potential energy can be written in series,

Ep(E ) = Ep(E0) + E ′
p(E − E0) + 1

2 E ′′
p (E − E0)2

+ 1
6 E ′′′

p (E − E0)3,

where we have noted E ′
p for dEp

dE (E0). Finally, up to the third
order, the Lagrangian becomes

L = p2
z

2m
+ p2

r

2m
− Ep(E0) − E ′

pE ′z − mgz

−E ′
pE ′′ + E ′′

p E ′2

2
z2 − E ′

p
E ′2 − 2E0E ′′

8E0
r2

−E ′ E
′2 − 2E0E ′′

8E2
0

(E ′′
p E0 − E ′

p)r2z

−E ′′′
p E ′3 + 3E ′′

p E ′E ′′

6
z3. (1)

To calculate the phase evolution, we will separate this full
Lagrangian L(x, ẋ, t ) = 1

2 mẋ2 − Ep(x, t ) between a quadratic
Lagrangian L0 containing only homogeneous acceleration and
its gradient [so the first two lines of Eq. (1)], and a perturbative
Lagrangian L1 containing only the third-order terms (r2z and
z3). As recalled in the Appendix, see Eqs. (C1) and (C2), if
L1 is a perturbation, the evaluation of the total phase under
the L Lagrangian can be evaluated using only the classical
unperturbed path �0 derived with the sole L0 Lagrangian:

φ = 1

h̄

∫
�0

L(x, ẋ, t )dtdt . (2)

We use this formula all along in this article and, because of its
perturbative nature, we will also use only formulas up to the
third order in time.
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The first line of Eq. (1) correspond to the 1D case due to
the field gradient E ′ and the linear dependence of the potential
energy E ′

p. However, in 3D we see extra terms appearing.

One of the most important is E ′
p

E ′2
8E0

r2, which occurs even in
a pure gradient (E ′) along z and a linear potential energy
(E ′

p) studied previously. This illustrates already why the 3D
picture is required even to study the simplest “1D case.” Even
if the gradient of the field is perfectly homogeneous (and the
dependence of the potential energy is linear), some nonlinear
terms are present in the Lagrangian. Therefore, even in this
ideal case the problem cannot be treated as a 1D problem as
done in Refs. [23,24].

More generally, the presence of extra terms will produce
(very large) extra phases (see, for instance, the lower panel in
Fig. 1), which we thus need to cancel, or control, as much as
possible.

III. ELECTRIC AND MAGNETIC FIELD CANCELLATION

A. Cancellation using pure field

Compared to the ideal case, some quadratic and even
nonquadratic terms arise. A simple solution would be to
cancel these extra terms by an appropriate choice of fields
or states. For instance, an appropriate choice of the external
field with E ′′ = E ′2

2E0
would cancel the r2 term (and also the r2z

term), and an appropriate choice of a state with a potential

energy that fits E ′′
p = − E ′

p

2E0
would cancel the z2 term. We

note that the z3 term could, in principle, also be canceled

by choosing E ′′′
p = − 3E ′′

p

2E0
, but because the state, and so its

potential energy Ep(E ), is already partially imposed by the
previous equality, we may have not enough degree of freedom
for the choice.

Even canceling only the second-order terms seems dif-

ficult, because if this requires the equation E ′′
p = − E ′

p

2E0
to

be verified only locally, that is, at field E0, we see that
if we want to solve it for all possible E0, it becomes

E ′′
p = − E ′

p

2E that is solved E ′
p(E ) ∝ √

E . Thus, to cancel
the second-order terms the variation of the potential en-
ergy should, at least locally at field E0, have a kind of a
square-root dependence. Unfortunately, Eq. (A1), for (anti-)-
hydrogen atoms in Rydberg state, indicates that the Stark
effect is quite linear. We have indeed checked that the can-
cellation is impossible for all (anti-)hydrogen states because

E ′′
p < − E ′

p

2E0
for any electric fields below the ionization thresh-

old (1/9n4 in atomic units for a level with a principal quantum
number n). Similar behavior exists for the pure magnetic
Zeeman effect for low-lying states. We have also checked

that it is impossible to get E ′′
p = − E ′

p

2E0
for the (anti-)hydrogen

ground state even if the hyperfine structure is taken into
account using the Breit-Rabi formula.

It is, however, interesting to note that the Breit-Rabi
formula for nuclear spin value I > 1/2 allows the equality

E ′′
p = − E ′

p

2E0
for sub-Zeeman levels mF < 0. In addition, this

occurs for the interesting case of ã1 ≈ −ã2 for the two |F =
I ± 1/2, mF 〉 hyperfine states. For instance, for 87Rb it arises
at B = 0.044 066 5 Tesla for both |mF = −1〉 states, and for

85Rb it arises at B = 0.028 357 3 Tesla for both mF = −2 and
at B = 0.012 446 7 Tesla for both mF = −1 [59].

It is beyond the scope of this article to cover all atomic
cases including fine, hyperfine, or diamagnetic terms. But
the first conclusion concerning the cancellation is that the
(anti-)hydrogen atom is peculiar because of its almost linear
Stark (and Zeeman) effect. The simplest possibility to cancel
the nonlinear terms is thus to combine an electric and a
magnetic field to produce locally a square-root dependence
of the potential energy curve with the fields. We are going
to study this case, which will also include the fact that for
Rydberg states the diamagnetic Zeeman effect can play a
substantial role [60–64].

B. Cancellation using electric and magnetic fields

Combining electric and magnetic fields strongly modi-
fies the curvature of the energy levels and provides some
level crossings. Thus this may lead to the cancellation we
are looking for. For this study we simply use the (second-
order) potential energy formula, Eq. (B1), valid for arbi-
trary B and E fields. The eigenstates are noted |n, m1, m2〉,
with m1, m2 quantum numbers spanning −(n − 1)/2,−(n −
3)/2, . . . , (n − 1)/2.

Several field geometries are possible. We have looked at
many of them and found similar results; therefore we illustrate
the result using only the simplest case of a constant and uni-
form magnetic field along the z axis, in addition to the already
studied cylindrical symmetric electric field. This solution is
appealing because such a 1–5 Tesla field is naturally present
in most of the antihydrogen experiments.

For these fields, the potential energy is calculated using
Eq. (B1). We then analytically expand it in series to evaluate
the E ′

p, E ′′
p terms. This leads to the choices (in atomic units)

E0 = 0,

E ′′

E ′2 = n3
( − 19 + 12

(
m2

1 + m1m2 + m2
2

) − 17n2
)

12(m2 − m1)
,

B = − 12(m1 + m2)

n2(21 − 20m1m2 + 15n2)
,

in order to cancel the quadratic terms in the Lagrangian. These
choices create a linear potential energy Ep = −(3/2)(m1 −
m2)nE ′z (up to the second-order terms) for a given |n, m1, m2〉
state. The third-order terms are a priori not canceled.

Cancellation of the second-order nonlinear terms (in r2 and
z2) imposes the value for the magnetic and electric field for
a given |n, m1, m2〉 state. But we have (at least) two states
in the interferometer. Thus we have to choose compatible
|n, m1, m2〉 (for state 1 with acceleration ã1) and |n′, m′

1, m′
2〉

(for state 2 with acceleration ã2) levels that give similar (exact
equality was found to be impossible) magnetic and electric
fields. So, for instance, we have B ≈ − 12(m1+m2 )

n2(21−20m1m2+15n2 ) ≈
− 12(m′

1+m′
2 )

n′2(21−20m′
1m′

2+15n′2 ) and, if possible, we do not create third-
order terms that are too high.

Several choices of pairs of states are possible. We found
very similar results with many choices, and so we simply
mention three of them to express possible and typical values
for the interferometric phases:
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(i) n = 20, m1 = 13/2, m2 = −19/2 and n′ = 21, m′
1 =

−1, m′
2 = −2 requires similar magnetic fields B0 ≈ 2.91 T

and E ′2/E ′′′ ≈ 200 V/cm.
(ii) n = 19, m1 = −7, m2 = 3, and n′ = 20, m′

1 = −17/2,

m′
2 = 7/2 with B0 ≈ 5.33 T and E ′2/E ′′′ ≈ −160 V/cm.
(iii) n = 18, m1 = 11/2, m2 = −17/2 and n′ = 37, m′

1 =
−18, m′

2 = −15 with B0 ≈ 4.49 T and E ′2/E ′′′ ≈ 300 V/cm.
Because each chosen pair of states leads to results within

the same order of magnitude of the final phases, we give here
the results using only the third (last) choice.

In order to quickly estimate the contrast of the interferome-
ter, we calculate the phase evolution for 16 particles with two
different initial positions in z, two different initial positions
in r, two different initial velocities along z, and two different
initial velocities along r. We compare the phase with that
arising from a particle starting at the center and with zero
initial velocity. We finally average the absolute values of all
phases. We use a typical (axial z and radial r) distance of
1 mm and axial and radial thermal velocities corresponding
at an initial temperature of T0 = 0.01 K [

√
kBT0/m ≈ 10 m/s

for the (anti-)hydrogen mass]. This temperature is chosen
because it is reachable with laser-cooling methods, and higher
temperatures start to create too much dephasing; lower tem-
peratures do not really help because the dephasing is no longer
dominated by the velocity but by other effects such as the
third-order terms in the Lagrangian.

The cubic dependence of the phase with the evolution
time favors long evolution times. However, in order to keep
dephasing (due to imperfect cancellation of second- and third-
order terms in the Lagrangian for both states simultaneously)
smaller than 2π we are restricted to an evolution time (be-
tween light pulses) of T/4 = 100 μs. We choose an electric
field gradient of E ′ = 10 V/cm2. It cannot be much larger,
to avoid dephasing terms which are too big, and it cannot be
much smaller, because this is what creates the opening of the
area of the interferometer and thus the enhancement effect
we are looking for. For our gradient interferometer we find
a total (global) phase of φ = 472 808 (φ ∝ E ′2m−1T 3). This
indicates that, as previously stated, a field stability and geo-
metric homogeneity on the order of 10−5 is probably required
in order to avoid a complete blurring of the fringes (meaning a
fluctuation of this phase value of less than 2π ). Unfortunately,
the interesting term linked to gravity 2 m

h̄ g(a2 − a1)T 3 is only
85.85 (this term is proportional to E ′m0T 3). Therefore the
gain (factor ∼30) compared to a simple Kasevich-Chu phase
of kgT 2 = 3.08 [calculated with a quite arbitrary choice of
k = (2π )/(200 nm)] can be seen as marginal compared to
the optimistic value expected at the beginning of this article.
Finally, the (error) phase due to second- and third-order terms
is indeed small (0.3) and will probably not create too bad of a
contrast.

IV. CONCLUSION

We have shown that using a pure gradient of electric
or magnetic field in order to produce strong forces able to

increase the area of an interferometer, which seems attrac-
tive when looking on a 1D picture, turns out to be quite
complicated in a real 3D picture. Despite the field stability
issues, the other limitations are first, a pure gradient along
one axis is not possible due to zeros of the field diver-
gence in Maxwell’s equation, and second, the extra terms
produced are difficult to cancel using pure fields for (anti-
)hydrogen atoms. We nevertheless note that for ground-state
alkali atoms the Breit-Rabi formula allows this cancellation
for specific magnetic field values, which might be interesting
to study.

Combining electric and magnetic fields helps but has many
drawbacks (in addition to the technical difficulty!) because
the cancellation is not perfect, implying a choice of given
field values and geometries as well as a choice of proper
states. Furthermore, the gain we found was quite marginal,
at best a factor of 100 compared to a simple Kasevich-
Chu’s interferometer (with N = 1). We have studied only
some particular field geometries and pulse sequences,
but we doubt that other geometries, time sequences, or
even time-dependant fields would lead to drastically better
results.

In conclusion, we do not see any strong advantages for
use of enhanced interferometers compared to standard ones
for precision measurements. We therefore did not discuss in
detail the practical implementation of such an interferometer.
It is nevertheless worth mentioning that matter-wave inter-
ferometry with hydrogen atoms in Rydberg states has been
already demonstrated in [65] (by coupling 2s and 15p levels)
and that an interferometer using only high Rydberg states has
also recently been demonstrated [66,67]. We simply mention
that one advantage of such a scheme, using Rydberg states,
is than rf or microwave pulses can be used that are easy to
implement and can address more velocity classes (due to the
reduced Doppler effect) than Raman laser pulses. Therefore it
still might be of interest for antimatter experiments to consider
such schemes.

We finally mention one possibility to improve the result.
We have used perturbation methods for the fields and for the
potential energy to study the problem, but it is possible that
strong nonlinear terms can be more efficient. We can think of
such strong second-order terms that it would lead to trapping
of the particles and, as after one oscillation period in a pure
harmonic trap, the interferometer can even be closed. This
might lead to interesting interferometric measurements that
might deserve more study.
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APPENDIX A: STARK EFFECT

In an electric field F , neglecting the fine-structure ef-
fects that are small for Rydberg states, the energy of states
E = En,n1,n2,m can be accurately calculated from the fourth-
order expansion of the hydrogen Stark [63,68–70] states in
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atomic units:

E = − 1

2n2
+ 3n

2
kF

− n4

16
(17n2 − 3k)2 − 9m2 + 19)F 2

+3n7

32
k(23n2 − k2 + 11m2 + 39)F 3

− n10

1024
(5487n4 + 35182n2 − 1134m2k2

+1806n2k2 − 3402n2m2 + 147k4

−549m4 + 5754k2 − 8622m2 + 16211)F 4, (A1)

where n = n1 + n2 + |m| + 1 and k = n1 − n2 = 2n1 − n −
|m|. Back to SI units (4.36 × 10−18J for the energy and
5.14 × 1011V/m for the field), the acceleration that can be
created in an electric field F is on the order of ma ∼ 4.36 ×
10−18J 3

2 n2 ∇F
5.14×1011V/m .

APPENDIX B: STARK-ZEEMAN EFFECT

The energy levels of a hydrogen atom in electric and
magnetic fields with arbitrary orientation have been stud-
ied [71] and analytical formulas up to second order in
the fields have been calculated [72]. The states are labeled
|nn′n′′〉; they correspond when E = 0 to the |nn1n2m〉 Stark
states with n′ = (m + n2 − n1)/2 and n′′ = (m − n2 + n1)/2
[73,74]. In atomic units [ f = F/(5.14 × 109V/cm), γ =
B/(2.35 × 105 T)] we have

Ep = − 1

2n2
+ |ω1|n′ + |ω2|n′′

−n4 f 2

16
{17n2 + 19 − 12[n′2+ n′n′′ cos(α1 + α2)+ n′′2]}

+n2γ 2

48
{7n2 + 5 + 4n′n′′ sin α1 sin α2}

+(n2 − 1)(cos2 α1 + cos2 α2)

−12(n′2 cos2 α1 − n′n′′ cos α1 cos α2

+n′′2 cos2 α2)], (B1)

where ω1,2 = 1
2 (γ ∓ 3n f ), and α1 and α2 are the angles

between the magnetic field axis and the vectors ω1 and ω2,
respectively.

APPENDIX C: PHASE EVOLUTION IN
INTERFEROMETERS

We recall here the basics of the calculation of the evo-
lution of the atomic wave packet in our simple two-path
atom interferometer. We will deal with nonrelativistic atom
interferometry (see [75] for a more general case). Several
methods exists to study the evolution: using a plane wave or
a Gaussian wave-packet decomposition [76,77], sometimes
linked with a path integrals formulation [8,9], or using the
density matrix [78] or Wigner function evolution [57,79–82].
Obviously, all methods lead to the same final results, but the
choice is made depending on the context.

The most important results concern the case of the (laser-
free) evolution under a Hamiltonian (or a Lagrangian) con-
taining a potential that is at most quadratic in the space
coordinates. That is when each internal state |1〉, |2〉, . . .
evolves under its own Hamiltonian H1, H2, . . . that contains
only a homogeneous acceleration and its gradient. This is,
for instance, the case for the first two lines of Eq. (1). Under
such circumstances, that fortunately are the most usual ones,
the quantum phase-space (Wigner) distribution evolves under
the same (Liouville’s) equation than the classical phase-space
distribution [82,86]. The fact that the evolution is given by the
classical evolution is also directly visible using the evolution
operator between the times ti and t f that, in the two-level

case Û (ti, t f ) =
(

U11(ti, t f ) 0
0 U22(ti, t f )

)
, is given in the position

representation (here written in 1D to simplify the notations)
by 〈z f |Û11(ti, t f )|zi〉 =

√
m

2iπ h̄(t f −ti )
eiScl (z f ,t f ;ziti )/h̄, where Scl is

the classical action evolution of a particle in state |1〉, starting
at position zi at time ti under the forces created by H1 and
arriving at time t f at position z f . In other words, the phase
evolution of the wave function is given by the (semiclassical
limit of the) Feynman’s path-integral formulation in terms of
the Lagrangian by

φ = Scl

h̄
= 1

h̄

∫
�

L(x, ẋ, t )dt, (C1)

and � is the classical path from the initial to the final point.
This was first proposed by Kennard and Van Vleck [83,84]
and shown by Morette [85] to be exact in the quadratic case.

In our case, we also deal with higher-order terms, such as
the third-order terms (r2z and z3). The theory is more complex
and generally no longer linked to the classical world with, for
instance, negative values for the Wigner function [82,86]. For-
tunately, if the extra terms are considered as a perturbation L1

on the Lagrangian L = L0 + L1, the phase shift δφ introduced
into the final wave function, by the perturbation L1, is given
simply (to the first order) by the integral of the perturbation
along the classical unperturbed path �0 [87–89]:

δφ = 1

h̄

∫
�0

L1dt . (C2)

This allows one to calculate the phases created by the acceler-
ations.

We should also deal with the π or π/2 light pulses. The
general case of the interaction with lights can be complicated,
because correlations may appear between internal and exter-
nal variables invalidating the Bloch equation or the simple
semiclassical approaches [82,86]. However, because it is not
the main focus of our article to deal with these issues, we will
restrict ourselves to the ideal case of a quasi-instantaneous
light pulse and with no momentum transfer created by the
pulses. This can be realized, for instance, thanks to the use
of copropagating laser Raman beams. Therefore, for π pulse

at time ti we have Ûπ (ti ) =
(

0 −ieiφL (ti )

−ie−iφL (ti ) 0

)
. Similarly,

the evolution under a π/2 pulse is given by Ûπ/2(ti ) =
1√
2

(
1 −ieiφL (ti )

−ie−iφL (ti ) 1

)
. In these formulas φL(ti ) is the laser

phase at time ti [or the phase difference φL(ti) = φL1 (ti) −
φL2 (ti ) in the case of two Raman laser beams].
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In conclusion, by multiplying the matrix evolution we can
calculate the state evolution. In our case of simple (upper u
and lower l) paths with the two internal states, if starting
(for instance) with atoms in state |1〉, we find that the prob-
ability to observe atoms in state |1〉 just after the last π/2
pulse is

P = 1
2 [1 − C cos(φu − φl + φL )],

where φu, respectively φl , is the phase acquired by the par-
ticles in the upper, respectively lower branch (with possible
internal state change during the motion). φL comes from the
phases imprinted by the lasers. For a single atom the contrast
C = 1, but obviously when summed over all initial atomic

phase-space densities, the dephasing and the incoherent sums
of the probabilities lead to a reduction of the contrast. A
simple case is when the initial wave packet (|ψ0〉 in the pure
case) or the initial phase-space distribution (in the statistical
ensemble case) is Gaussian and the evolution is quadratic. In
such a case, as shown before, the position-momentum mean
and (co-)variance evolves in a very simple analytical manner
given by the classical evolution (in the so-called ABCD ξ

theorem) [57,76,77,79–81], directly giving the final contrast
(using obvious notations) Ceiφ = 〈ψ0|Û †

u Ûl |ψ0〉 = 〈ψu|ψl〉 =∫
ψ∗

u (z)ψl (z)dz. However, our case is more complex, with
nonquadratic terms in the Hamiltonian. No analytical formu-
las exist, and we therefore simply estimate the loss of contrast,
or dephasing, by calculating the phases for several different
initial position-momentum states.

[1] R. Colella, A. W. Overhauser, and S. A. Werner, Observation of
Gravitationally Induced Quantum Interference, Phys. Rev. Lett.
34, 1472 (1975).

[2] M. K. Oberthaler, Anti-matter wave interferometry with
positronium, Nucl. Instrum. Methods Phys. Res., Sect. B 192,
129 (2002).

[3] P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. S.
Wurtele, and H. Müller, Antimatter Interferometry for Gravity
Measurements, Phys. Rev. Lett. 112, 121102 (2014).

[4] A. Kellerbauer, M. Amoretti, A. S. Belov, G. Bonomi,
I. Boscolo, R. S. Brusa, M. Büchner, V. M. Byakov,
L. Cabaret, C. Canali, C. Carraro, F. Castelli, S. Cialdi,
M. de Combarieu, D. Comparat, G. Consolati, N. Djourelov,
M. Doser, G. Drobychev, A. Dupasquier et al., Proposed
antimatter gravity measurement with an antihydrogen beam,
Nucl. Instrum. Methods Phys. Res., Sect. B 266, 351
(2008).

[5] S. Sala, F. Castelli, M. Giammarchi, S. Siccardi, and S. Olivares,
Matter-wave interferometry: Towards antimatter interferome-
ters, J. Phys. B: At., Mol. Opt. Phys. 48, 195002 (2015).

[6] S. Sala, M. Giammarchi, and S. Olivares, Asymmetric Talbot-
Lau interferometry for inertial sensing, Phys. Rev. A 94, 033625
(2016).

[7] Ch J. Bordé, Atomic interferometry with internal state labeling,
Phys. Lett. A 140, 10 (1989).

[8] M. Kasevich and S. Chu, Atomic Interferometry Using Stimu-
lated Raman Transitions, Phys. Rev. Lett. 67, 181 (1991).

[9] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and
interferometry with atoms and molecules, Rev. Mod. Phys. 81,
1051 (2009).

[10] S. Abend, M. Gersemann, C. Schubert, D. Schlippert, E. M.
Rasel, M. Zimmermann, M. A. Efremov, A. Roura, F. A.
Narducci, and W. P. Schleich, Atom interferometry and its
applications, Found. Quantum Theory 197, 345 (2019).

[11] K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackermüller, S.
Nimmrichter, I. V. Goldt, O. Boltalina, and M. Arndt, Theory
and experimental verification of Kapitza-Dirac-Talbot–Lau in-
terferometry, New J. Phys. 11, 043032 (2009).

[12] B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschsinka,
M. Arndt, and A. Zeilinger, Matter-Wave Interferometer for
Large Molecules, Phys. Rev. Lett. 88, 100404 (2002).

[13] S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor,
H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri,
M. Mayor et al., A Kapitza–Dirac–Talbot–Lau interferometer
for highly polarizable molecules, Nat. Phys. 3, 711 (2007).

[14] J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, Large Area
Light-Pulse Atom Interferometry, Phys. Rev. Lett. 85, 4498
(2000).

[15] S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich,
102h̄k Large Area Atom Interferometers, Phys. Rev. Lett. 107,
130403 (2011).

[16] H. Müller, Sheng-wey Chiow, Quan Long, Sven Herrmann,
and Steven Chu, Atom Interferometry with up to 24-Photon-
Momentum-Transfer Beam Splitters, Phys. Rev. Lett. 100,
180405 (2008).

[17] H. Müller, S.-W. Chiow, S. Herrmann, and S. Chu, Atom
Interferometers with Scalable Enclosed Area, Phys. Rev. Lett.
102, 240403 (2009).

[18] P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Large
Momentum Beam Splitter Using Bloch Oscillations, Phys. Rev.
Lett. 102, 240402 (2009).

[19] K. Kotru, D. L. Butts, J. M. Kinast, and R. E. Stoner, Large-
Area Atom Interferometry with Frequency-Swept Raman Adi-
abatic Passage, Phys. Rev. Lett. 115, 103001 (2015).

[20] S. Machluf, Y. Japha, and R. Folman, Coherent Stern–Gerlach
momentum splitting on an atom chip, Nat. Commun. 4, 2424
(2013).

[21] G. D. McDonald, C. C. N. Kuhn, S. Bennetts, J. E. Debs,
K. S. Hardman, J. D. Close, and N. P. Robins, A faster scaling
in acceleration-sensitive atom interferometers, Europhys. Lett.
105, 63001 (2014).

[22] Y. Margalit, Z. Zhou, O. Dobkowski, Y. Japha, D. Rohrlich,
S. Moukouri, and R. Folman, Realization of a complete Stern-
Gerlach interferometer, arXiv:1801.02708.

[23] O. Amit, Y. Margalit, O. Dobkowski, Z. Zhou, Y. Japha,
M. Zimmermann, M. A. Efremov, F. A. Narducci, E. M. Rasel,
W. P. Schleich et al., T 3 Stern-Gerlach Matter-Wave Interfer-
ometer, Phys. Rev. Lett. 123, 083601 (2019).

[24] M. Zimmermann, M. A. Efremov, A. Roura, W. P. Schleich,
S. A. DeSavage, J. P. Davis, A. Srinivasan, F. A. Narducci, S. A.
Werner, and E. M. Rasel, T 3-interferometer for atoms, Appl.
Phys. B 123, 102 (2017).

023606-7

https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1016/S0168-583X(02)00793-0
https://doi.org/10.1016/S0168-583X(02)00793-0
https://doi.org/10.1016/S0168-583X(02)00793-0
https://doi.org/10.1016/S0168-583X(02)00793-0
https://doi.org/10.1103/PhysRevLett.112.121102
https://doi.org/10.1103/PhysRevLett.112.121102
https://doi.org/10.1103/PhysRevLett.112.121102
https://doi.org/10.1103/PhysRevLett.112.121102
https://doi.org/10.1016/j.nimb.2007.12.010
https://doi.org/10.1016/j.nimb.2007.12.010
https://doi.org/10.1016/j.nimb.2007.12.010
https://doi.org/10.1016/j.nimb.2007.12.010
https://doi.org/10.1088/0953-4075/48/19/195002
https://doi.org/10.1088/0953-4075/48/19/195002
https://doi.org/10.1088/0953-4075/48/19/195002
https://doi.org/10.1088/0953-4075/48/19/195002
https://doi.org/10.1103/PhysRevA.94.033625
https://doi.org/10.1103/PhysRevA.94.033625
https://doi.org/10.1103/PhysRevA.94.033625
https://doi.org/10.1103/PhysRevA.94.033625
https://doi.org/10.1016/0375-9601(89)90537-9
https://doi.org/10.1016/0375-9601(89)90537-9
https://doi.org/10.1016/0375-9601(89)90537-9
https://doi.org/10.1016/0375-9601(89)90537-9
https://doi.org/10.1103/PhysRevLett.67.181
https://doi.org/10.1103/PhysRevLett.67.181
https://doi.org/10.1103/PhysRevLett.67.181
https://doi.org/10.1103/PhysRevLett.67.181
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.3254/978-1-61499-937-9-345
https://doi.org/10.3254/978-1-61499-937-9-345
https://doi.org/10.3254/978-1-61499-937-9-345
https://doi.org/10.3254/978-1-61499-937-9-345
https://doi.org/10.1088/1367-2630/11/4/043032
https://doi.org/10.1088/1367-2630/11/4/043032
https://doi.org/10.1088/1367-2630/11/4/043032
https://doi.org/10.1088/1367-2630/11/4/043032
https://doi.org/10.1103/PhysRevLett.88.100404
https://doi.org/10.1103/PhysRevLett.88.100404
https://doi.org/10.1103/PhysRevLett.88.100404
https://doi.org/10.1103/PhysRevLett.88.100404
https://doi.org/10.1038/nphys701
https://doi.org/10.1038/nphys701
https://doi.org/10.1038/nphys701
https://doi.org/10.1038/nphys701
https://doi.org/10.1103/PhysRevLett.85.4498
https://doi.org/10.1103/PhysRevLett.85.4498
https://doi.org/10.1103/PhysRevLett.85.4498
https://doi.org/10.1103/PhysRevLett.85.4498
https://doi.org/10.1103/PhysRevLett.107.130403
https://doi.org/10.1103/PhysRevLett.107.130403
https://doi.org/10.1103/PhysRevLett.107.130403
https://doi.org/10.1103/PhysRevLett.107.130403
https://doi.org/10.1103/PhysRevLett.100.180405
https://doi.org/10.1103/PhysRevLett.100.180405
https://doi.org/10.1103/PhysRevLett.100.180405
https://doi.org/10.1103/PhysRevLett.100.180405
https://doi.org/10.1103/PhysRevLett.102.240403
https://doi.org/10.1103/PhysRevLett.102.240403
https://doi.org/10.1103/PhysRevLett.102.240403
https://doi.org/10.1103/PhysRevLett.102.240403
https://doi.org/10.1103/PhysRevLett.102.240402
https://doi.org/10.1103/PhysRevLett.102.240402
https://doi.org/10.1103/PhysRevLett.102.240402
https://doi.org/10.1103/PhysRevLett.102.240402
https://doi.org/10.1103/PhysRevLett.115.103001
https://doi.org/10.1103/PhysRevLett.115.103001
https://doi.org/10.1103/PhysRevLett.115.103001
https://doi.org/10.1103/PhysRevLett.115.103001
https://doi.org/10.1038/ncomms3424
https://doi.org/10.1038/ncomms3424
https://doi.org/10.1038/ncomms3424
https://doi.org/10.1038/ncomms3424
https://doi.org/10.1209/0295-5075/105/63001
https://doi.org/10.1209/0295-5075/105/63001
https://doi.org/10.1209/0295-5075/105/63001
https://doi.org/10.1209/0295-5075/105/63001
http://arxiv.org/abs/arXiv:1801.02708
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1007/s00340-017-6655-5
https://doi.org/10.1007/s00340-017-6655-5
https://doi.org/10.1007/s00340-017-6655-5
https://doi.org/10.1007/s00340-017-6655-5


D. COMPARAT PHYSICAL REVIEW A 101, 023606 (2020)

[25] Y. Margalit, Z. Zhou, S. Machluf, Y. Japha, S. Moukouri, and
R. Folman, Analysis of a high-stability Stern–Gerlach spatial
fringe interferometer, New J. Phys. 21, 073040 (2019).

[26] E. P. Liang and C. D. Dermer, Laser cooling of positronium,
Opt. Commun. 65, 419 (1988).

[27] I. D. Setija, H. G. C. Werij, O. J. Luiten, M. W. Reynolds,
T. W. Hijmans, and J. T. M. Walraven, Optical Cooling of
Atomic Hydrogen in a Magnetic Trap, Phys. Rev. Lett. 70, 2257
(1993).

[28] J. K. Stockton, K. Takase, and M. A. Kasevich, Absolute
Geodetic Rotation Measurement Using Atom Interferometry,
Phys. Rev. Lett. 107, 133001 (2011).

[29] I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar,
R. Geiger, and A. Landragin, Continuous Cold-Atom Inertial
Sensor with 1 nrad/sec Rotation Stability, Phys. Rev. Lett. 116,
183003 (2016).

[30] A. Peters, K. Y. Chung, and S. Chu, High-precision gravity
measurements using atom interferometry, Metrologia 38, 25
(2001).

[31] G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C.
Mahadeswaraswamy, and M. A. Kasevich, Testing gravity with
cold-atom interferometers, Phys. Rev. A 91, 033629 (2015).

[32] C. Amole, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche,
E. Butler, A. Capra, C. L. Cesar, M. Charlton, S. Eriksson,
J. Fajans et al., Description and first application of a new
technique to measure the gravitational mass of antihydrogen,
Nat. Commun. 4, 2787 (2013).

[33] Jiafeng Cui, Yaoyao Xu, Lele Chen, Kun Qi, Minkang Zhou,
Xiaochun Duan, and Zhongkun Hu, Time base evaluation for
atom gravimeters, Rev. Sci. Instrum. 89, 083104 (2018).

[34] R. Karcher, A. Imanaliev, S. Merlet, and F. Pereira Dos Santos,
Improving the accuracy of atom interferometers with ultracold
sources, New J. Phys. 20, 113041 (2018).

[35] M. Kritsotakis, S. S. Szigeti, J. A. Dunningham, and S. A.
Haine, Optimal matter-wave gravimetry, Phys. Rev. A 98,
023629 (2018).

[36] K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon,
E. Rasel, C. Schubert, W. P. Schleich, and A. Roura, Taking
atom interferometric quantum sensors from the laboratory to
real-world applications, Nat. Rev. Phys. 1, 731 (2019).

[37] Z. Fu, B. Wu, B. Cheng, Y. Zhou, K. Weng, D. Zhu, Z. Wang,
and Q. Lin, A new type of compact gravimeter for long-term
absolute gravity monitoring, Metrologia 56, 025001 (2019).

[38] Y. Yamazaki and S. Ulmer, CPT symmetry tests with cold p̄ and
antihydrogen, Ann. Phys. 525, 493 (2013).

[39] M. Hori and J. Walz, Physics at CERN’s antiproton decelerator,
Prog. Part. Nucl. Phys. 72, 206 (2013).

[40] K. Kirch and K. S. Khaw, Testing antimatter gravity with
muonium, Int. J. Mod. Phys. Conf. Ser. 30, 1460258
(2014).

[41] V. A. Kostelecký and A. J. Vargas, Lorentz and C P T tests with
hydrogen, antihydrogen, and related systems, Phys. Rev. D 92,
056002 (2015).

[42] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
A. Derevianko, and C. W. Clark, Search for new physics with
atoms and molecules, Rev. Mod. Phys. 90, 025008 (2018).

[43] R. Poggiani, A possible gravity measurement with antihydro-
gen, Hyperfine Interact. 76, 371 (1993).

[44] R. Poggiani, Measurement of the gravitational acceleration of
antihydrogen, Hyperfine Interact. 109, 367 (1997).

[45] A. P. Mills and M. Leventhal, Can we measure the gravitational
free fall of cold Rydberg state positronium? Nucl. Instrum.
Methods Phys. Res., Sect. B 192, 102 (2002).

[46] J. Walz and T. W. Hänsch, A proposal to measure antimat-
ter gravity using ultracold antihydrogen atoms, Gen. Relativ.
Gravitation 36, 561 (2004).

[47] P. Perez and A. Rosowsky, A new path toward gravity experi-
ments with antihydrogen, Nucl. Instrum. Methods Phys. Res.,
Sect. A 545, 20 (2005).

[48] D. B. Cassidy and S. D. Hogan, Atom control and gravity
measurements using Rydberg positronium, Int. J. Mod. Phys.:
Conf. Ser. 30, 1460259 (2014).

[49] P. Perez, D. Banerjee, F. Biraben, D. Brook-Roberge,
M. Charlton, P. Cladé, P. Comini, P. Crivelli, O. Dalkarov,
P. Debu et al., The GBAR antimatter gravity experiment,
Hyperfine Interact. 233, 21 (2015).

[50] P. Crivelli, D. A. Cooke, and S. Friedreich, Experimental con-
siderations for testing antimatter antigravity using positronium
1S-2S spectroscopy, Int. J. Mod. Phys.: Conf. Ser. 30, 1460257
(2014).

[51] T. J. Phillips, A technique for directly measuring the gravita-
tional acceleration of antihydrogen, in Low Energy Antipro-
ton Physics, Proceedings of the Third Biennial Conference,
Bled, Slovenia, 1994, edited by G. Kernel, P. Krian, and M.
Miku (World Scientific Publishing Company, Singapore, 1995),
p. 569.

[52] T. J. Phillips, Measuring the gravitational acceleration of anti-
matter with an antihydrogen interferometer, Hyperfine Interact.
100, 163 (1996).

[53] T. J. Phillips, Antimatter gravity studies with interferometry,
Hyperfine Interact. 109, 357 (1997).

[54] Byung Jin Chang, R. Alferness, and E. N. Leith, Space-invariant
achromatic grating interferometers: Theory, Appl. Opt. 14,
1592 (1975).

[55] M. W. Horbatsch, M. Horbatsch, and E. A. Hessels, A universal
formula for the accurate calculation of hydrogenic lifetimes,
J. Phys. B 38, 1765 (2005).

[56] B. Barrett, A. Bertoldi, and P. Bouyer, Inertial quantum sensors
using light and matter, Phys. Scr., 91, 053006 (2016).

[57] M. Zimmermann, M. A. Efremov, W. Zeller, W. P. Schleich,
J. P. Davis, and F. A. Narducci, Representation-free description
of atom interferometers in time-dependent linear potentials,
New J. Phys. 21, 073031 (2019).

[58] J. Orloff, Handbook of Charged Particle Optics (CRC Press,
Boca Raton, FL, 2008).

[59] D. A. Steck, http://steck.us/alkalidata.
[60] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,

Cambridge, UK, 1994).
[61] H. Friedrich and H. Wintgen, The hydrogen atom in a uni-

form magnetic field–An example of chaos, Phys. Rep. 183, 37
(1989).

[62] J. Pinard, Atoms in static electric and magnetic fields:
The experimental aspect, Atoms in Strong Fields (Springer,
New York, 1990), pp. 17–42.

[63] V. S. Lisitsa, New results on the Stark and Zeeman effects in the
hydrogen atom, Sov. Phys. Usp. 30, 927 (1987).

023606-8

https://doi.org/10.1088/1367-2630/ab2fdc
https://doi.org/10.1088/1367-2630/ab2fdc
https://doi.org/10.1088/1367-2630/ab2fdc
https://doi.org/10.1088/1367-2630/ab2fdc
https://doi.org/10.1016/0030-4018(88)90116-2
https://doi.org/10.1016/0030-4018(88)90116-2
https://doi.org/10.1016/0030-4018(88)90116-2
https://doi.org/10.1016/0030-4018(88)90116-2
https://doi.org/10.1103/PhysRevLett.70.2257
https://doi.org/10.1103/PhysRevLett.70.2257
https://doi.org/10.1103/PhysRevLett.70.2257
https://doi.org/10.1103/PhysRevLett.70.2257
https://doi.org/10.1103/PhysRevLett.107.133001
https://doi.org/10.1103/PhysRevLett.107.133001
https://doi.org/10.1103/PhysRevLett.107.133001
https://doi.org/10.1103/PhysRevLett.107.133001
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1103/PhysRevLett.116.183003
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1103/PhysRevA.91.033629
https://doi.org/10.1103/PhysRevA.91.033629
https://doi.org/10.1103/PhysRevA.91.033629
https://doi.org/10.1103/PhysRevA.91.033629
https://doi.org/10.1038/ncomms3787
https://doi.org/10.1038/ncomms3787
https://doi.org/10.1038/ncomms3787
https://doi.org/10.1038/ncomms3787
https://doi.org/10.1063/1.5039653
https://doi.org/10.1063/1.5039653
https://doi.org/10.1063/1.5039653
https://doi.org/10.1063/1.5039653
https://doi.org/10.1088/1367-2630/aaf07d
https://doi.org/10.1088/1367-2630/aaf07d
https://doi.org/10.1088/1367-2630/aaf07d
https://doi.org/10.1088/1367-2630/aaf07d
https://doi.org/10.1103/PhysRevA.98.023629
https://doi.org/10.1103/PhysRevA.98.023629
https://doi.org/10.1103/PhysRevA.98.023629
https://doi.org/10.1103/PhysRevA.98.023629
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1088/1681-7575/aafcc7
https://doi.org/10.1088/1681-7575/aafcc7
https://doi.org/10.1088/1681-7575/aafcc7
https://doi.org/10.1088/1681-7575/aafcc7
https://doi.org/10.1002/andp.201300060
https://doi.org/10.1002/andp.201300060
https://doi.org/10.1002/andp.201300060
https://doi.org/10.1002/andp.201300060
https://doi.org/10.1016/j.ppnp.2013.02.004
https://doi.org/10.1016/j.ppnp.2013.02.004
https://doi.org/10.1016/j.ppnp.2013.02.004
https://doi.org/10.1016/j.ppnp.2013.02.004
https://doi.org/10.1142/S2010194514602580
https://doi.org/10.1142/S2010194514602580
https://doi.org/10.1142/S2010194514602580
https://doi.org/10.1142/S2010194514602580
https://doi.org/10.1103/PhysRevD.92.056002
https://doi.org/10.1103/PhysRevD.92.056002
https://doi.org/10.1103/PhysRevD.92.056002
https://doi.org/10.1103/PhysRevD.92.056002
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1007/BF02316737
https://doi.org/10.1007/BF02316737
https://doi.org/10.1007/BF02316737
https://doi.org/10.1007/BF02316737
https://doi.org/10.1023/A:1012638408209
https://doi.org/10.1023/A:1012638408209
https://doi.org/10.1023/A:1012638408209
https://doi.org/10.1023/A:1012638408209
https://doi.org/10.1016/S0168-583X(02)00789-9
https://doi.org/10.1016/S0168-583X(02)00789-9
https://doi.org/10.1016/S0168-583X(02)00789-9
https://doi.org/10.1016/S0168-583X(02)00789-9
https://doi.org/10.1023/B:GERG.0000010730.93408.87
https://doi.org/10.1023/B:GERG.0000010730.93408.87
https://doi.org/10.1023/B:GERG.0000010730.93408.87
https://doi.org/10.1023/B:GERG.0000010730.93408.87
https://doi.org/10.1016/j.nima.2005.01.301
https://doi.org/10.1016/j.nima.2005.01.301
https://doi.org/10.1016/j.nima.2005.01.301
https://doi.org/10.1016/j.nima.2005.01.301
https://doi.org/10.1142/S2010194514602592
https://doi.org/10.1142/S2010194514602592
https://doi.org/10.1142/S2010194514602592
https://doi.org/10.1142/S2010194514602592
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1007/s10751-015-1154-8
https://doi.org/10.1142/S2010194514602579
https://doi.org/10.1142/S2010194514602579
https://doi.org/10.1142/S2010194514602579
https://doi.org/10.1142/S2010194514602579
https://doi.org/10.1007/BF02059941
https://doi.org/10.1007/BF02059941
https://doi.org/10.1007/BF02059941
https://doi.org/10.1007/BF02059941
https://doi.org/10.1023/A:1012686324139
https://doi.org/10.1023/A:1012686324139
https://doi.org/10.1023/A:1012686324139
https://doi.org/10.1023/A:1012686324139
https://doi.org/10.1364/AO.14.001592
https://doi.org/10.1364/AO.14.001592
https://doi.org/10.1364/AO.14.001592
https://doi.org/10.1364/AO.14.001592
https://doi.org/10.1088/0953-4075/38/11/016
https://doi.org/10.1088/0953-4075/38/11/016
https://doi.org/10.1088/0953-4075/38/11/016
https://doi.org/10.1088/0953-4075/38/11/016
https://doi.org/10.1088/0031-8949/91/5/053006
https://doi.org/10.1088/0031-8949/91/5/053006
https://doi.org/10.1088/0031-8949/91/5/053006
https://doi.org/10.1088/0031-8949/91/5/053006
https://doi.org/10.1088/1367-2630/ab2e8c
https://doi.org/10.1088/1367-2630/ab2e8c
https://doi.org/10.1088/1367-2630/ab2e8c
https://doi.org/10.1088/1367-2630/ab2e8c
http://steck.us/alkalidata
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1070/PU1987v030n11ABEH002977
https://doi.org/10.1070/PU1987v030n11ABEH002977
https://doi.org/10.1070/PU1987v030n11ABEH002977
https://doi.org/10.1070/PU1987v030n11ABEH002977


LIMITATIONS FOR FIELD-ENHANCED ATOM … PHYSICAL REVIEW A 101, 023606 (2020)

[64] T. Bartsch and T. Uzer, Rydberg Atoms in Strong Static Fields
(Springer, New York, 2006), pp. 274–252.

[65] T. Heupel, M. Mei, M. Niering, B. Gross, M. Weitz, T. W.
Hänsch, and Ch. J. Bordé, Hydrogen atom interferometer with
short light pulses, Europhys. Lett. 57, 158 (2002).

[66] J. E. Palmer and S. D. Hogan, Electric Rydberg-Atom Interfer-
ometry, Phys. Rev. Lett. 122, 250404 (2019).

[67] J. E. Palmer and S. D. Hogan, Matter-wave interferometry
with atoms in high Rydberg states, Mol. Phys. 117, 3108
(2019).

[68] H. J. Silverstone, Perturbation theory of the Stark effect in
hydrogen to arbitrarily high order, Phys. Rev. A 18, 1853
(1978).

[69] C. Bordas and H. Helm, Electric-field ionization of Rydberg
states of H3, Phys. Rev. A 47, 1209 (1993).

[70] S. D. Hogan, Calculated photoexcitation spectra of positronium
Rydberg states, Phys. Rev. A 87, 063423 (2013).

[71] J. Main, M. Schwacke, and G. Wunner, Hydrogen atom in
combined electric and magnetic fields with arbitrary mutual
orientations, Phys. Rev. A 57, 1149 (1998).

[72] E. A. Solovev, Second order perturbation theory for the hydro-
gen atom in crossed electric and magnetic fields, Zh. Eksp. Teor.
Fiz. 85, 109 (1983) [JETP 58, 63 (1983)].

[73] Yu. N. Demkov, B. S. Monozon, and V. N. Ostrovskii, Energy
levels of a hydrogen atom in crossed electric and magnetic
fields, Zh. Eksp. Teor. Fiz. 57, 1431 (1970) [Sov. Phys. JETP
30, 775 (1970)].

[74] V. D. Ovsiannikov and S. V. Goossev, Diamagnetic shift and
splitting of Rydberg levels in atoms, Phys. Scr. 57, 506 (1998).

[75] C. J. Bordé, Atom interferometry using internal excitation:
Foundations and recent theory, in International School of
Physics Enrico Fermi–COURSE CLXXXVIII Atom Interferome-
try, edited by G. M. Tino and M. A. Kasevich (IOS, Amsterdam,
Bologna, 2014), pp. 143–170.

[76] C. J. Bordé, Theoretical tools for atom optics and interferome-
try, C.R. Acad. Sci, Ser. IV: Phys., 2, 509 (2001).

[77] Ch. Antoine and Ch. J. Bordé, Quantum theory of atomic clocks
and gravito-inertial sensors: An update, J. Opt. B: Quantum
Semiclassical Opt. 5, S199 (2003).

[78] B. Dubetsky and M. A. Kasevich, Atom interferometer as a
selective sensor of rotation or gravity, Phys. Rev. A 74, 023615
(2006).

[79] A. Roura, W. Zeller, and W. P. Schleich, Overcoming loss of
contrast in atom interferometry due to gravity gradients, New J.
Phys. 16, 123012 (2014).

[80] S. Kleinert, E. Kajari, A. Roura, and W. P. Schleich,
Representation-free description of light-pulse atom interferom-
etry including non-inertial effects, Phys. Rep. 605, 1 (2015).

[81] A. Roura, Circumventing Heisenberg’s Uncertainty Principle in
Atom Interferometry Tests of the Equivalence Principle, Phys.
Rev. Lett. 118, 160401 (2017).

[82] T. Chanelière, D. Comparat, and H. Lignier, Phase-space-
density limitation in laser cooling without spontaneous emis-
sion, Phys. Rev. A 98, 063432 (2018).

[83] E. H. Kennard, Zur quantenmechanik einfacher bewe-
gungstypen, Z. Phys. A 44, 326 (1927).

[84] J. H. Van Vleck, The correspondence principle in the statistical
interpretation of quantum mechanics, Proc. Natl. Acad. Sci. 14,
178 (1928).

[85] C. Morette, On the definition and approximation of Feynman’s
path integrals, Phys. Rev. 81, 848 (1951).

[86] W. B. Case, Wigner functions and Weyl transforms for pedes-
trians, Am. J. Phys. 76, 937 (2008).

[87] P. Storey and C. Cohen-Tannoudji, The Feynman path integral
approach to atomic interferometry, A tutorial, J. Phys. II 4, 1999
(1994).

[88] K. Bongs, R. Launay, and M. A. Kasevich, High-order inertial
phase shifts for time-domain atom interferometers, Appl. Phys.
A 84, 599 (2006).

[89] A. Bertoldi, F. Minardi, and M. Prevedelli, Phase shift in atom
interferometers: Corrections for nonquadratic potentials and
finite-duration laser pulses, Phys. Rev. A 99, 033619 (2019).

023606-9

https://doi.org/10.1209/epl/i2002-00556-5
https://doi.org/10.1209/epl/i2002-00556-5
https://doi.org/10.1209/epl/i2002-00556-5
https://doi.org/10.1209/epl/i2002-00556-5
https://doi.org/10.1103/PhysRevLett.122.250404
https://doi.org/10.1103/PhysRevLett.122.250404
https://doi.org/10.1103/PhysRevLett.122.250404
https://doi.org/10.1103/PhysRevLett.122.250404
https://doi.org/10.1080/00268976.2019.1607916
https://doi.org/10.1080/00268976.2019.1607916
https://doi.org/10.1080/00268976.2019.1607916
https://doi.org/10.1080/00268976.2019.1607916
https://doi.org/10.1103/PhysRevA.18.1853
https://doi.org/10.1103/PhysRevA.18.1853
https://doi.org/10.1103/PhysRevA.18.1853
https://doi.org/10.1103/PhysRevA.18.1853
https://doi.org/10.1103/PhysRevA.47.1209
https://doi.org/10.1103/PhysRevA.47.1209
https://doi.org/10.1103/PhysRevA.47.1209
https://doi.org/10.1103/PhysRevA.47.1209
https://doi.org/10.1103/PhysRevA.87.063423
https://doi.org/10.1103/PhysRevA.87.063423
https://doi.org/10.1103/PhysRevA.87.063423
https://doi.org/10.1103/PhysRevA.87.063423
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1103/PhysRevA.57.1149
https://doi.org/10.1088/0031-8949/57/4/007
https://doi.org/10.1088/0031-8949/57/4/007
https://doi.org/10.1088/0031-8949/57/4/007
https://doi.org/10.1088/0031-8949/57/4/007
https://doi.org/10.1016/S1296-2147(01)01186-6
https://doi.org/10.1016/S1296-2147(01)01186-6
https://doi.org/10.1016/S1296-2147(01)01186-6
https://doi.org/10.1016/S1296-2147(01)01186-6
https://doi.org/10.1088/1464-4266/5/2/380
https://doi.org/10.1088/1464-4266/5/2/380
https://doi.org/10.1088/1464-4266/5/2/380
https://doi.org/10.1088/1464-4266/5/2/380
https://doi.org/10.1103/PhysRevA.74.023615
https://doi.org/10.1103/PhysRevA.74.023615
https://doi.org/10.1103/PhysRevA.74.023615
https://doi.org/10.1103/PhysRevA.74.023615
https://doi.org/10.1088/1367-2630/16/12/123012
https://doi.org/10.1088/1367-2630/16/12/123012
https://doi.org/10.1088/1367-2630/16/12/123012
https://doi.org/10.1088/1367-2630/16/12/123012
https://doi.org/10.1016/j.physrep.2015.09.004
https://doi.org/10.1016/j.physrep.2015.09.004
https://doi.org/10.1016/j.physrep.2015.09.004
https://doi.org/10.1016/j.physrep.2015.09.004
https://doi.org/10.1103/PhysRevLett.118.160401
https://doi.org/10.1103/PhysRevLett.118.160401
https://doi.org/10.1103/PhysRevLett.118.160401
https://doi.org/10.1103/PhysRevLett.118.160401
https://doi.org/10.1103/PhysRevA.98.063432
https://doi.org/10.1103/PhysRevA.98.063432
https://doi.org/10.1103/PhysRevA.98.063432
https://doi.org/10.1103/PhysRevA.98.063432
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1073/pnas.14.2.178
https://doi.org/10.1073/pnas.14.2.178
https://doi.org/10.1073/pnas.14.2.178
https://doi.org/10.1073/pnas.14.2.178
https://doi.org/10.1103/PhysRev.81.848
https://doi.org/10.1103/PhysRev.81.848
https://doi.org/10.1103/PhysRev.81.848
https://doi.org/10.1103/PhysRev.81.848
https://doi.org/10.1119/1.2957889
https://doi.org/10.1119/1.2957889
https://doi.org/10.1119/1.2957889
https://doi.org/10.1119/1.2957889
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1051/jp2:1994103
https://doi.org/10.1007/s00340-006-2397-5
https://doi.org/10.1007/s00340-006-2397-5
https://doi.org/10.1007/s00340-006-2397-5
https://doi.org/10.1007/s00340-006-2397-5
https://doi.org/10.1103/PhysRevA.99.033619
https://doi.org/10.1103/PhysRevA.99.033619
https://doi.org/10.1103/PhysRevA.99.033619
https://doi.org/10.1103/PhysRevA.99.033619

