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Geometry-induced entanglement in a mass-imbalanced few-fermion system
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Many-body systems undergoing quantum phase transitions reveal substantial growth of nonclassical correla-
tions between different parties of the system. This behavior is manifested by characteristic divergences of the
von Neumann entropy. Here we show that very similar features may be observed in one-dimensional systems of
a few strongly interacting atoms when the structural transitions between different spatial orderings are driven by
a varying shape of an external potential. When the appropriate adaptation of the finite-size scaling approach
is performed in the vicinity of the transition point, few-fermion systems display a characteristic power-law
invariance of divergent quantities.
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I. INTRODUCTION

Since the famous paper by Bell [1] and its subsequent
experimental confirmation [2], properties of nonclassical cor-
relations (quantum entanglement) and their existence in dif-
ferent quantum systems have been studied extensively. From
a theoretical point of view, the importance of entanglement
comes mainly from the fact that it is recognized as one of the
key resources for efficient quantum computations and quan-
tum information processing [3]. Experimentally, due to ex-
isting experimental possibilities, these studies are mainly fo-
cused on properties of entangled photons [4], ultracold atomic
systems [5], or correlated spintronic systems [6]. Properties
of quantum entanglement also have fundamental importance
when interacting many-body systems close to quantum phase
transitions are considered [7]. Almost 20 years ago it was
shown that nonclassical correlations between different parties
of a many-body system undergoing quantum transition rapidly
change, i.e., structural changes of the many-body state in the
vicinity of the transition point are accompanied by charac-
teristic divergences of the von Neumann entropy quantifying
quantum entanglement [8–13]. This observation was recently
utilized to produce entanglement on-demand in a determinis-
tic way by driving the system through the transition [14]. Not
only does coherent engineering and control of entanglement
in the systems encounter difficulties but also direct methods of
measuring many-body entanglement are usually very complex
and utilize a large number of resources [15–18]. However,
some indirect ways to determine multiparticle entanglement
through susceptibilities are theoretically proposed [19,20].

Quantum transitions are typically understood as divergent
changes in the ground state of many-body systems in the
thermodynamic limit, i.e., when the system’s size (number
of particles, spatial width, etc.) tends to infinity along with
intensive parameters keeping fixed. A typical example is an
infinite chain of locally coupled spins in a transverse magnetic
field. In the vicinity of the transition point, any finite-size
chain behaves analytically, but some quantities change more

rapidly for longer chains. Appropriate scaling shows that in
the limit of the infinite size of the system these quantities are
exponentially divergent with well-established critical expo-
nents. The microscopic explanation of such behavior is served
in the framework of the renormalization group theory [21].
All this means that by studying properties of finite-size chains
with growing sizes one performs appropriate extrapolation of
obtained results and tries to establish appropriate relations for
the system being in the thermodynamic limit.

In fact, the limit in which critical behavior of the many-
body system is manifested by divergent quantities is related
to the number of accessible microscopic configurations rather
than its spatial sizes or number of particles. This means
that the critical behavior can be also considered in systems
containing a finite number of particles allowed to occupy an
infinite number of configurations. For example, as recently
argued in [22], strongly interacting systems of a few ultracold
fermions of different mass confined in one-dimensional traps
may undergo critical transitions when external trapping is adi-
abatically changed. In these cases, the thermodynamic limit
(infinite number of accessible configurations) is achieved by
the limit of infinite repulsions. Simply, in this limit, an infinite
number of fundamentally different Fock states essentially
contributes to the ground state of the system. As shown in
[22], in this limit the ground state undergoes a transition
between different spatial distributions of components. This
behavior is manifested by divergences of the second moment
of magnetization (the difference between density distributions
of the heavy and light component).

In this paper, we aim to shed some additional light on
the mentioned transition in few-fermion systems by analyzing
potential divergences of nonclassical correlations. In this way,
we want to draw a much closer analogy between critical
transitions in systems containing a finite number of particles
(but having infinitely many configurations accessible) with
standard quantum phase transitions occurring in systems of
infinite size. Since few-fermion systems of equal mass atoms
have been engineered almost for a decade [23–25] and there
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are experimental setups where mass-imbalanced fermionic
mixtures with a large number of particles are realized [26–30],
we believe that the path of exploration proposed here may be
important when the next generation of experiments of mass-
imbalanced few-fermion mixtures will be performed [31,32].

Our work is organized as follows. In Sec. II we describe
the system under consideration. In Sec. III, to make a whole
story as clear as possible, we shortly recall previous results
on critical transition in few-fermion systems. In Secs. IV
and V, focusing on particularly chosen examples of Li-K
fermionic mixtures, we analyze the critical transition in terms
of the single-particle and the intercomponent entanglement
entropies, respectively. Then in Sec. VI, we explain that the
discussed critical transition and the behavior of entanglement
entropies in its vicinity are very generic for few-fermion
mixtures, independent of mass difference, number of parti-
cles, and their distribution between components. Finally, we
conclude in Sec. VII. At this point we want also to emphasize
that all results presented in this work should be considered to-
gether with accompanying Supplemental Material [33], where
results complementary to the results presented in the main text
are displayed. Just for clarity of the discussion, we move these
additional results out of the main text.

II. THE SYSTEM STUDIED

In this paper we study the ground-state properties of a
two-component mixture of a few ultracold fermions of mass
mσ (σ ∈ {A, B} indicates the component) confined in a one-
dimensional trap with varying shape. The Hamiltonian of the
system in the second quantization formalism has a form

Ĥ =
∑

σ∈{A,B}

∫
dx �̂†

σ (x)

[
− h̄2

2mσ

d2

dx2
+ Vσ (x)

]
�̂σ (x)

+ g
∫

dx �̂
†
A(x)�̂†

B(x)�̂B(x)�̂A(x), (1)

where g is the effective interaction strength between opposite
component particles, and �̂σ (x) is a fermionic field operator
annihilating a particle from the component σ at position x. It
obeys standard fermionic anticommutation relations

{�̂σ (x), �̂†
σ ′ (x′)} = δσσ ′δ(x − x′), (2a)

{�̂σ (x), �̂σ ′ (x′)} = 0. (2b)

Note that the Hamiltonian (1) commutes independently with
operators of a number of atoms N̂σ = ∫

dx �̂†
σ (x)�̂σ (x).

Therefore, properties of the ground state can be studied inde-
pendently for given numbers of atoms in both components NA

and NB. Here, to make the whole analysis as clear as possible,
we focus on the problem of NA + NB = 4 particles with dif-
ferent distributions between the components. However, gen-
eralization to a higher number of particles is straightforward.
As an example, the case of NA + NB = 6 particles is briefly
discussed in Sec. VI.

To find the many-body ground state |G〉 of the Hamiltonian
(1) we perform straightforward diagonalization of its matrix
representation in the Fock basis of the noninteracting system.
First, for a given external confinement Vσ (x), we numerically
solve the corresponding single-particle eigenproblems for

each component σ ,[
− h̄2

2mσ

d2

dx2
+ Vσ (x)

]
ϕ

(σ )
i (x) = E (σ )

i ϕ
(σ )
i (x), (3)

and find single-particle eigenenergies E (σ )
i and eigenfunctions

ϕ
(σ )
i (x). Then, for a fixed number of particles NA and NB, the

Fock basis is constructed from K , the lowest orbitals. Each
Fock basis element (a Fock state) is a simple product of two
Slater determinants of NA (NB) orbitals corresponding to the
many-body state of A-component (B-component) fermions.
The dimension of the resulting Hilbert space spanned by this
Fock basis is D = ( K

NA

) · ( K
NB

)
. Additionally, since the Hamil-

tonian (1) conserves the parity of many-body states [34], we
remove from the basis the states which indisputably cannot
contribute to the many-body ground state. Importantly, for a
larger number of particles, to increase numerical efficiency,
we also remove some irrelevant high-energy Fock states from
the basis according to the prescription given in [35]. Finally,
for a given interaction strength g, all matrix elements of
the full many-body Hamiltonian (1) in the prepared basis
are calculated and the resulting matrix is numerically di-
agonalized. Since we are interested only in the properties
of the many-body ground state and the resulting matrix is
essentially sparse, we use the Arnoldi method [36] to obtain
only the eigenvector corresponding to the smallest energy. A
numerical convergence is obtained by increasing the cutoff K
and checking the ground-state fidelity. We found that for the
considered number of particles and interaction strengths, the
optimal cutoff varies from K = 14 to K = 30, depending on
the shape of the trap and number of particles.

III. THE TRANSITION

It was argued recently in [37–39] that in the case of
a different mass of particles (mA �= mB) and whenever the
interaction strength g is strong enough, one observes a charac-
teristic spatial separation of components which is manifested
in properties of the many-body ground state of the system |G〉.
One of the most visible footprints of this separation is present
in the density profiles (normalized to the number of particles)
of the components

nσ (x) = 〈G|�̂†
σ (x)�̂σ (x)|G〉, (4)

namely, the profile of one of the components is split into two
parts and it is pushed out from the center of the trap, while the
second component’s profile remains localized in the center.
Interestingly, depending on details of the external confine-
ment, the separation is induced in the component of lighter
or heavier particles. For example, in the case of harmonic
confinement, the lighter component is pushed out from the
center [37–39]. Contrarily, in the case of flat box potential,
lighter particles remain in the center while the heavier com-
ponent is separated. Consequently, by an adiabatic change of
the shape one observes the transition between different spatial
orderings which are nicely signaled by a rapid change of the
second moment of the magnetization, M(x) = nA(x) − nB(x)
[22]. It was shown that the transition becomes more rapid
when interaction strength is enhanced. By applying appro-
priate scaling in the vicinity of the transition point it was
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FIG. 1. Shape of an external potential (5) for different values of
parameter λ and two different transition functions f1(λ) (upper row)
and f2(λ) (bottom row). For λ = 0 harmonic confinement (cropped
at |x| = L) with frequency � is restored. In the limit λ → ∞ the trap
is equivalent to the box of the length L.

argued that in the limit of infinite repulsions the transition has
properties similar to the second-order phase transitions. It is
worth noticing, however, that the similarity to standard phase
transitions is highly indirect, since the system studied always
contains a finite number of particles and its spatial size is far
from macroscopic. In the case studied, the thermodynamic
limit is mimicked by the limit of infinite interactions rather
than the size of the system. All details of this analogy are
explained in [22].

Here, we want to significantly extend previous results and
perform detailed quantitative studies of this transition from a
quantum correlations point of view. We also want to answer
the question if the properties of the transition qualitatively
depend on the protocol of changing the shape. To address
these two issues, in the following we consider a general
scenario of switching the confinement from the harmonic trap
of frequency � to the flat box trap of width 2L as follows:

Vσ (x) =
{

f (λ) mσ �2

2 x2, |x| < L,

∞, |x| � L,
(5)

where the function f (λ) (generally position-dependent) is
chosen in such a way that it smoothly and monotonically
changes (for each position x independently) from 1 to 0
when the dimensionless parameter λ is tuned from 0 to ∞.
In the following, we consider two different complementary
scenarios of such switching. In the first, similarly as was
done in [22], we simply assume that the function f (λ) does
not depend on particle positions and that it has a form
f1(λ) = (1 + λ2)−1. It means that for any λ the shape of the
confinement remains parabolic in the middle of the trap and
only its frequency is changed. In the second scenario the
harmonic part is turned off by the substantial change of its
shape and the function f (λ) depends on positions. Motivated
by recent experiments in which the flatness of the trap is
bounded by a power function [40–44], we model this protocol
assuming that f2(λ) = |x/L0|λ, with some well-defined L0 >

L. In fact, L0 determines how fast the confinement changes
between limiting cases. To build some intuition, in Fig. 1 we
display shapes of the trap for several different values of λ

for both scenarios considered. In Fig. S1 of the Supplemental

FIG. 2. Structural transition in the ground state of the system of
NA = 3 and NB = 1 interacting fermions from a single-particle point
of view (mB/mA = 40/6). Successive columns (from left to right)
correspond to different external traps, from the harmonic oscillator
(λ = 0) to the flat box (λ → ∞). (a) Single-particle density profile
for heavier (thick blue) and lighter (thin green) component depending
on the shape of the external trap. (b, c) The single-particle density
matrix of the lighter and heavier component, respectively. Similar
results for other distributions of particles between components are
given in Fig. S2 in the Supplemental Material [33].

Material [33] we present corresponding single-particle spectra
as function of parameter λ.

For convenience, in further considerations, we express all
quantities in natural units of the A-component harmonic os-
cillator, i.e., we express all energies, lengths, and momenta in
h̄�,

√
h̄/mA�, and

√
h̄mA�, respectively. Thus, the coupling

constant is scaled by a factor of
√

h̄3�/mA. In these units
dimensionless masses are μA = 1 and μB = mB/mA. To keep
correspondence with the previous results presented in [22], we
set L = 3.5 and L0 = 5 in these units.

IV. SINGLE-PARTICLE CORRELATIONS

To give a better understanding of the properties of the
system for different confinements λ let us first focus on the
ground-state properties of a system with NA = 3 and NB = 1
particles confined in the trap described by the function f1(λ).
In Fig. 2 we present different single-particle properties for
quite strong repulsions g = 5 and reasonable mass ratio μB =
40/6 corresponding to Li-K fermionic mixture. In Fig. 2(a)
single-particle density profiles nσ (x) for the lighter and heav-
ier component are presented (thin green and thick blue lines,
respectively). As it is seen, depending on the shape of the trap,
the lighter or the heavier component is split and pushed out
from the center. It is clearly seen that in the harmonic potential
(λ = 0) the separation is present in the light atoms component.

023604-3
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Contrarily, in the trap shape close to the uniform box potential
(λ → ∞), the separation is induced in the heavier atoms
component. Note that for some particular intermediate shape
of the confinement (λ0 ≈ 11.3) a specific transition between
these two scenarios is present and characteristic oscillations in
the density profiles appear. This transition in the structure of
the many-body ground state induced by an adiabatic change
of the external potential was studied recently in [22].

A much better understanding of this transition can be given
when, instead of the single-particle density profile nσ (x),
one considers a whole single-particle reduced density matrix
defined straightforwardly as

ρσ (x, x′) = 1

Nσ

〈G|�̂†
σ (x)�̂σ (x′)|G〉. (6)

Note that here, in contrast to (4), we normalize the den-
sity matrix to unity. This quantity is sufficient when any
single-particle measurement is considered, since it encodes
not only all diagonal but also off-diagonal single-particle
correlations in any representation. In Figs. 2(b) and 2(c) we
display the single-particle density matrix for both components
for external confinement parameters λ corresponding to the
density profiles displayed in Fig. 2(a). Substantial changes
of the single-particle density matrices are clearly visible for
both components. Especially, in the case of the component
containing a NB = 1 particle [Fig. 2(c)] the transition between
limiting regimes is quite spectacular and it is manifested
by strong off-diagonal correlations (middle plot). Moreover,
even in the case of a flat box potential (λ → ∞), when
spatial separation of both components is clearly visible, the
state of the single-particle component is obviously not a pure
state, i.e., any outcome of the single-particle measurement
performed on this component depends also on the state of
the second component. This observation leads us directly
to the conclusion that both components, due to their strong
interactions, are entangled. The amount of these nonclassical
correlations between a particle from a selected component σ

and the rest of the system are encoded in the von Neumann
entropies

Sσ =
∑

i

λσ i ln λσ i, (7)

where λσ i are the eigenvalues of corresponding single-particle
reduced density matrices (6) obtained after performing their
spectral decompositions

ρσ (x, x′) =
∑

i

λσ iη
∗
σ i(x)ησ i(x

′), (8)

with ησ i(x) being their natural single-particle orbitals. Since
in general particles belonging to opposite components have
different masses, resulting entropies are different.

In Fig. 3 (left panel) we present both entropies Sσ as a
function of the shape of the external confinement λ for the sys-
tem of NA = 3 and NB = 1 particles and different interactions.
As seen, the quantum correlations of the selected particle
with the rest of the system are the strongest in the vicinity
of the transition between different spacial orderings. This
observation directly supports a previously outlined analogy
between the structural transition of the system and the quan-
tum phase transitions of other quantum systems, since it is

 1.3

 1.32

 1.34

 1.36

 1.38

 9  11  13  15  17

En
tr

op
y 

S A

Shape parameter λ

4.0
4.2
4.4
4.6
4.8
5.0

 1.2

 1.21

 1.22

 1.23

 1.24

 1.25

−2  0  2  4  6  8  10  12  14

λ0=9.82
ν=0.435
α=0.0265

Sc
al

ed
 e

nt
ro

py
 S

A 
· g

−α
/ν

Scaled shape τ · g1/ν

4.0
4.2
4.4
4.6
4.8
5.0

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 9  11  13  15  17

En
tr

op
y 

S B
Shape parameter λ

4.0
4.2
4.4
4.6
4.8
5.0

 0.4

 0.45

 0.5

 0.55

−3 −1  1  3  5  7  9  11  13

λ0=9.82
ν=0.435
β=0.155

Sc
al

ed
 e

nt
ro

py
 S

B 
· g

− β
/ν

Scaled shape τ · g1/ν

4.0
4.2
4.4
4.6
4.8
5.0

FIG. 3. The single-particle von Neumann entropies SA and SB

(top and bottom row, respectively) defined by (7) as a function of the
shape of external trapping for the same system as in Fig. 2. Note that
with appropriate scaling, results obtained for different interactions
collapse to the same universal curve (right panel). See the main text
for details. For other distributions of particles see Fig. S3 in the
Supplemental Material [33].

known that standard quantum phase transitions are very often
accompanied with rapid changes of inherent correlations [8].
This analogy is even more evident when we consider the limit
of infinite repulsions (g → ∞), which (as argued in [22] and
discussed in Sec. II) mimics the thermodynamic limit where
different thermodynamics quantities are divergent. Of course,
the limit of infinite repulsions is beyond our numerical possi-
bilities. However, to capture properties of the single-particle
entanglement entropies Sσ in this limit, we perform finite-size
scaling, assuming that in the vicinity of the transition each
entropy is divergent with corresponding critical exponent α

and β, for SA and SB, respectively. Moreover, the system poses
some additional scaling invariance related to the interaction
strength characterized by a common characteristic critical ex-
ponent ν [22,45,46]. It means that for any interaction strength
g the entropies can be expressed in terms of the unique (for a
given number of particles and mass ratio) universal function
Sσ (ξ ) as

SA(λ, g) = gα/νSA(g1/ντ ), (9a)

SB(λ, g) = gβ/νSB(g1/ντ ), (9b)

where τ = (λ − λ0)/λ0 is a normalized distance from the
transition point λ0. Indeed, our numerical analysis fully
confirms that there exists exactly one set of parameters
{λ0, α, β, ν} for which all numerically obtained data points
collapse to appropriate universal curves (see right column in
Fig. 3). Although the data-collapse algorithm was performed
independently for both entropies SA and SB, the resulting
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common parameters λ0 and ν are (up to a numerical accuracy)
exactly the same. Only individual critical exponents α and
β are different, since they characterize a divergent behavior
of different quantities. This suggests that, indeed, in the
limit of infinite repulsions, the system undergoes a structural
transition at λ0 ≈ 9.82. This value is evidently shifted when
compared to the corresponding value in Fig. 2 obtained purely
phenomenologically by an eye detection of a change in the
single-particle density profiles. This difference comes directly
from the fact that the results in Fig. 2 are presented for finite
repulsion g = 5, while the critical shape value λ0 corresponds
to the limit of infinite repulsions. We checked that a very
similar transition is present for any distribution of particles
between components (see Fig. S3 in the Supplemental Mate-
rial [33]). Obviously, the position λ0 and critical exponents α,
β, and ν crucially depend on this distribution as well as on the
mass ratio μ.

V. INTERCOMPONENT CORRELATIONS

In the case of NA = 3 and NB = 1 particles discussed
above, the single-particle entropy SB quantifies not only cor-
relations between the particle and the rest of the system but in
fact, it is also the entanglement entropy between components
treated as a whole. This simple observation suggests that for
any distribution of particles between components, probably
not only the single-particle entropies are divergent in the
vicinity of the structural transition but also the intercomponent
von Neumann entropy (quantifying entanglement between
distinguishable components) has this property. To check it, we
repeat all calculations for the system of NA = NB = 2 with the
same mass ratio μ = 40/6. First, we introduce the reduced
density operator �̂σ for a component σ through a straightfor-
ward tracing out of all degrees of freedom of the remaining
component σ ′ from the projector to the many-body ground
state, �̂σ = Trσ ′ |G〉〈G|. Then we define the intercomponent
von Neumann entropy as

S = −TrA[�̂A ln(�̂A)] = −TrB[�̂B ln(�̂B)]. (10)

It should be pointed out here that, in contrast to the single-
particle entanglement entropies Sσ , the intercomponent en-
tanglement S quantifies only these correlations which are
forced by mutual interactions and it vanishes in the case of the
noninteracting system. The single-particle entropies (7) are
also sensitive to trivial correlations induced by the quantum
statistics between indistinguishable fermions belonging to the
same component [47]. From this point of view, both entropies
(Sσ and S) give complementary information and they quantify
slightly different correlations.

In Fig. 4 we plot the intercomponent entropy S defined
by (10) for different distributions of NA + NB = 4 particles
between components (left panel) and their collapse to the
unique universal curves S(ξ ) after appropriate finite-size scal-
ings defined with the exact analogy to (9) but with another
critical exponent γ :

S (λ, g) = gγ /νS(g1/ντ ). (11)

It is clearly seen that this entropy has also required scaling in-
variance, i.e., in the limit of infinite repulsions it is divergent in
the vicinity of the structural transition point. It should be also
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FIG. 4. The intercomponent entanglement entropy as a function
of a shape of external trap λ and interaction strength g calculated
for different distributions of N = 4 particles and assumed mass ratio
mB/mA = 40/6. Note that in all cases appropriate scaling leads to
a collapse of all data points to a single universal curve. Results
for other mass ratios are provided in Fig. S4 in the Supplemental
Material [33].

underlined that values of the critical shape parameters λ0 and
the common critical exponent ν predicted with this scaling are
in full agreement with those predicted from behaviors of the
single-particle entanglement entropies (compare with values
provided in Fig. 3 and Fig. S3 in the Supplemental Material).
Importantly, a full consistency is confirmed by the observation
that for systems with NA = 1 (NB = 1) fermions the critical
exponent γ is exactly the same as the exponent α (β).

VI. UNIVERSALITY OF THE PHENOMENON

Finally, to expose that observed transition is a generic
behavior of two-component fermionic mixtures in one-
dimensional traps, let us shortly discuss similar systems with
other parameters. First, we want to emphasize that the spa-
tial separation of components is forced not only by mutual
repulsions between particles as predicted in [48] but also by
a mass difference of atoms belonging to opposite components
[22,37–39,49,50]. It becomes obvious when the system of an
equal number of particles is considered, NA = NB. Then, in the
equal mass case μ = mB/mA = 1, one finds exact symmetry
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FIG. 5. Values of the critical parameters λ0, ν, α, and β as
functions of the mass ratio μ for the systems with NA = 3 and NB = 1
fermions. Note that in this case the critical exponent γ is the same as
β. It is clear that all parameters are significantly and monotonically
dependent on the ratio. Results for other distributions of particles are
provided in Fig. S5 in the Supplemental Material [33].

between components. Therefore, their spatial distributions
must be exactly the same independently of the interaction
strength. Therefore, any spatial separation of the density pro-
files cannot be noticed. It is a matter of fact that the strength
of mutual repulsions needed to force the system to separate
depends on the mass ratio—larger mass ratios require lower
repulsions to separate the system. In Fig. S4 of the Supple-
mental Material [33] we show how the transition is reflected
in the behavior of the intercomponent entanglement entropy
for different mass ratios. Although qualitatively the situation
always remains the same, quantitatively divergences near the
transition point crucially depend on the mass ratio. It is clearly
visible when critical parameters are displayed as functions of
the mass ratio (Fig. 5). Along with increasing mass ratio the
common critical exponent ν, as well as all the other critical
exponents α, β, and γ , change their values monotonically.
This indicates that the mass ratio μ uniquely defines a set of
critical parameters which determine the singular behavior of
measurable quantities. In the language of the theory of phase
transitions, it would mean that the mass ratio determines some
kind of universality class of the transition.

Second, it should be also emphasized that the structural
transition in the many-body ground state is a generic behav-
ior of one-dimensional fermionic mixtures and it is always
characterized by a divergent behavior of the entanglement
entropy. This behavior is insensitive to details of the pro-
tocol of switching between different shapes. As one of the
examples, in Fig. 6 we present corresponding results for the
system of NA = NB = 2 fermions when the transition between
harmonic and flat potential is described with the function
f2. (Results for other distributions between components are
presented in Fig. S6 of the Supplemental Material [33].) It is
clear that for any confinement besides the critically shaped
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FIG. 6. Structural transition in the ground state of the system
of NA = NB = 2 fermions (mA/mB = 40/6) with the confinement
shape described by the function f2(λ). (a, b) Single-particle density
matrix of the lighter and heavier component (first and second row,
respectively), for interaction strength g = 5. Successive columns
(from left to right) correspond to different external traps, from the
harmonic oscillator (λ = 0) to the flat box (λ → ∞). (c, d) The
single-particle von Neumann entropies SA and SB as a function of
the shape parameter λ and interaction strength g, with corresponding
universal scaling (right panel). (e) Intercomponent entropy S and its
scaling for the same system.

trap the ground-state structure is well established: for strong
enough repulsions the heavier or the lighter component is
split and pushed out from the center, while the remaining
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component is located in the center. At the transition point,
the spatial structure is rapidly swapped and a significant
increase (divergence in the limit of infinite interactions) of
interparticle and intercomponent correlations (quantified with
entanglement entropies) is observed.

Finally, we want to mention that the structural transition
described above is present also for the other numbers of parti-
cles and their distribution between components. In Fig. S7 of
the Supplemental Material [33] we present results for some
other exemplary systems with N = 6 particles. In all these
cases the transition has exactly the same generic properties—
the lighter or heavier component is split for two extremal
confinements, and the rapid change between these structures
is present when the potential is adiabatically driven through
the critical confinement.

VII. CONCLUSIONS

We have analyzed the separation mechanism induced by
varying shape of external confinement in the ground state
of a two-component mixture of a few repulsively interacting
fermions of different mass from a correlations point of view.
We show that the transition between different orderings mani-
fested spectacularly as a rapid change of the component being
separated is accompanied by a rapid and significant increase
of the entanglement entropy between components, as well as
entanglement entropy between selected particles and the rest
of the system. By performing appropriate finite-size scaling
analysis we show that in the vicinity of the transition point
the system has some scale invariance which is very similar to
the scaling of many-body systems in the thermodynamic limit.
However, in the case studied the infinite size is replaced by
infinite intercomponent repulsions. We argue that at the tran-
sition point, in the limit of infinite repulsions, both entropies

are divergent, which brings us closer to a mentioned analogy
with many-body systems.

At this point we want to emphasize that although we
consider here a purely one-dimensional problem, the aspect
of higher dimensionality could be also worth deeper consid-
eration. There are at least two fundamental reasons for this:
(i) Criticality in the vicinity of the transition point usually
significantly depends on the dimensionality of the problem.
(ii) Systems of higher dimensions have a typically larger
capacity to store quantum correlations. In fact, the existence of
the phase separation driven by the mass imbalance has been
already reported for two- and three-dimensional cases [51].
However, the problem of criticality near the transition point
for such systems remains obscure. The situation is also similar
when some other than s-wave forms of interparticle interac-
tions are considered. For example, it is known that interpar-
ticle p-wave scattering may lead to the phase separation of
fermionic components [52], but critical properties are still not
explored. From this point of view, our results may give some
additional motivation for undertaking these paths of research
and bring us closer to answering the following question: Is the
phase separation in strongly interacting systems sufficient for
supporting the critical behavior of correlations?
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