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Full distribution of the superfluid fraction and extreme value statistics
in a one-dimensional disordered Bose gas
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The full statistical distribution of the superfluid fraction characterizing one-dimensional Bose gases in random
potentials is discussed. Rare configurations with extreme fluctuations of the disorder potential can fragment
the condensate and reduce the superfluid fraction to zero. The resulting bimodal probability distribution for the
superfluid fraction is calculated numerically in the quasi-one-dimensional mean-field regime of ultracold atoms
in laser speckle potentials. Using extreme value statistics, an analytical scaling of the zero-superfluid probability
as a function of disorder strength, disorder correlation length, and system size is presented. It is argued that
similar results can be expected for point-like impurities and that these findings are in reach for present-day
experiments.
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I. INTRODUCTION

The fate of a superfluid in the presence of disorder is a fa-
mous problem in condensed-matter physics that was brought
into focus by the seminal works of Giamarchi and Schulz [1]
and Fisher et al. [2] three decades ago. While in the clean
situation an interacting fluid of bosons at zero temperature
is a perfect superfluid [3], breaking translation invariance
reduces the superfluid fraction and eventually leads to an
insulating state, the Bose glass phase [2]. These concepts,
originally pioneered with superfluid 4He in porous media [4],
were revived with dilute ultracold gases in optical disorder
[5,6]. In the regime of weakly interacting quantum fluids, the
Bogoliubov approach improved considerably our understand-
ing of the superfluid fraction [7–15], and its link with the
condensate fraction [16,17] in disorder, as well as provided
various techniques to draw the phase diagram of such systems
[18–22].

When dealing with disordered systems, a vital question
is whether its physical properties can be fully characterized
in terms of ensemble-averaged quantities. Most of the time
this is the case and one can assume, for instance, that the
average superfluid fraction is a good indicator of quantum
transport properties of the bulk system. In such a situation,
typical and useful observables are Gaussian distributed with
decreasing relative fluctuations as the system size increases
and thus become self-averaging in the thermodynamic limit.
However, this need not always be the case, and the full
probability distribution may be required to understand the
physics of the strongly disordered regime. One example is
the superfluid-insulator transition of disorder bosons in one
dimension where the superfluid fraction is governed by weak
links in the picture of Josephson-junction arrays [23–30].
In that case the bulk physics is no longer controlled by
elementary statistical properties of the disorder such as the
lowest moments, but rather by its extreme value statistics.

Another interesting example is the critical velocity of one-
dimensional Bose-Einstein condensates where the breakdown
of superfluidity is also driven by the extreme value statistics
of the random environment [31–33].

In this article, we discuss the statistical distribution of
the superfluid fraction characterizing one-dimensional (1D)
Bose-Einstein condensates (BEC) at zero temperature in
a conservative disorder potential. For small enough and
bounded disorder, the superfluid fraction becomes Gaussian
distributed and self-averaging in the thermodynamic limit.
However, unbounded disorder almost surely fragments the
condensate and thus destroys superfluidity when the system
size is large enough; Fig. 1 illustrates this behavior. Con-
sequently, for experimentally realistic, intermediate system
sizes, the full distribution of the superfluid fraction takes a
bimodal form (a feature found also in the Josephson-junction
model by real-space renormalization-group and quantum
Monte Carlo calculations [34]): A rather broad peak next to
unit superfluid fraction describes standard superfluid configu-
rations, while a rather sharp peak at zero superfluid fraction
describes fragmented systems. In this case, obviously, the
superfluid fraction is no longer well characterized by its
lowest moments, mean, and standard deviation, alone. Rather,
the probability to find a fragmented instead of a superfluid
configuration has to be evaluated by using extreme value
statistics.

While the effect of bounded disorder has been discussed
rather extensively in the large body of literature devoted to
tracing the phase boundaries of disordered interacting bosons,
the impact of unbounded disorder in finite-size systems is less
well known, in spite of its obvious experimental relevance.
Therefore, this work concentrates on the scaling of the super-
fluid probability distribution with system size for supposedly
weak, but unbounded disorder. The paper is organized as
follows: In Sec. II we specify the model and describe our
main qualitative observation, the rise of a bimodal superfluid
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FIG. 1. Repulsive laser speckle potential U (x) with average
strength 〈U 〉 = 0.2μ (bottom, red) and resulting condensate density
n(x) relative to the mean density n0 (top, black). The potential corre-
lation length �c = 10ξ exceeds the condensate healing length ξ such
that the density is strongly suppressed by high potential peaks. In this
particular configuration, an extreme potential fluctuation fragments
the condensate, resulting in a vanishing superfluid fraction.

distribution. Section III presents a quantitative result, namely,
a scaling of the normal-fraction probability with system size,
which becomes exact in the Thomas-Fermi limit. Analogous
results are expected for point-like disorder created by isolated
impurities, as explained in Sec. IV. In Sec. V we conclude
and discuss an experimental strategy to observe the physics
discussed along the paper.

Additionally, Appendix A discusses a few properties of the
1D superfluid fraction, while Appendix B contains numerical
as well as perturbative analytical results for the mean super-
fluid fraction and its variance in spatially correlated potentials
that we deem useful in the weak-disorder regime.

II. THE SUPERFLUID FRACTION AND
ITS PROBABILITY DISTRIBUTION

We consider a one-dimensional Bose-Einstein condensate
at rest and close to zero temperature, i.e., at temperatures low
enough that thermal excitations play a negligible role. Cer-
tainly, at low density, quantum fluctuations destroy the phase
coherence and long-range order that characterize interacting
Bose-Einstein condensates according to the Penrose-Onsager
criterion [3]. In the opposite limit of large density, trans-
verse excitations are populated and a quasi-one-dimensional
description fails. But there is a wide range of parameters
where quasi-1D mean-field theory is accurate [35–37]. In this
setting, the ground-state BEC wave function ψ (x) solves the
Gross-Pitaevskii equation [38]

μψ (x) =
[
− h̄2

2m

d2

dx2
+ U (x) + g|ψ (x)|2

]
ψ (x). (1)

Here, μ is the chemical potential, canonically conjugated
to the number of atoms N that we take to be fixed inside
the system of total length L. ψ determines the BEC density
n(x) = |ψ (x)|2, U (x) is a static external potential, and g is
the contact-interaction strength between atoms. Without an
external potential, the density n0 = N/L is uniform, and the
chemical potential μ0 = gn0.

This work studies the impact of disorder, i.e., the effect of
a random potential U (x) on superfluidity; 〈· · · 〉 denotes the
ensemble average over disorder configurations. Particularly
relevant for the present work, both experimentally and con-
ceptually, are continuous laser speckle potentials [6,39,40].
We focus on repulsive potentials generated by laser light that
is blue-detuned from an atomic optical resonance. Its local
potential values U (x) have a one-point exponential distribu-
tion p(U ) = exp[−U/U0]�(U )/U0 that is unbounded from
above. In contrast, the potential values are never negative,
thence the Heaviside distribution �(·). At fixed number of
atoms, the one-point average 〈U (x)〉 = U0 is absorbed by
the chemical potential such that the relevant random process
U (x) − U0 �→ U (x) has zero mean 〈U (x)〉 = 0, and the lowest
possible potential value is shifted to −U0.

Laser speckle potentials, by construction from the under-
lying light field, are also spatially correlated. The spatial
covariance can be written 〈U (x)U (x + y)〉 = U 2

0 C(y/�c), with
a correlation function C(z) decaying from C(0) = 1 to 0,
and �c the correlation length. In the following, we use for
definiteness a Gaussian correlation C(z) = exp(−z2/2). We
have checked that our results remain valid for other models
of disorder as discussed below. In particular, our conclusions
do not depend on the precise shape of the correlation function
C(z) nor the on-site distribution p(U ), as long as the latter is
unbounded, allowing for arbitrarily large, if rare, fluctuations.

The object of this work is the superfluid fraction fs, the
fraction of atoms supporting frictionless flow. Its complement,
fn = 1 − fs, is the normal fraction that flows dissipatively; it
is zero in a homogeneous BEC at zero temperature. Both finite
temperature (by virtue of quasiparticle creation) and spatial
inhomogeneity (by breaking translation invariance) create a
normal component and reduce the superfluid fraction. As
a functional of the density n(x) inside a quasi-1D tube of
length L, the superfluid fraction reads [22,26,41] (see also
Appendix A)

fs =
[

n0

L

∫ L

0

dx

n(x)

]−1

. (2)

The maximum value fs = 1 is reached for a uniform con-
densate n(x) = n0, and the minimum value fs = 0 occurs if
the density vanishes at some point, i.e., if the condensate is
fragmented. Figure 1 shows such a situation, resulting from
the numerical solution of Eq. (1) in a particular case with a
large potential peak.

More quantitatively, Fig. 2 shows numerically generated
probability distributions for the superfluid fraction (2) for
rather weak speckle disorder of strength U0 = 0.2μ and corre-
lation length �c = 10ξ (μ = h̄2/mξ 2 and ξ are the bulk con-
densate chemical potential and healing length, respectively),
for different system sizes L. Obviously, the larger the system,
the higher the probability of finding a fragmented condensate,
and so a conspicuous peak rises at zero superfluid fraction.
As the probability distribution becomes bimodal, it is no
longer well characterized by its mean and standard variation,
displayed in the panel below the histograms. Instead, the prob-
ability to find fragmented condensates with zero superfluid
fraction has to be evaluated by using extreme value statistics.

023605-2



FULL DISTRIBUTION OF THE SUPERFLUID FRACTION … PHYSICAL REVIEW A 101, 023605 (2020)

FIG. 2. Probability distribution of the superfluid fraction fs,
Eq. (2), for different system sizes L (from top to bottom and right to
left as indicated) in laser speckle disorder of strength U0 = 0.2μ and
correlation length �c = 10ξ (μ and ξ = h̄/

√
mμ are the chemical

potential and healing length, respectively). With growing system
size, the full distribution is no longer well represented by average and
standard deviation, shown in the lower part of the figure. Instead, a
conspicuous peak rises at fs = 0, signaling the occurrence of extreme
value events as exemplified in Fig. 1.

III. SCALING OF THE ZERO-SUPERFLUID PROBABILITY

The full probability distributions in Fig. 2 contain a zero-
superfluid peak, symbolically p0( fs) = ηδ( fs), with a weight
η that can only depend on three dimensionless parameters,
namely, disorder strength U0/μ, disorder correlation length
�c/ξ , and system size L/ξ . A rather transparent functional
dependence on disorder strength and system size is found in
the so-called Thomas-Fermi (TF) limit �c/ξ → ∞ where the
BEC density mirrors the external potential,

nTF(x) = μ − U (x)

g
�[μ − U (x)], (3)

with � being the Heaviside step function. This (quasiclas-
sical) density is strictly zero at all points where the exter-
nal potential exceeds the chemical potential μ = μTF, which
needs to be tuned to ensure particle-number conservation for
each realization of U (x). In the simple TF approximation, it is
rather straightforward to estimate the zero-superfluid weight
η. Indeed, one can now link its complement 1 − η to the
probability that the condensate is not fragmented, i.e., that
the disorder potential nowhere exceeds the chemical potential:
1 − η = Prob(∀ x ∈ [0, L] : U (x) � μ).

To progress, we approximate the smoothly correlated dis-
order potential by a discrete set of B = αL/�c independent
random variables Ui with the same distribution p(U ), as
discussed in Ref. [33] following extreme value statistics of
correlated random continuous variables [42,43]. The coef-
ficient α of order 1 depends only weakly on the disorder
distribution and will be fixed later. The probability of all B
variables Ui being smaller than μ then is

1 − η = Prob(∀ i = 1, . . . , B : Ui � μ) = P(μ)B, (4)

where P(x) = ∫ x
−∞ dU p(u) is the cumulative one-point

distribution. For a blue-detuned, zero-centered speckle

potential with p(U ) = U −1
0 exp[−(U + U0)/U0]�(U + U0),

the expected zero-superfluid weight then amounts to

η = 1 − [1 − exp (−1 − μ/U0)]B. (5)

The numerical prefactor in the number B = αL/�c of iid
variables can be fixed by fitting this prediction to the result
of a numerical calculation using the TF density (3) in Eq. (2)
for various values of U0/μ and L/�c

Figure 3 panel A shows excellent agreement between this
analytical prediction and numerical TF results for α = 0.86.
Quantitative agreement is reached with the GP results (full
symbols) when taking into account the smoothing of the
GP density compared with the TF approximation. Indeed,
for finite values of �c/ξ , the TF density is too rough an
approximation to describe the fine details of the density near
its zeros where quantum corrections induce finite, if small
densities even in the classically forbidden regions [44,45], and
thus cannot be expected to give the superfluid fraction with
quantitative precision. By using μc = γμ with γ of order
unity as a slightly larger critical value for the threshold in
Eqs. (4) and (5), we find excellent agreement also between
the GP data and the scaling (5), as shown in both panels of
Fig. 3. The TF limit with γ = 1 is (slowly) reached as the ratio
�c/ξ increases. Independently of the numerical fit quality, the
extreme value statistics argument behind Eq. (5) essentially
captures the physics of the zero-superfluid weight. Also, we
have checked that analogous results apply to various local
distributions p(U ) and correlation functions, as long as p(U )
is unbounded and correlations decay faster than a logarithm
[33,42].

IV. POINT-LIKE IMPURITIES

When the correlation length is reduced, away from the TF
limit and toward the uncorrelated-disorder limit, the screening
of disorder by interaction could be expected to minimize
the extreme value effects and lead again to a self-averaging
situation. However, the extreme value argument stays valid
and still describes the destruction of superfluidity in the ther-
modynamic limit, as we show in this section in the extreme
opposite case of completely uncorrelated disorder. We start
with a model of point-like impurities:

Uδ (x) = λμξ

M∑
i=1

δ(x − xi ). (6)

The parameter λ describes each impurity’s strength rela-
tive to the chemical potential. The positions xi are iid ran-
dom variables uniformly distributed in [0, L] with density
ν = M/L taken to be constant in the thermodynamic limit
L, M → ∞. Such a potential is uncorrelated, with covariance
〈Uδ (x)Uδ (y)〉 − 〈Uδ〉2 = (λμξ )2νδ(x − y).

Let us first calculate the disorder-induced normal fraction
in the weak-disorder limit, where perturbation theory [12]
yields

fn = 1

2ξμ2L

∫
[0,L]2

dxdy U (x)U (y)K(x − y), (7)
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(a) (b)

FIG. 3. Fraction η of zero-superfluid configurations. (a) η as function of disorder strength U0/μ for different reduced correlation lengths
�c/ξ in systems of length L = 64�c. Open symbols are numerical results using the TF density (3) in Eq. (2), in excellent agreement with
the predicted scaling (5) using B = 0.86L/�c effectively iid random variables. Quantitative agreement with the GP results is reached when
one accounts for smoothing of the density near its zeros by using μc = γμ in Eq. (5) with γ as noted in the legend. (b) η as a function of
the system length L in units of the disorder correlation length �c = 10ξ for different disorder strengths U0/μ. Filled symbols result from a
numerical solution of the GP Eq. (1) for 103 disorder configurations. Full lines are the analytical prediction (5) with α = 0.86 and γ = 1.28.

with K(z) = (1 + 2|z|/ξ ) e−2|z|/ξ . For the point-like impuri-
ties (6) this reduces to

fn = λ2ξ

2L

M∑
i, j=1

K(xi − x j ). (8)

In the scarce-impurity limit ξν 
 1, the dominant part comes
from the diagonal terms i = j and one recovers the result
〈 fs〉 = 1 − 1

2λ2ξν of Huang and Meng [7] for the thermody-
namic limit.

It is instructive to look at a large, but finite system of length
L � ξ . The expectation value of the superfluid fraction is
〈 fs〉 = 1 − 1

2λ2ξν[1 − 2ξν + 2ξ/L], and its variance � f 2
s =

5
8 (λ2ξν)2ξ/L. Hence the fluctuations are predicted to decay
as 1/L in seeming accordance with the central limit theorem,
such that fs would be self-averaging.

However, this perturbative prediction neglects rather im-
probable, but highly relevant disorder configurations where
several impurities cluster together. Indeed, when distributed
independently, impurities can be located in close vicinity,
combining their strengths and strongly depleting both the
local density and superfluidity [33]. As the system size grows,
impurity clusters that are large enough to fragment the con-
densate become increasingly likely, thereby contributing to
the zero-superfluid weight. Obviously such a situation is be-
yond perturbation theory, and more sophisticated techniques
involving extreme value statistics are required.

Qualitatively, the argument runs as follows: If k impurities
cluster within a healing length ξ or less, the condensate
effectively sees a single impurity of strength kλ. Divide then
the disordered region into B = L/ξ boxes. The condensate
will not be fragmented if the maximum number of impurities
inside each box, K = max{k1, k2, . . . , kB}, is smaller than
a certain critical value Kc = γ /λ. Here γ is a number of
order unity that depends on the threshold below which fs is
counted as zero. Based on the single-impurity problem, one
can estimate γ to be around four or five in order to have
fs � 0.05. In the framework of this simple picture, which was
proven to be accurate [33], the probability of finding k out of

M impurities in any box is π (k) = (M
k )pk (1 − p)M−k , where

p = 1/B. In the limit of a wide disordered region (L → ∞),
the product pM = ξν =: ζ remaining constant, this binomial
law can be approximated by a Poisson law: π (k) � e−ζ ζ k/k!.
In this limit the variables ki are uncorrelated, and [compare
with Eq. (4)]

Prob(∀ i = 1, . . . , B : ki � Kc) = �(Kc)B, (9)

where �(K ) = �(K + 1, ζ )/K! is the cumulative Poisson
distribution, with �(x, ζ ) being the incomplete gamma func-
tion. The fraction of disorder realizations where the con-
densate is fragmented and no longer superfluid thus is the
complement

η = 1 − �(Kc)B. (10)

It must be kept in mind, however, that the typical value of
K grows very slowly with L (typically logarithmically), so
that strong effects of impurity clusters can only be observed
in very large systems. For instance, in order to find η = 0.1
with ξν = 0.3 and λ = 0.8, Eq. (10) requires a system of size
L � 1.5 × 105ξ , which is out of reach for our current numeri-
cal calculations. Nevertheless, point-like impurities have the
same qualitative effect on superfluid fraction statistics as a
smooth speckle potential.

V. CONCLUSION

In the 1D-mean-field regime, we have evaluated the impact
of random potentials on the full statistical distribution of the
superfluid fraction fs. As the system size L grows, large fluctu-
ations of an unbounded potential like laser speckle or clusters
of impurities become more and more probable and eventually
fragment the BEC. In such a situation, the full probability
distribution of fs is bimodal and the mean superfluid fraction
is no longer the only relevant quantity characterizing the
physical properties. A peak at fs = 0 develops as the hallmark
of fragmentation and grows with system size.

This result is of course peculiar to one-dimensional sys-
tems. While in one dimension there is no BEC in the
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thermodynamic limit due to quantum fluctuations [38], a
proper analysis of these fluctuations [46] shows that the co-
herence length of the quasicondensate is generally larger than
a few centimeters whereas the typical size of an atomic BEC
is less than a few hundred microns and therefore phase coher-
ence is preserved in disorder, as demonstrated experimentally
[32]. Superfluidity can then be destroyed before Bose-Einstein
condensation. For a speckle potential the correlation length
can easily be tuned to be of the order of one or several
micrometers and the healing length around 0.2 μm. If the
cloud size is of about a few hundred microns, the situation
described in this paper is easily within reach.

The one-dimensional Gross-Pitaevskii equation is only a
relatively simple mean-field approximation of a quasi-1D
Bose gas. Although most of the results presented in this paper
should be qualitatively correct, one may wonder about their
validity in the presence of quantum fluctuations and transverse
degrees of freedom. It is most likely that quantum fluctuations
will not help to preserve superfluidity but will certainly affect
quantitatively the results as they become more and more
important, for instance, away from the weakly interacting
limit. Moreover, the physics discussed in this work being
purely one dimensional, it would be important to understand
how the results are affected in the one-dimensional to three-
dimensional crossover even in the weakly interacting limit.
Another question concerns the role of localization landscapes
[47] in the presence of weak interactions and how they would
drive a superfluid to a localized transition in dimension two
or three. We leave these interesting questions for further
research.
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APPENDIX A: SUPERFLUID FRACTION
IN ONE DIMENSION

Let φ(x) = √
n(x)eiϕ(x) be the mean-field order parameter

of a 1D Bose gas, with n(x) = |φ(x)|2 the stationary conden-
sate density, and ϕ(x) a local phase. The phase gradient de-
termines the superfluid velocity as v(x) = (h̄/m)∂xϕ(x). The
superfluid current density is j(x) = n(x)v(x). This current
density is actually independent of position x because of the
continuity equation (mass conservation) ∂t n + ∂x j = 0, such
that v(x) = j/n(x) everywhere.

Consider now a 1D section of finite length L; the total
phase twist accumulated from left to right is

�ϕ =
∫ L

0
dx∂xϕ(x) = m

h̄

∫ L

0
dx

j

n(x)
. (A1)

In the limit �ϕ → 0, the proportionality factor between phase
twist and current defines the superfluid density ns:

j = ns
h̄�ϕ

Lm
. (A2)

The two identities (A1) and (A2) determine the inverse super-
fluid density to

n−1
s =

∫ L

0

dx

L

1

n(x)
. (A3)

At fixed total atom number N = ∫ L
0 dxn(x) = Ln0, the inverse

superfluid fraction f −1
s = n0/ns then is

f −1
s =

∫ L

0

dx

L

n0

n(x)
. (A4)

Various derivations of this result have been published
[22,26,41], none of them quite as short or elementary, it
seems.

The superfluid fraction is bounded by fs � 1 because it
is the continuum limit of the harmonic mean of random
variables yi = n(xi )/n0 at discrete points xi [21]. The bound
fs � 1 also follows from the Cauchy-Schwarz inequality
( f |g)2 � ( f | f )(g|g) for the L2([0, L]) scalar product ( f |g) =
L−1

∫ L
0 dx f (x)g(x) by using f (x) = √

n0/n(x) and g(x) =
f (x)−1 = √

n(x)/n0 such that ( f | f ) = f −1
s while (g|g) = 1 =

( f |g).
The maximum value fs = 1 is obtained for a uniform con-

densate [n(x) = n0], and the minimum value fs = 0 occurs if
the density vanishes at some point at least as n(x) ∼ |x − x0|p,
p � 1, i.e., if the condensate is fragmented.

APPENDIX B: AVERAGE SUPERFLUID FRACTION
AND ITS VARIANCE FOR WEAK DISORDER

1. Gaussian random process, Gaussian correlation

Within the perturbative regime, it is possible to obtain
analytical results for Gaussian correlated, Gaussian random
processes in the interesting limit of large systems L � �c, ξ .
Using 〈U (x)U (x + y)〉 = U 2

0 exp[−y2/(2�2
c )] in Eq. (7), the

mean normal fraction reads

〈 fn〉 = σ 2zc

[
2zc +

√
π

2

(
1 − 4z2

c

)
e2z2

c erfc(
√

2zc)

]
, (B1)

where zc = �c/ξ and σ = U0/μ. In the TF limit zc � 1 of
slowly varying potentials it reduces to 〈 fn〉 = σ 2. In the white-
noise limit zc 
 1, it is 〈 fn〉 = σ 2

√
π
2 zc. The upper panel of

Fig. 4 compares the results of the numerical solution with
the perturbative prediction (B1) for various but small disorder
amplitudes. The agreement is very good as expected in this
regime.

Assuming a Gaussian process one can also compute the
variance of fn (which is equal to the variance of fs) using
Wick’s theorem,

〈U1U2U3U4〉Gauss = 〈U1U2〉〈U3U4〉 + 〈U1U3〉〈U2U4〉
+ 〈U1U4〉〈U2U3〉, (B2)

where Ui = U (xi ). This yields

� f 2
n = σ 4 ξ

12L
z2

c

{
4
√

πzc
(
15 − 32z2

c + 64z4
c

)

+πe4z2
c
[
15 − 8z2

c

(
9 − 24z2

c + 64z2
c

)]
erfc(2zc)

}
,

(B3)
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c/ξ
3210

0

0.2
0

1

Gaussian
L/ξ 400=

σ 0.04=

σ 0.06=
σ 0.1=

f n
/σ

2
Δ

f n
/σ

2

FIG. 4. Mean normal fraction 〈 fn〉 and its standard deviation � fn

of a quasi-1D condensate in a Gaussian potential of length L = 400ξ

(ξ is the healing length), plotted as function of the reduced cor-
relation length zc = �c/ξ for various disorder strengths σ = U0/μ.
The continuous blue lines are the analytical results (B1) and (B3),
respectively, and the dashed lines are the associated asymptotic
expressions (see main text).

which simplifies for lc 
 ξ to � f 2
n = 5π

4
�2

cσ
4

Lξ
and for �c � ξ

to � f 2
n = 2

√
πσ 4�c

L . These results are compared with numerical
calculations in the lower panel of Fig. 4, again with excellent
agreement.

Thus, at the level of perturbation theory, the standard
deviation of fs scales as 1/

√
L, which suggests that the super-

fluid fraction is indeed a self averaging quantity, which then
should, by virtue of the central limit theorem, be Gaussian
distributed in a large enough system. However, as pointed
out in the main part of the paper, in large enough systems,
extreme events fragment the condensate and thus induce a
zero-superfluid weight in the full probability distribution that
cannot be accounted for by perturbation theory.

2. Laser Speckle Potential, Gaussian Correlation

For Gaussian-correlated, zero-centered laser speckle, the
mean normal fraction is also given by Eq. (B1). For the

c/ξ
3210

0

0.4
0

1

Speckle
L/ξ 800=

σ 0.04=

σ 0.05=
σ 0.06=

f n
/σ

2
Δ

f n
/σ

2

FIG. 5. Mean normal fraction 〈 fn〉 and standard deviation � fn

as a function of the correlation length �c for various values of the
disorder strength σ of the speckle potential of length L = 800ξ (ξ is
the healing length). The continuous blue line in the upper panel is the
analytical result (B1) and the dashed lines are asymptotic expressions
(see main text).

variance, however, we expect differences because only the
electric-field amplitude of fully developed laser speckle is
a Gaussian random process. The optical potential acting
on the atoms is proportional to the intensity, and therefore
corrections to Wick’s theorem for higher than second-order
moments have to be included [39,40]. For the expectation
value of a product of four potential values Ui = U (xi ) = |Ei|2,
one has

〈U1U2U3U4〉Speckle = 〈U1U2U3U4〉Gauss + 2Re{γ12γ23γ34γ41

+ γ12γ24γ43γ31 + γ13γ32γ24γ41}, (B4)

where γi j = 〈E∗
i E j〉 = U0 exp[−(xi − x j )2/4l2

c ]. Inserting
this in the perturbative expression (7) allows us to compute
the standard deviation of the superfluid fraction for such a
potential. We have not found a closed-form expression for
all contributions, but the agreement between the perturbative
calculation and the numerical data displayed in Fig. 5
is quite satisfactory. In the TF limit �c � ξ , one finds
� f 2

n = σ 4

L 4
√

π�c(1 + √
2) and, in the white-noise limit

�c 
 ξ , one finds � f 2
n = σ 4

Lξ
�2

c{ 5π
4 + 3(2π )3/2 �c/ξ}.
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