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Short-time expansion of Heisenberg operators in open collective quantum spin systems
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We present an efficient method to compute short-time expectation values in large collective spin systems with
typical forms of Markovian decoherence. Our method is based on a Taylor expansion of a formal solution to the
equations of motion for Heisenberg operators. This expansion can be truncated at finite order to obtain virtually
exact results at short times that are relevant for metrological applications such as spin squeezing. In order to
evaluate the expansion for Heisenberg operators, we compute the relevant structure constants of a collective spin
operator algebra. We demonstrate the utility of our method by computing spin squeezing, two-time correlation
functions, and out-of-time-ordered correlators for 104 spins in strong-decoherence regimes that are otherwise
inaccessible via existing numerical methods. Our method can be straightforwardly generalized to the case of a
collective spin coupled to bosonic modes, relevant for trapped ion and cavity QED experiments, and may be used
to investigate short-time signatures of quantum chaos and information scrambling.
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I. INTRODUCTION

Collective spin systems are a versatile resource in quan-
tum science for a range of applications including quantum-
enhanced metrology and quantum simulation. The study of
such systems dates back to the mid-20th century with the
introduction of the Dicke model [1] that describes atoms co-
operatively interacting with a single mode of a radiation field,
and the Lipkin-Meshkov-Glick model, a toy model for testing
many-body approximation methods in contemporary nuclear
physics [2–4]. On the experimental side, the development of
advanced trapping, cooling, and control techniques in atomic,
molecular, and optical systems has enabled the realization of
collective spin models in a broad range of platforms, including
cold atomic gases [5,6], Bose-Einstein condensates [7–10],
ultracold Fermi gases [11–13], trapped ions [14], and optical
cavities [15–24], among others. These implementations com-
pliment innumerable theoretical studies in a variety of rich
subjects, including quantum phase transitions and criticality
[25–28], nonequilibrium phenomena [29–36], and precision
metrology [37–48].

One of the primary motivations for studying collective
spin systems is their application to quantum-enhanced metrol-
ogy. Quantum projection noise limits the error �φ in the
measurement of a phase angle φ with N independent spins
to �φ ∼ 1/

√
N [37,49]. Collective spin systems provide a

means to break through this limit via the preparation of
many-body entangled states such as spin-cat states [44,50,51]
and most notably spin-squeezed states [37,38,41] that allow
for measurement errors �φ ∼ 1/Nε with 1/2 < ε � 1, where
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ε = 1 saturates the Heisenberg limit [52]. Such entangled
states can be prepared either via heralded methods such
as quantum nondemolition measurements [5,6,15,16], or via
deterministic methods that require nonlinear dynamics, typ-
ically realized with phonon-mediated [14], photon-mediated
[7,17–24], or collisional [8–13] interactions. Although a truly
collective spin model requires uniform, all-to-all interactions,
as long as measurements do not distinguish between con-
stituent particles, even nonuniform systems may be effectively
described by a uniform model with renormalized parameters
[53].

In the absence of decoherence, permutation symmetry and
total spin conservation divide the total Hilbert space of a
collective spin system into superselection sectors that grow
only linearly with system size N , thereby admitting efficient
classical simulation of its dynamics. Decoherence generally
violates total spin conservation and requires the use of density
operators, increasing the dimension of accessible state space
to O(N3) [54,55]. In this case, exact simulations can be carried
out for N � 100 particles. If decoherence is sufficiently weak,
dynamics can be numerically solvable for N � 105 particles
via “quantum trajectory” Monte Carlo methods [56,57] (also
known as “quantum jump” or “Monte Carlo wave-function”
methods) that can reproduce all expectation values of interest.
When decoherence is strong, however, these Monte Carlo
methods can take a prohibitively long time to converge, as
simulations become dominated by incoherent jumps that gen-
erate large numbers of distinct quantum trajectories that need
to be averaged in order to accurately compute expectation val-
ues. Even with strong decoherence, dynamics are sometimes
solvable through the cumulant expansion [58] that neglects
all n-body connected correlators for n > 2. The growth of
genuinely multibody correlations, however, eventually causes
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the cumulant expansion to yield incorrect results with no clear
signature of failure. In the absence of other means to compute
correlators, it can therefore be difficult to identify the point at
which correlators computed via the cumulant expansion can
no longer be trusted.

In this paper, we present an efficient method to compute
short-time dynamics of collective spin systems with typical
forms of Markovian decoherence. The only restriction on
decoherence (beyond Markovianity) is that, like the coherent
collective dynamics, it must act identically on all constituent
particles. Our method is based on a formal solution to the
equations of motion for Heisenberg operators, thereby bearing
some resemblance to the Mori formalism [59] and related
work [60]. Specifically, we expand a formal solution for a
Heisenberg operator into a Taylor series, the truncation of
which can yield negligible error at sufficiently short times.
Evaluating the resulting expansion requires knowing the struc-
ture constants of a collective spin operator algebra; the cal-
culation of these structure constants (in Appendices A–C)
is one of the main technical results of this paper, which we
hope will empower both analytical and numerical studies
of collective spin systems in the future. We benchmark our
method against exact results from both analytical calcula-
tions and quantum trajectory Monte Carlo computations of
spin squeezing in accessible parameter regimes, highlighting
both advantages and limitations of the short-time expansion.
Finally, we showcase applications of our method by com-
puting quantities that are inaccessible to other numerical
methods.

II. THEORY

In this section we provide the basic theory for our method
to compute expectation values of collective spin operators,
deferring lengthy derivations to the Appendices. We consider
a system of N distinct spin-1/2 particles. Defining individual
spin-1/2 operators ŝα=x,y,z ≡ σ̂α/2 and ŝ± ≡ ŝx ± iŝy = σ̂±
with Pauli operators σ̂α , we denote an operator that acts with
ŝα on the spin indexed by j and trivially (i.e., with the identity
1̂) on all other spins by ŝ( j)

α . We then define the collective spin
operators Ŝα ≡ ∑N

j=1 ŝ( j)
α for α ∈ {x, y, z,+,−}. Identifying

the set {Ŝm} as a basis for all collective spin operators,
with m ≡ (m+, mz, m−) ∈ N3

0 and Ŝm ≡ Ŝm+
+ Ŝmz

z Ŝm−
− , we can

expand any collective spin operator Ô in the form

Ô =
∑

m

OmŜm (1)

with scalar coefficients Om ∈ C. If Ô is self-adjoint,
for example, then O∗

m = Om∗ with m∗ ≡ (m−, mz, m+).
The corresponding Heisenberg operator is then Ô(t ) =∑

m Om(t )Ŝm + ÊO(t ), with time-dependent coefficients
Om(t ) for time-independent Schrödinger operators Ŝm,
and mean-zero “noise” operators ÊO(t ) that result from
interactions between the spin system and its environment,
initially ÊO(0) = 0. These noise operators will essentially
play no role in the present paper, but are necessary to include
for a consistent formalism of Heisenberg operators in an
open quantum system; see Appendix N for further discussion.
The expectation values of Heisenberg operators evolve

according to

d

dt
〈Ô(t )〉 = 〈Ť Ô(t )〉 =

∑
m,n

〈Ŝm〉 TmnOn(t ) (2)

with a Heisenberg-picture time derivative operator Ť = d/dt ,
the matrix elements Tmn ∈ C of which are defined by

Ť Ŝn ≡ i[Ĥ, Ŝn]− +
∑
J

γJ Ď(J )Ŝn =
∑

m

ŜmTmn, (3)

where [X,Y ]± ≡ XY ± Y X ; Ĥ is the collective spin Hamil-
tonian; J is a set of jump operators with a corresponding
decoherence rate γJ ; and Ď is a Heisenberg-picture dissipator,
or Lindblad superoperator, defined by

Ď(J )Ô ≡
∑
Ĵ∈J

(
Ĵ†ÔĴ − 1

2
[Ĵ†Ĵ, Ô]+

)
. (4)

Decoherence via uncorrelated decay of individual spins, for
example, would be described by the set of jump operators
J− ≡ {ŝ( j)

− : j = 1, 2, . . . , N}. The commutator in Eq. (3) can
be computed by expanding the product Ŝ�Ŝm = ∑

n f�mnŜn

with structure constants f�mn ∈ R that we work out in Ap-
pendices A–C, and the effects of decoherence from jump
operators (i.e., elements of J ) of the form ĝ( j) = ∑

α gα ŝ( j)
α

and Ĝ = ∑
α Gα Ŝα are worked out in Appendices D–G. We

consider these calculations to be some of the main technical
contributions of this paper, with potential applications beyond
the short-time simulation method presented here. These in-
gredients are sufficient to compute matrix elements Tmn of the
time derivative operator Ť in Eq. (3) in most cases of practical
interest.

We note that particle loss is an important decoherence
mechanism in many experimental realizations of collective
spin models [41]. In principle, a spin model has no notion of
the particle annihilation operators that generate particle loss,
and therefore cannot capture this effect directly. Nonetheless,
for a system initially composed of N particles, the effect
of particle loss can be emulated with O(1/N ) error by the
dissipator Ďloss defined by ĎlossŜm = −|m|Ŝm, where |m| ≡∑

α mα (see Appendix H). Furthermore, the effect of par-
ticle loss can be accounted for exactly by (i) introducing
an additional index on spin operators, Ŝm → ŜNm, to keep
track of different sectors of fixed particle number within a
multiparticle Fock space, and (ii) constructing jump opera-
tors that appropriately couple spin operators within different
particle-number sectors. We defer a detailed exact accounting
of particle loss to future work.

The time derivative operator Ť will generally couple spin
operators Ŝn to spin operators Ŝm with higher “weight,”
i.e., with |m| > |n|. The growth of operator weight signi-
fies the growth of many-body correlations. Keeping track
of this growth eventually becomes intractable, requiring us
to truncate our equations of motion somehow. The simplest
truncation strategy would be to take

d

dt
〈Ô(t )〉 →

∑
w(m)<W

〈Ŝm〉
∑

n

TmnOn(t ) (5)

for some weight measure w, e.g., w(m) = |m|, and a high-
weight cutoff W . The truncation in Eq. (5) closes the system
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of differential equations defined by Eq. (2), and allows us
to solve it using standard numerical methods. Some initial
conditions for this system of differential equations, namely,
expectation values of collective spin operators with respect to
spin-polarized (Gaussian) states that are generally simple to
prepare experimentally, are provided in Appendix I.

The truncation strategy in Eq. (5) has a few limitations.
(1) Simulating a system of differential equations for a large

number of operators can be time consuming.
(2) The weight measure w may need to be chosen carefully,

as the optimal measure is generally system dependent.
(3) Simulation results can only be trusted up to the time at

which the initial values of operators Ŝm with weight w(m) �
W have a non-negligible contribution to expectation values of
interest.

The last limitation in particular unavoidably applies in
some form to any method tracking only a subset of all relevant
operators. We therefore devise an alternate truncation strategy
built around limitation 3.

We can formally expand Heisenberg operators Ô(t ) in a
Taylor series about the time t = 0 to write

〈Ô(t )〉 = 〈etŤ Ô(0)〉 =
∑
k�0

t k

k!

∑
m,n

〈Ŝm〉 T k
mnOn(0), (6)

where the matrix elements T k
mn of the kth time derivative

operator Ť k are

T 0
mn ≡ δmn, (7)

T 1
mn ≡ Tmn, (8)

T k>1
mn ≡

∑
p1,p2,...,pk−1

Tmpk−1
· · · Tp3 p2

Tp2 p1
Tp1n, (9)

with δmn = 1 if m = n and zero otherwise. For sufficiently
short times, we can truncate the series in Eq. (6) by taking

〈Ô(t )〉 →
M∑

k=0

t k

k!

∑
m,n

〈Ŝm〉 T k
mnOn(0). (10)

We refer to Eq. (10) as the truncated short-time (TST) ex-
pansion of Heisenberg operators. Note that when computing
an expectation value 〈Ô(t )〉 the relation Ŝ†

m = Ŝm∗ , which by
Hermitian conjugation of Eq. (2) also implies that Tm∗n∗ =
T ∗

mn, cuts both the number of initial-time expectation values
〈Ŝm〉 and the number of matrix elements Tmn that we may need
to explicitly compute roughly in half.

Unlike the weight-based truncation in Eq. (5), the nonzero
matrix elements T k

mn for k = 0, 1, . . . , M in Eq. (10) tell us
which operators Ŝm are relevant for computing the expectation
value 〈Ô(t )〉 to a fixed order M. The TST expansion thereby
avoids the introduction of a weight measure w that chooses
which operators to keep track of, and trades the cost of solving
a system of differential equations for the cost of computing
expectation values 〈Ŝm〉 and matrix elements T k

mn. In all cases
considered in this paper, we find that the TST expansion
is both faster to evaluate and provides accurate correlators
〈Ô(t )〉 until later times t than the weight-based expansion
in (5) with weight measure w(m) = |m| and cutoff W ≈ M.
We therefore restrict the remainder of our discussions to

the TST expansion in Eq. (10), and provide a pedagogical
tutorial for computing correlators using the TST expansion in
Appendix J.

Three primary considerations limit the maximum time t to
which we can accurately compute a correlator 〈Ŝn(t )〉 using
the TST expansion. First, maintaining accuracy at larger times
t requires going to higher orders M in the TST expansion.
An order-M TST expansion of the correlator 〈Ŝn(t )〉 can
involve a significant fraction of operators Ŝm with weight
|m| � M, which implies the need to compute O(M3) initial-
time expectation values 〈Ŝm〉 and O(M4) matrix elements
T k

mn. In practice, with a straightforward implementation of
the TST expansion we find that these requirements generally
restrict M � 50–70 with 8–50 GB of random access memory.
Second, individual terms at high orders of the TST expansion
in Eq. (10) can grow excessively large, greatly amplifying any
numerical errors and thereby spoiling cancellations that are
necessary to arrive at a physical value of a correlator, i.e., with
|〈Ŝn(t )〉| � S|n| (where S ≡ N/2). Finally, the TST expansion
is essentially perturbative in the time t , which implies that
its validity as a formal expansion eventually breaks down.
Precisely characterizing the implications of these last two con-
siderations for the TST expansion requires additional analysis
that we defer to future work. An investigation of connections
between the TST expansion and past work related to the Mori
formalism [59,60], for example, might answer questions about
the breakdown and convergence of the TST expansion. As we
show from benchmarks of the TST expansion in Sec. III, how-
ever, a detailed understanding of breakdown is not necessary
to diagnose the breakdown time t (M )

break beyond which the TST
expansion yields inaccurate results. Empirically, we find that
going beyond order M ≈ 35 yields no significant gains in all
cases considered in this paper.

III. SPIN SQUEEZING, BENCHMARKING,
AND BREAKDOWN

To benchmark our method for computing collective spin
correlators, we consider three collective spin models known
to generate spin-squeezed states: the one-axis twisting (OAT),
two-axis twisting (TAT), and twist-and-turn (TNT) models
described by the collective spin Hamiltonians [41]

HOAT = χ Ŝ2
z , (11)

HTAT = χ

3

(
Ŝ2

z − Ŝ2
y

)
, (12)

HTNT = χ Ŝ2
z + 
Ŝx, (13)

where we include a factor of 1/3 in the TAT Hamiltonian
because it naturally appears in realistic proposals to experi-
mentally implement TAT [42,61]. For simplicity, we further
fix 
 = χS (with S ≡ N/2 throughout this paper) to the
critical value known to maximize the entanglement generation
rate of TNT in the large-N limit [62,63].

Note that the OAT model is a special case of the zero-field
Ising model, the quantum dynamics of which admits an exact
analytic solution even in the presence of decoherence [64].
The approximate and numerics-oriented TST expansion is
therefore an inappropriate tool for studying the OAT model,
which will merely serve as an exactly solvable benchmark
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of our methods. Wherever applicable, we will provide exact
results for the OAT model (see Appendix K, as well as the
Supplementary Material of Ref. [14]).

The Hamiltonians in Eqs. (11)–(13) squeeze the initial
product state |X 〉 ∝ (|↑〉 + |↓〉)⊗N with Ŝx |X 〉 = S |X 〉. Our
measure of spin squeezing is the directionally unbiased Ram-
sey squeezing parameter determined by the maximal gain in
resolution �φ of a phase angle φ over that achieved by any
spin-polarized product state (e.g., |X 〉) [37,41]:

ξ 2 ≡ (�φmin)2

(�φpolarized)2
= N

|〈Ŝ〉|2 min
v ⊥ 〈Ŝ〉
v · v = 1

〈(Ŝ · v)2〉, (14)

where Ŝ ≡ (Ŝx, Ŝy, Ŝz ) is a collective spin operator-valued
vector, the minimization is performed over all unit vectors v

orthogonal to the mean spin vector 〈Ŝ〉, and for brevity we
have suppressed the explicit time dependence of operators in
Eq. (14). This squeezing parameter is entirely determined by
one- and two-spin correlators of the form 〈Ŝα〉 and 〈Ŝα Ŝβ〉. For
the unitary dynamics discussed in this paper, these correlators
are obtainable via exact simulations of quantum dynamics
in the (N + 1)-dimensional Dicke manifold of states {|S, m〉}
with net spin S and spin projection m onto the z axis, i.e.,
with 〈S, m|Ŝ2|S, m〉 = S(S + 1) and 〈S, m|Ŝz|S, m〉 = m for
m ∈ {−S,−S + 1, . . . , S}. In the presence of single-spin or
collective decoherence, meanwhile, these correlators are ob-
tainable with the collective spin quantum trajectory Monte
Carlo method developed in Ref. [57]. In this paper, these exact
and quantum trajectory simulations will be used to benchmark
the TST expansion in Eq. (10).

Figure 1 compares the squeezing parameter ξ 2 for N = 104

spins initially in the state |X 〉 evolved under the Hamiltoni-
ans in Eqs. (11)–(13), as computed via both benchmarking
simulations and the TST expansion in Eq. (10) with M = 35.
Squeezing is shown for both unitary dynamics [Fig. 1(a)] as
well as nonunitary dynamics in the presence of spontaneous
decay, excitation, and dephasing of individual spins at rates
χ [Fig. 1(b)], respectively, described by the sets of jump
operators Jα ≡ {ŝ( j)

α } with corresponding decoherence rates
γα = χ for α ∈ {−,+, z}. The results shown in Fig. 1 were
computed in a rotated basis with (ŝz, ŝx ) → (ŝx,−ŝz ) and
|X 〉 → |−Z〉 ≡ |↓〉⊗N , as well as appropriate transformations
of the Hamiltonian and jump operators. The only effects of
this rotation on the results presented in Fig. 1 are to (i)
reduce the time it takes to compute correlators 〈Ô(t )〉 with
the TST expansion and (ii) prolong the time for which the
TST expansion of TNT results agrees with benchmarking
simulations.

The speedup in a different basis occurs because for the
initial state |−Z〉 all initial-time correlators 〈Ŝm〉 are zero
unless m+ = m− = 0, and all nonzero correlators take O(1)
(i.e., constant in N) time to compute, rather than O(N ) time
(see Appendix I). In total, the use of a rotated basis reduces
the computation time of initial-time correlators from O(M3N )
to O(M ). The reason that prolonged agreement of TNT results
in a rotated basis is not entirely understood, and provides a
clue into the precise mechanism by which the TST expansion
breaks down (discussed below). We defer a detailed study of
this breakdown to future work.
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FIG. 1. Spin squeezing of N = 104 spins initially in |X 〉 under
(a) unitary and (b) nonunitary dynamics with spontaneous decay,
excitation, and dephasing of individual spins at rates γ− = γ+ =
γz = χ . Results computed using exact methods (solid lines), quan-
tum trajectory simulations (dots), and the TST expansion in Eq. (10)
with M = 35 (dashed lines). Solid circles mark the times at which
the TST expansion gives an unphysical result with ξ 2 < 0.

The main lesson from Fig. 1 is that the TST expansion
yields essentially exact results right up until a sudden and
drastic departure that can be diagnosed by inspection. The
breakdown of the TST expansion in Fig. 1 induces an un-
physical squeezing parameter ξ 2 < 0. In general, however,
there is no fundamental relationship between the breakdown
of the TST expansion and the conditions for a physical
squeezing parameter ξ 2. A proper diagnosis of breakdown
therefore requires inspection of the correlators 〈Ŝn(t )〉 used
to compute the squeezing parameter ξ 2, which upon break-
down will rapidly take unphysical values with |〈Ŝn(t )〉| � S|n|
(see Appendix L for an example). The sudden and drastic
departure from virtually exact results is consistent with the
limitations of the TST expansion discussed at the end of
Sec. II. Specifically, we identify three possible mechanisms
for breakdown: (i) a rapid growth in the order M necessary for
the TST expansion to converge, (ii) the growth of numerical
errors in excessively large terms of the TST expansion, and
(iii) the formal breakdown of the perturbative expansion in
the time t .

In all of these cases, a detailed cancellation eventually
ceases to occur between large terms at high orders in the TST
expansion. These large terms grow with the time t raised to
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FIG. 2. Spin squeezing of N = 104 spins initially in |X 〉 with
spontaneous decay, excitation, and dephasing of individual spins at
rates γ− = γ+ = γz = 100χ . Computed using the TST expansion in
Eq. (10) with M = 35. Solid circles mark the times at which the TST
expansion gives an unphysical result with ξ 2 < 0.

some large power (as high as M), and therefore rapidly yield
wildly unphysical results. In contrast to other approximate
methods such as the cumulant expansion [58], the TST ex-
pansion can thus diagnose its own breakdown, which is an
important feature when working in parameter regimes that
are inaccessible via other means to compute correlators. Note
that, due to the breakdown mechanisms of the TST expansion,
going up through order M = 70 does not significantly increase
the breakdown time t (M )

break in Fig. 1, and in some cases even
shortens t (M )

break.
Although the TST expansion breaks down at short times,

it has two key advantages over the quantum trajectory Monte
Carlo method to compute correlators in the presence of de-
coherence. First, computing spin correlators with the TST
expansion is generally faster and requires fewer computing
resources. The TST expansion results in Fig. 1(b), for exam-
ple, take ∼10 s to compute with a single CPU on modern
computing hardware. The quantum trajectory Monte Carlo
results in the same figure, meanwhile, take ≈104 CPU hours
to compute on similar hardware; the bulk of this time is spent
performing sparse matrix-vector multiplication, leaving little
room to further optimize serial runtime. Parallelization can re-
duce actual runtime of the Monte Carlo simulations to ≈10 h
by running all trajectories at once, but at the cost of greatly
increasing computing resource requirements. Though it may
be possible to further speed up quantum trajectory Monte
Carlo simulations by introducing new truncation schemes,
any modifications (i) should be made carefully to ensure that
simulations still yield correct results and (ii) are unlikely
to bridge the orders of magnitude in computing resource
requirements.

The second advantage of the TST expansion is the ca-
pability to compute spin correlators in strong-decoherence
regimes of large systems that are entirely inaccessible to
other methods. As an example, Fig. 2 shows squeezing of
N = 104 spins initially in |X 〉, undergoing spontaneous de-
cay, excitation, and dephasing of individual spins at rates
γ− = γ+ = γz = 100χ . The system size in these simulations
is too large for straightforward application of exact methods
for open quantum systems. Quantum trajectory Monte Carlo

simulations, meanwhile, take a prohibitively long time to
converge with such strong decoherence due to the multiplicity
of quantum trajectories that require averaging.

The results in Fig. 2 show that the TNT model can generate
more squeezing than the OAT or TAT models in the presence
of strong decoherence. The better performance of TNT is in
part a consequence of the fact that TNT initially generates
squeezing at a faster rate than OAT or TAT, thereby allowing
it to produce more squeezing before the degrading effects of
decoherence kick in. We corroborate this finding with quan-
tum trajectory simulations of a smaller system in Appendix M.
Strong-decoherence computations of the sort used for Fig. 2
put lower bounds on theoretically achievable spin squeez-
ing via TAT with decoherence in Ref. [48], exemplifying
a concrete and practical application of the TST expansion
and the collective spin structure constants calculated in this
paper.

IV. TWO-TIME CORRELATION FUNCTIONS AND
OUT-OF-TIME-ORDERED CORRELATORS

As a final example of collective spin physics that is nu-
merically accessible via the TST expansion of Heisenberg
operators, we consider the calculation of two-time correlation
functions and out-of-time-ordered correlators. In particular,
we consider the effect of decoherence on short-time behavior
of the two-time connected correlator

C(t ) ≡ 1

S
(〈Ŝ+(t )Ŝ−(0)〉 − 〈Ŝ+(t )〉 〈Ŝ−(0)〉) (15)

and the expectation value of a squared commutator

D(t ) ≡ 1

S2
〈[Ŝ+(t ), Ŝ−(0)]†

−[Ŝ+(t ), Ŝ−(0)]−〉nn, (16)

in the context of the squeezing models in Sec. III. The sub-
script on 〈·〉nn in Eq. (16) stands for “no noise,” and denotes a
correlator computed without the noise contributions ÊO(t ) to
Heisenberg operators Ô(t ). While linear contributions from
noise operators as, e.g., in Eq. (15) always vanish under
Markovian decoherence (see Appendix N), quadratic contri-
butions that would otherwise appear in Eq. (16) generally
do not [65]. Determining the effect of these noise terms
generally requires making additional assumptions about the
environment, which would be a digression for the purposes
of the present paper. We therefore exclude these noise terms
in (16) in order to keep our discussion simple and general;
see Ref. [65] for more detailed discussions of noise terms and
the quantum regression theorem underlying the calculation of
multitime correlators.

In an equilibrium setting, correlation functions similar to
that in Eq. (15) contain information about the linear response
of Heisenberg operators to perturbations of a system; in a
nonequilibrium setting, they contribute to short-time linear
response (see Appendix O). Similar correlators have made ap-
pearances as order parameters for diagnosing time-crystalline
phases of matter [66]. Squared commutators such as that in
Eq. (16), meanwhile, are commonly examined for signatures
of quantum chaos and information scrambling [67–69]. In
typical scenarios, such squared commutators initially vanish
by construction through a choice of spatially separated op-
erators. Collective spin systems, however, have no intrinsic
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FIG. 3. The two-time connected correlator C(t ) ≡ |C(t )| exp[iφ(t )] and squared commutator D(t ), respectively, defined in Eqs. (15) and
(16), for N = 104 spins initially in the polarized state |X 〉 ∝ (|↑〉 + |↓〉)⊗N evolving under the squeezing Hamiltonians in Eqs. (11)–(13).
Results are shown for both unitary dynamics (solid lines) and nonunitary dynamics with γ− = γ+ = γz = γ0 = 100χ (dashed lines), computed
using the TST expansion in Eq. (10) with M = 20.

notion of locality or spatial separation. In our case, therefore,
with the choice of initial state |X 〉 ∝ (|↑〉 + |↓〉)⊗N we merely
have D(0) ∼ 1/N .

Figure 3 shows the behavior of C(t ) and D(t ) for N = 104

spins, initially in the state |X 〉, evolving under the squeezing
Hamiltonians in Eqs. (11)–(13) both with and without sponta-
neous decay, excitation, and dephasing of individual spins at
rates γ− = γ+ = γz = 100χ . In the case of unitary evolution
under OAT, we find that to an excellent approximation |C(t )|
takes the functional form f (t ) = f (0) + aNχt + (bNχt )2

with a ∼ b ∼ 1, and with a virtually perfect fit D(t ) = D(0) +
([N + 1]χt )2. For unitary evolution under TAT and TNT, we
find that to an excellent approximation both |C(t )| and D(t )
take the functional form f (t ) = f (0) + a[exp (bNχt ) − 1]
with a ∼ b ∼ 1. As may be expected, the growth of C(t )
and D(t ) is generally suppressed by decoherence. Figure 3
serves as an example for the type of behavior that is accessible
at short times with the TST expansion. These examples are
straightforward to extend to equilibrium settings and spin-
boson systems.

V. CONCLUSIONS

We have presented an efficient method for computing cor-
relators at short times in collective spin systems. This method

is based on truncating a short-time expansion of Heisenberg
operators, and can access correlators on time scales that are
relevant to metrological applications such as spin squeezing.
In order to evaluate the TST expansion of Heisenberg opera-
tors, we have computed the structure constants of a collective
spin operator algebra, which we hope will empower future an-
alytical and numerical studies of collective spin systems. Even
though we considered only nonequilibrium spin-squeezing
processes in this paper, our method can be applied directly in
an equilibrium setting, and is straightforward to generalize to
systems such as trapped ions and optical cavities with collec-
tive spin-boson interactions. In such contexts, our method may
be used to benchmark the short-time effects of decoherence, or
study the onset of quantum chaos and information scrambling.
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APPENDIX A: BASIC SPIN OPERATOR IDENTITIES

The Appendices in this paper make ubiquitous use of various spin operator identities; we collect and derive some basic
identities here for reference. Note that despite the working definition of collective spin operators from Sα = ∑

j s( j)
α the identities

we will derive involving only collective spin operators apply just as well to large-spin operators that cannot be expressed as
the sum of individual spin-1/2 operators. The elementary commutation relations between spin operators are, with μ̄ ≡ −μ ∈
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{+1,−1} for brevity, [
s( j)

z , s(k)
μ

]
− = δ jkμs( j)

μ ,
[
Sz, s( j)

μ

]
− = [

s( j)
z , Sμ

]
− = μs( j)

μ , [Sz, Sμ]− = μSμ, (A1)[
s( j)
μ , s(k)

μ̄

]
− = δ jk2μs( j)

z ,
[
Sμ, s( j)

μ̄

]
− = [

s( j)
μ , Sμ̄

]
− = 2μs( j)

z ,
[
Sμ, Sμ̄

]
− = 2μSz. (A2)

These relations can be used to inductively compute identities involving powers of collective spin operators. By pushing through
one spin operator at a time, we can find

(μSz )ms( j)
μ = (μSz )m−1s( j)

μ (1 + μSz ) = (μSz )m−2s( j)
μ (1 + μSz )2 = · · · = s( j)

μ (1 + μSz )m (A3)

and

μs( j)
z Sm

μ = Sμμs( j)
z Sm−1

μ + s( j)
μ Sm−1

μ = · · · = Sm
μμs( j)

z + ms( j)
μ Sm−1

μ , (A4)

where we will generally find it nicer to express results in terms of μs( j)
z and μSz rather than s( j)

z and Sz. Summing over the
single-spin index j in both of the cases above gives us the purely collective spin versions of these identities:

(μSz )mSμ = Sμ(1 + μSz )m, μSzS
m
μ = Sm

μ (m + μSz ), (A5)

where we can repeat the process of pushing through individual Sz operators  times to get

(μSz )Sm
μ = (μSz )−1Sm

μ (m + μSz ) = (μSz )−2Sm
μ (m + μSz )2 = · · · = Sm

μ (m + μSz ). (A6)

Multiplying (A6) through by (μν) (for ν ∈ {+1,−1}) and taking its Hermitian conjugate, we can say that more generally

(νSz )Sm
μ = Sm

μ (μνm + νSz ), Sm
μ (νSz ) = (−μνm + νSz )Sm

μ . (A7)

Finding commutation relations between powers of transverse spin operators, i.e., Sμ and Sμ̄, turns out to be considerably more
difficult than the cases we have worked out thus far. We therefore save this work for Appendix B.

APPENDIX B: COMMUTATION RELATIONS BETWEEN POWERS OF TRANSVERSE SPIN OPERATORS

To find commutation relations between powers of transverse collective spin operators, we first compute

Sm
μ s( j)

μ̄ = Sm−1
μ s( j)

μ̄ Sμ + Sm−1
μ 2μs( j)

z (B1)

= Sm−2
μ s( j)

μ̄ S2
μ + Sm−2

μ 2μs( j)
z Sμ + Sm−1

μ 2μs( j)
z (B2)

= s( j)
μ̄ Sm

μ +
m−1∑
k=0

Sk
μ2μs( j)

z Sm−k−1
μ . (B3)

While (B3) gives us the commutator [Sm
μ, s( j)

μ̄ ]−, we would like to enforce an ordering on products of spin operators, which will
ensure that we only keep track of operators that are linearly independent. We choose (for now) to impose an ordering with all
s( j)
μ̄ operators on the left, and all s( j)

z operators on the right. Such an ordering will prove convenient for the calculations in this
section [70]. This choice of ordering compels us to expand

m−1∑
k=0

Sk
μ2μs( j)

z Sm−k−1
μ =

m−1∑
k=0

Sk
μ

[
2(m − k − 1)s( j)

μ Sm−k−2
μ + Sm−k−1

μ 2μs( j)
z

]
(B4)

= m(m − 1)s( j)
μ Sm−2

μ + mSm−1
μ 2μs( j)

z , (B5)

which implies

Sm
μ s( j)

μ̄ = s( j)
μ̄ Sm

μ + m(m − 1)s( j)
μ Sm−2

μ + mSm−1
μ 2μs( j)

z , (B6)

and in turn

Sm
μ Sμ̄ = Sμ̄Sm

μ + mSm−1
μ (m − 1 + 2μSz ). (B7)

As the next logical step, we take on the task of computing

Sm
μ Sn

μ̄ = Sm−1
μ Sn

μ̄Sμ + n
[
Sm−1

μ Sn−1
μ̄ (1 − n + 2μSz )

] = Sn
μ̄Sm

μ + n
m−1∑
k=0

Sm−k−1
μ Sn−1

μ̄ (1 − n + 2μSz )Sk
μ, (B8)

which implies

[
Sm

μ , Sn
μ̄

]
− = Cmn;μ ≡ n

m−1∑
k=0

Sm−k−1
μ Sn−1

μ̄ (1 − n + 2μSz )Sk
μ. (B9)
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We now need to rearrange the operators in Cmn;μ into a standard order, which means pushing all Sz operators to the right
and, for the purposes of this calculation, all Sμ̄ operators to the left. We begin by pushing Sk

μ to the left of Sz, which takes
2μSz → 2μSz + 2k, and then push Sm−k−1

μ to the right of Sn−1
μ̄ , giving us

Cmn;μ = n
m−1∑
k=0

(
Sn−1

μ̄ Sm−k−1
μ + Cm−k−1,n−1;μ

)
Sk

μ(2k + 1 − n + 2μSz ) (B10)

= Dmn;μ + n
m−2∑
k=0

Cm−k−1,n−1;μSk
μ(2k + 1 − n + 2μSz ), (B11)

where we have dropped the last (k = m − 1) term in the remaining sum because Cm−k−1,n−1;μ = 0 if k = m − 1, and

Dmn;μ ≡ mnSn−1
μ̄ Sm−1

μ (m − n + 2μSz ). (B12)

To our despair, we have arrived in (B11) at a recursive formula for Cmn;μ. Furthermore, we have not even managed to order all
spin operators, as Cm−k−1,n−1;μ contains Sz operators that are to the left of Sk

μ. To sort all spin operators once and for all, we
define

C(k)
mn;μ ≡ Cm−k,n;μSk

μ, D(k)
mn;μ ≡ Dm−k,n;μSk

μ, (B13)

which we can expand as

D(k)
mn;μ = (m − k)nSn−1

μ̄ Sm−k−1
μ (m − k − n + 2μSz )Sk

μ (B14)

= (m − k)nSn−1
μ̄ Sm−1

μ (k + m − n + 2μSz ), (B15)

and

C(k)
mn;μ = Dm−k,n;μSk

μ + n
m−k−2∑

j=0

Cm−k− j−1,n−1;μS j
μ(2 j + 1 − n + 2μSz )Sk

μ (B16)

= D(k)
mn;μ + n

m−k−2∑
j=0

Cm−k− j−1,n−1;μS j+k
μ (2 j + 2k + 1 − n + 2μSz ) (B17)

= D(k)
mn;μ + n

m−k−2∑
j=0

C(k+ j)
m−1,n−1;μ(2[ j + k] + 1 − n + 2μSz ) (B18)

= D(k)
mn;μ + n

m−2∑
j=k

C( j)
m−1,n−1;μ(2 j + 1 − n + 2μSz ). (B19)

While the resulting expression in (B19) strongly resembles that in (B11), there is one crucial difference: all spin operators in
(B19) have been sorted into a standard order. We can now repeatedly substitute C(k)

mn;μ into itself, each time decreasing m and n
by 1, until one of m or n reaches zero. Such repeated substitution yields the expansion

Cmn;μ = C(0)
mn;μ = Dmn;μ +

min {m,n}−1∑
p=1

E (p)
mn;μ, (B20)

where the first two terms in the sum over p are

E (1)
mn;μ = n

m−2∑
k=0

D(k)
m−1,n−1;μ(2k + 1 − n + 2μSz ), (B21)

E (2)
mn;μ = n

m−2∑
k1=0

(n − 1)
m−3∑

k2=k1

D(k2 )
m−2,n−2;μ(2k2 + 2 − n + 2μSz )(2k1 + 1 − n + 2μSz ), (B22)

and more generally for p > 1

E (p)
mn;μ = n!

(n − p)!

m−2∑
k1=0

m−3∑
k2=k1

· · ·
m−p−1∑
kp=kp−1

D
(kp)
m−p,n−p;μ

p∏
j=1

(2k j + j − n + 2μSz ). (B23)

In principle, the expressions in (B12), (B15), (B20), and (B23) suffice to evaluate the commutator [Sm
μ, Sn

μ̄]− = Cmn;μ, but this

result is—put lightly—quite a mess: the expression for E (p)
mn;μ in (B23) involves a sum over p mutually dependent intermediate
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variables, each term of which additionally contains a product of p factors. We therefore devote the rest of this section to
simplifying our result for the commutator [Sm

μ, Sn
μ̄]−.

Observing that in (B23) we always have 0 � k1 � k2 � · · · � kp � m − p − 1, we can rearrange the order of the sums and
relabel kp →  to get

E (p)
mn;μ = n!

(n − p)!

m−p−1∑
=0

D()
m−p,n−p;μ(2 + Fnp;μ)

∑
(k,p−1,)

p−1∏
j=1

(2kp− j − j + Fnp;μ), (B24)

where for shorthand we define

Fnp;μ ≡ p − n + 2μSz,
∑

(k,q,)

X ≡
∑

k1=0

∑
k2=k1

· · ·
∑

kq=kq−1

X. (B25)

We now further define

fnp;μ(k, q) ≡ ( − k + q)( + k − q + Fnp;μ), (B26)

and evaluate sums successively over kp−1, kp−2, . . . , k1, finding

∑
(k,p−1,)

p−1∏
j=1

(2kp− j − j + Fnp;μ) =
∑

(k,p−2,)

p−1∏
j=2

(2kp− j − j + Fnp;μ) fnp;μ(kp−2, 1) (B27)

= 1

(r − 1)!

∑
(k,p−r,)

p−1∏
j=r

(2kp− j − j + Fnp;μ)
r−1∏
q=1

fnp;μ(kp−r, q) (B28)

= 1

(p − 1)!

p−1∏
q=1

fnp;μ(0, q) (B29)

=
(

 + p − 1

p − 1

) p−1∏
q=1

( − q + Fnp;μ). (B30)

Substitution of this result together with D()
m−p,n−p;μ using (B15) into (B24) then gives us

E (p)
mn;μ = n!

(n − p − 1)!
Sn−p−1

μ̄ Sm−p−1
μ Gmnp;μ (B31)

with

Gmnp;μ ≡
m−p−1∑

=0

(
 + p − 1

p − 1

)
(m − p − )( + m − p + Fnp;μ)(2 + Fnp;μ)

p−1∏
q=1

( − q + Fnp;μ) (B32)

=
(

m

p + 1

) p∏
q=0

(m − p − q + Fnp;μ). (B33)

We can further simplify

p∏
q=0

(m − p − q + Fnp;μ) =
p∏

q=0

(m − n − q + 2μSz ) =
p+1∑
q=0

(−1)p+1−q

[
p + 1

q

]
(m − n + 2μSz )q, (B34)

where [ p
q ] is an unsigned Stirling number of the first kind, and finally

p∑
q=0

(−1)p−q

[
p

q

]
(m − n + 2μSz )q =

p∑
q=0

(−1)p−q

[
p

q

] q∑
=0

(
q



)
(m − n)q−(2μSz ) (B35)

=
p∑

=0

2

p∑
q=

(−1)p−q

[
p

q

](
q



)
(m − n)q−(μSz ). (B36)
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Putting everything together, we finally have

E (p−1)
mn;μ = p!

(
m

p

)(
n

p

)
Sn−p

μ̄ Sm−p
μ

p∑
=0

ε p
mn(μSz ), (B37)

with

ε p
mn ≡ 2

p∑
q=

(−1)p−q

[
p

q

](
q



)
(m − n)q−, (B38)

where in this final form E (0)
mn;μ = Dmn;μ, which together with the expansion for Cmn;μ in (B20) implies that

[
Sm

μ , Sn
μ̄

]
− =

min{m,n}∑
p=1

p!

(
m

p

)(
n

p

)
Sn−p

μ̄ Sm−p
μ

p∑
=0

ε p
mn(μSz ) (B39)

and

Sm
μ Sn

μ̄ =
min{m,n}∑

p=0

p!

(
m

p

)(
n

p

)
Sn−p

μ̄ Sm−p
μ

p∑
=0

ε p
mn(μSz ). (B40)

If we wish to order products of collective spin operators with Sz in between Sμ̄ and Sμ, then

Sm
μ Sn

μ̄ =
min{m,n}∑

p=0

p!

(
m

p

)(
n

p

)
Sn−p

μ̄ Z (p)
mn;μ̄Sm−p

μ , (B41)

where

Z (p)
mn;μ̄ ≡

p∑
=0

ε p
mn(−[m − p] + μSz ) =

p∑
q=0

ζ pq
mn(μ̄Sz )q, (B42)

with

ζ pq
mn ≡

p∑
=q

ε p
mn

(


q

)
(−1)(m − p)−q = (−1)p2q

p∑
s=q

[
p

s

](
s

q

)
(m + n − 2p)s−q. (B43)

Here [ p
s ] is an unsigned Stirling number of the first kind.

APPENDIX C: PRODUCT OF ARBITRARY ORDERED COLLECTIVE SPIN OPERATORS

The most general product of collective spin operators that we need to compute is

S pqr
mn;μ = Sp

μ(μSz )qSr
μ̄S

μ(μSz )mSn
μ̄ =

min{r,}∑
k=0

k!

(
r

k

)(


k

)
Sp+−k

μ Z̃ (k)
qrm;μSr+n−k

μ̄ , (C1)

where

Z̃ (k)
qrm;μ ≡ ( − k + μSz )qZ (k)

r;μ(r − k + μSz )m (C2)

=
k∑

a=0

ζ ka
r

q∑
b=0

( − k)q−b

(
q

b

) m∑
c=0

(r − k)m−c

(
m

c

)
(μSz )a+b+c (C3)

is defined in terms of Z (k)
r;μ and ζ ka

r as, respectively, given in (B42) and (B43). The (anti-)commutator of two ordered products of
collective spin operators is then simply[

Sp
μ(μSz )qSr

μ̄, S
μ(μSz )mSn

μ̄

]
± = S pqr

mn;μ ± Smn
pqr;μ. (C4)

APPENDIX D: SANDWICH IDENTITIES FOR SINGLE-SPIN DECOHERENCE CALCULATIONS

In this section we derive several identities that will be necessary for computing the effects of single-spin decoherence on
ordered products of collective spin operators, i.e., on operators of the form S

μ(μSz )mSn
μ̄. These identities all involve sandwiching

a collective spin operator between operators that act on individual spins only, and summing over all individual spin indices. Our
general strategy will be to use commutation relations to push single-spin operators together, and then evaluate the sum to arrive
at an expression involving only collective spin operators.
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We first compute sums of single-spin operators sandwiching (μSz )m, when necessary making use of the identity in (A3). The
unique cases up to Hermitian conjugation are, for S ≡ N/2 and μ, ν ∈ {+1,−1},∑

j

s( j)
z (μSz )ms( j)

z =
∑

j

s( j)
z s( j)

z (μSz )m = 1

4

∑
j

1 j (μSz )m = 1

2
S(μSz )m, (D1)

∑
j

s( j)
z (μSz )ms( j)

ν = (μSz )m
∑

j

s( j)
z s( j)

ν = 1

2
(μSz )mνSν = 1

2
νSν (μν + μSz )m, (D2)

∑
j

s( j)
ν (μSz )ms( j)

ν =
∑

j

s( j)
ν s( j)

ν (μν + μSz )m = 0, (D3)

∑
j

s( j)
ν̄ (μSz )ms( j)

ν =
∑

j

s( j)
ν̄ s( j)

ν (μν + μSz )m = (S − νSz )(μν + μSz )m. (D4)

We are now equipped to derive similar identities for more general collective spin operators. Making heavy use of identities (A4)
and (B6) to push single-spin operators through transverse collective spin operators, we again work through all combinations that
are unique up to Hermitian conjugation, finding∑

j

s( j)
z S

μ(μSz )mSn
μ̄s( j)

z = 1

2
(S −  − n)S

μ(μSz )mSn
μ̄ + nS−1

μ (S + μSz )(−1 + μSz )mSn−1
μ̄ , (D5)

∑
j

s( j)
z S

μ(μSz )mSn
μ̄s( j)

μ = 1

2
μS+1

μ (1 + μSz )mSn
μ̄ − μn

(
S −  − 1

2
[n − 1]

)
S

μ(μSz )mSn−1
μ̄

− μn(n − 1)S−1
μ (S + μSz )(−1 + μSz )mSn−2

μ̄ , (D6)

∑
j

s( j)
z S

μ(μSz )mSn
μ̄s( j)

μ̄ = −1

2
μS

μ(μSz )mSn+1
μ̄ + μS−1

μ (S + μSz )(−1 + μSz )mSn
μ̄, (D7)

∑
j

s( j)
μ S

μ(μSz )mSn
μ̄s( j)

μ = nS+1
μ (μSz )mSn−1

μ̄ − n(n − 1)S
μ(S + μSz )(−1 + μSz )mSn−2

μ̄ , (D8)

∑
j

s( j)
μ S

μ(μSz )mSn
μ̄s( j)

μ̄ = S
μ(S + μSz )(−1 + μSz )mSn

μ̄, (D9)

∑
j

s( j)
μ̄ S

μ(μSz )mSn
μ̄s( j)

μ = S
μ(S −  − n − μSz )(1 + μSz )mSn

μ̄ + n(2S −  − n + 2)S−1
μ (μSz )mSn−1

μ̄

+ n( − 1)(n − 1)S−2
μ (S + μSz )(−1 + μSz )mSn−2

μ̄ . (D10)

APPENDIX E: UNCORRELATED, PERMUTATIONALLY SYMMETRIC SINGLE-SPIN DECOHERENCE

In this section we work out the effects of permutationally symmetric decoherence of individual spins on collective spin
operators of the form S

μ(μSz )mSn
μ̄. For compactness, we define

D(g)O ≡ D({g( j) : j = 1, 2, . . . , N})O =
∑

j

(
g( j)†Og( j) − 1

2
[g( j)†

g( j),O]+

)
, (E1)

where g is an operator that acts on a single spin, g( j) is an operator that acts with g on spin j and trivially on all other spins, and
N is the total number of spins.

1. Decay-type decoherence

The effect of decoherence via uncorrelated decay (μ = −1) or excitation (μ = 1) of individual spins is described by

D(sμ)O =
∑

j

(
s( j)
μ̄ Os( j)

μ − 1

2

[
s( j)
μ̄ s( j)

μ ,O
]
+

)
=

∑
j

s( j)
μ̄ Os( j)

μ − SO + μ

2
[Sz,O]+. (E2)

In order to determine the effect of this decoherence on general collective spin operators, we expand the anticommutator[
Sz, S

μ(μSz )mSn
μ̄

]
+ = SzS


μ(μSz )mSn

μ̄ + S
μ(μSz )mSn

μ̄Sz = μS
μ( + n + 2μSz )(μSz )mSn

μ̄, (E3)

which implies, using (D9),

D(sμ̄)
(
S

μ(μSz )mSn
μ̄

) = S
μ(S + μSz )(−1 + μSz )mSn

μ̄ − S
μ

[
S + 1

2 ( + n) + μSz
]
(μSz )mSn

μ̄, (E4)
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and, using (D10),

D(sμ)
(
S

μ(μSz )mSn
μ̄

) = S
μ(S −  − n − μSz )(1 + μSz )mSn

μ̄ − S
μ

[
S − 1

2 ( + n) − μSz
]
(μSz )mSn

μ̄

+ n(2S −  − n + 2)S−1
μ (μSz )mSn−1

μ̄ + n( − 1)(n − 1)S−2
μ (S + μSz )(−1 + μSz )mSn−2

μ̄ . (E5)

Decoherence via jump operators s( j)
μ̄ only couples operators S

μ(μSz )mSn
μ̄ to operators S

μ(μSz )m′
Sn

μ̄ with m′ � m. Decoherence

via jump operators s( j)
μ , meanwhile, makes operators S

μ(μSz )mSn
μ̄ “grow” in m through the last term in (E5), although the sum

 + m + n does not grow.

2. Dephasing

The effect of decoherence via single-spin dephasing is described by

D(sz )O =
∑

j

(
s( j)

z Os( j)
z − 1

2

[
s( j)

z s( j)
z ,O

]
+

)
=

∑
j

s( j)
z Os( j)

z − 1

2
SO. (E6)

From (D5), we then have

D(sz )
(
S

μ(μSz )mSn
μ̄

) = − 1
2 ( + n)S

μ(μSz )mSn
μ̄ + nS−1

μ (S + μSz )(−1 + μSz )mSn−1
μ̄ . (E7)

Decoherence via single-spin dephasing makes operators S
μ(μSz )mSn

μ̄ “grow” in m, although the sum  + m + n does not grow.

3. General case

The most general type of single-spin decoherence is described by

D(g)O =
∑

j

(
g( j)†Og( j) − 1

2
[g( j)†

g( j),O]+

)
, g ≡ gzsz + g+s+ + g−s−. (E8)

To simplify (E8), we expand

g†Og = |gz|2szOsz +
∑

μ

(|gμ|2sμ̄Osμ + g∗
μ̄gμsμOsμ + g∗

zgμszOsμ + g∗
μ̄gzsμOsz ) (E9)

and

g†g = 1

4
|gz|2 + 1

2

∑
μ

[|gμ|2(1 − 2μsz ) + μ(g∗
zgμ − g∗

μ̄gz )sμ], (E10)

which implies

D(g)O =
∑

X∈{z,+,−}
|gX |2D(sX )O +

∑
μ, j

(
g∗

μ̄gμs( j)
μ Os( j)

μ + g∗
zgμs( j)

z Os( j)
μ + g∗

μ̄gzs
( j)
μ Os( j)

z

) − 1

4

∑
μ

μ(g∗
zgμ − g∗

μ̄gz )[Sμ,O]+.

(E11)

In order to compute the effect of this decoherence on general collective spin operators, we expand the anticommutator[
Sμ, S

μ(μSz )mSn
μ̄

]
+ = S+1

μ [(μSz )m + (1 + μSz )m]Sn
μ̄ − nS

μ(n − 1 + 2μSz )(μSz )mSn−1
μ̄ . (E12)

Recognizing a resemblance between terms in (E12) and (D6), we collect terms to simplify∑
j

s( j)
z S

μ(μSz )mSn
μ̄s( j)

μ − 1

4
μ

[
Sμ, S

μ(μSz )mSn
μ̄

]
+ = Kmn;μ + Lmn;μ (E13)

and likewise ∑
j

s( j)
μ S

μ(μSz )mSn
μ̄s( j)

z + 1

4
μ

[
Sμ, S

μ(μSz )mSn
μ̄

]
+ = Kmn;μ + Mmn;μ (E14)

with

Kmn;μ ≡ 1
4μS+1

μ [(1 + μSz )m − (μSz )m]Sn
μ̄, (E15)

Lmn;μ ≡ −μnS
μ

[
S −  − 3

4 (n − 1) − 1
2μSz

]
(μSz )mSn−1

μ̄ − μn(n − 1)S−1
μ (S + μSz )(−1 + μSz )mSn−2

μ̄ , (E16)

Mmn;μ ≡ μnS
μ

[
(S + μSz )(−1 + μSz )m − 1

2

(
1
2 [n − 1] + μSz

)
(μSz )m

]
Sn−1

μ̄ . (E17)
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Defining for completion

Pmn;μ ≡
∑

j

s( j)
μ S

μ(μSz )mSn
μ̄s( j)

μ = nS+1
μ (μSz )mSn−1

μ̄ − n(n − 1)S
μ(S + μSz )(−1 + μSz )mSn−2

μ̄ , (E18)

and

Q(g)
mn;μ ≡ g∗

μ̄gμPmn;μ + (g∗
zgμ + g∗

μ̄gz )Kmn;μ + g∗
zgμLmn;μ + g∗

μ̄gzMmn;μ, (E19)

we finally have

D(g)
(
S

μ(μSz )mSn
μ̄

) =
∑

X∈{z,+,−}
|gX |2D(sX )

(
S

μ(μSz )mSn
μ̄

) + Q(g)
mn;μ + [

Q(g)
nm;μ

]†
. (E20)

Note that the sum  + m + n for operators S
μ(μSz )mSn

μ̄ does not grow under this type of decoherence.

APPENDIX F: SANDWICH IDENTITIES FOR COLLECTIVE SPIN DECOHERENCE CALCULATIONS

In analogy with the work in Appendix D, in this section we work out sandwich identities necessary for collective spin
decoherence calculations. The simplest cases are

SμS
μ(μSz )mSn

μ̄Sμ̄ = S+1
μ (μSz )mSn+1

μ̄ , (F1)

SμS
μ(μSz )mSn

μ̄Sz = μS+1
μ (n + μSz )(μSz )mSn

μ̄, (F2)

SzS

μ(μSz )mSn

μ̄Sz = S
μ[n + ( + n)μSz + (μSz )2](μSz )mSn

μ̄. (F3)

With a bit more work, we can also find

S
μ(μSz )mSn

μ̄Sμ = S+1
μ (1 + μSz )mSn

μ̄ − nS
μ(n − 1 + 2μSz )(μSz )mSn−1

μ̄ , (F4)

which implies

SμS
μ(μSz )mSn

μ̄Sμ = S+2
μ (1 + μSz )mSn

μ̄ − nS+1
μ (n − 1 + 2μSz )(μSz )mSn−1

μ̄ , (F5)

SzS

μ(μSz )mSn

μ̄Sμ = μS+1
μ ( + 1 + μSz )(1 + μSz )mSn

μ̄ − μnS
μ[(n − 1) + (2 + n − 1)μSz + 2(μSz )2](μSz )mSn−1

μ̄ . (F6)

Finally, we compute

Sμ̄S
μ(μSz )mSn

μ̄Sμ = [
S

μSμ̄ − S−1
μ ( − 1 + 2μSz )

]
(μSz )m

[
SμSn

μ̄ − n(n − 1 + 2μSz )Sn−1
μ̄

]
= S

μSμ̄(μSz )mSμSn
μ̄ − S

μ[( + 1) + n(n + 1) + 2( + n)μSz](1 + μSz )mSn
μ̄

+ nS−1
μ [( − 1)(n − 1) + 2( + n − 2)μSz + 4(μSz )2](μSz )mSn−1

μ̄ , (F7)

where

Sμ̄(μSz )mSμ = Sμ̄Sμ(1 + μSz )m = (SμSμ̄ − 2μSz )(1 + μSz )m = Sμ(2 + μSz )mSμ̄ − 2μSz(1 + μSz )m, (F8)

so

Sμ̄S
μ(μSz )mSn

μ̄Sμ = S+1
μ (2 + μSz )mSn+1

μ̄ − S
μ[( + 1) + n(n + 1) + 2( + n + 1)μSz](1 + μSz )mSn

μ̄

+ nS−1
μ [( − 1)(n − 1) + 2( + n − 2)μSz + 4(μSz )2](μSz )mSn−1

μ̄ . (F9)

APPENDIX G: COLLECTIVE SPIN DECOHERENCE

In this section we work out the effects of collective decoherence on general collective spin operators. For shorthand, we define

D(G)O ≡ D({G})O = G†OG − 1
2 [G†G,O]+, (G1)

where G is a collective spin jump operator.

1. Decay-type decoherence and dephasing

Making use of the results in Appendix F, we find that the effects of collective decay-type decoherence on general collective
spin operators are given by

D(Sμ̄)
(
S

μ(μSz )mSn
μ̄

) = −S+1
μ [(1 + μSz )m − (μSz )m]Sn+1

μ̄ + 1
2 S

μ[( − 1) + n(n − 1) + 2( + n)μSz](μSz )mSn
μ̄, (G2)
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and

D(Sμ)
(
S

μ(μSz )mSn
μ̄

) = S+1
μ [(2 + μSz )m − (1 + μSz )m]Sn+1

μ̄ − S
μ[( + 1) + n(n + 1) + 2( + n + 1)μSz](1 + μSz )mSn

μ̄

+ 1
2 S

μ[( + 1) + n(n + 1) + 2( + n + 2)μSz](μSz )mSn
μ̄

+ nS−1
μ [( − 1)(n − 1) + 2( + n − 2)μSz + 4(μSz )2](μSz )mSn−1

μ̄ . (G3)

Similarly, the effect of collective dephasing is given by

D(Sz )
(
S

μ(μSz )mSn
μ̄

) = − 1
2 ( − n)2S

μ(μSz )mSn
μ̄. (G4)

2. General case

More generally, we consider jump operators of the form

G ≡ GzSz + G+S+ + G−S−, (G5)

the decoherence effects of which are determined by

G†OG = |Gz|2SzOSz +
∑

μ

(|Gμ|2Sμ̄OSμ + G∗
μ̄GμSμOSμ + G∗

z GμSzOSμ + G∗
μ̄GzSμOSz ), (G6)

and

G†G = |Gz|2S2
z +

∑
μ

(|Gμ|2Sμ̄Sμ + G∗
z GμSzSμ + G∗

μ̄GzSμSz + G∗
μ̄GμS2

μ

)
, (G7)

which implies

D(G)O =
∑

X∈{z,+,−}
|GX |2D(SX )O +

∑
μ

(
G∗

μ̄GμSμOSμ + G∗
z GμSzOSμ + G∗

μ̄GzSμOSz
)

− 1

2

∑
μ

(
G∗

μ̄Gμ

[
S2

μ,O
]
+ + G∗

z Gμ[SzSμ,O]+ + G∗
μ̄Gz[SμSz,O]+

)
. (G8)

In order to compute the effect of this decoherence on general collective spin operators, we expand the anticommutators[
S2

μ, S
μ(μSz )mSn

μ̄

]
+ = S+2

μ [(2 + μSz )m + (μSz )m]Sn
μ̄ − 2nS+1

μ (n + 2μSz )(1 + μSz )mSn−1
μ̄

+ n(n − 1)S
μ[(n − 1)(n − 2) + 2(2n − 3)μSz + 4(μSz )2](μSz )mSn−2

μ̄ , (G9)[
SzSμ, S

μ(μSz )mSn
μ̄

]
+ = μS+1

μ [( + 1 + μSz )(μSz )m + (n + 1 + μSz )(1 + μSz )m]Sn
μ̄

− μnS
μ[n(n − 1) + (3n − 1)μSz + 2(μSz )2](μSz )mSn−1

μ̄ , (G10)[
SμSz, S

μ(μSz )mSn
μ̄

]
+ = μS+1

μ [( + μSz )(μSz )m + (n + μSz )(1 + μSz )m]Sn
μ̄

− μnS
μ[(n − 1)2 + 3(n − 1)μSz + 2(μSz )2](μSz )mSn−1

μ̄ . (G11)

Collecting terms and defining

G(±)
z,μ ≡ 1

2

(
G∗

z Gμ ± G∗
μ̄Gz

)
, (G12)

L̃(G)
mn;μ ≡ μ

[(
 − n + 1

2

)
G(+)

z,μ + (
 + 1

2

)
G(−)

z,μ

]
S+1

μ (1 + μSz )mSn
μ̄

− μ
[(

 − n + 1
2

)
G(+)

z,μ + (
n + 1

2

)
G(−)

z,μ

]
S+1

μ (μSz )mSn
μ̄ + μG(−)

z,μS+1
μ μSz[(1 + μSz )m − (μSz )m]Sn

μ̄, (G13)

M̃ (G)
mn;μ = −μn(n − 1)

[(
 − n + 1

2

)
G(+)

z,μ + (
 − 1

2

)
G(−)

z,μ

]
S

μ(μSz )mSn−1
μ̄

− 2μn
[(

 − n + 1
2

)
G(+)

z,μ + (
 + 1

2 n − 1
)
G(−)

z,μ

]
S

μ(μSz )m+1Sn−1
μ̄ − 2μnG(−)

z,μS
μ(μSz )m+2Sn−1

μ̄ , (G14)

P̃mn;μ ≡ − 1
2 S+2

μ [(2 + μSz )m − 2(1 + μSz )m + (μSz )m]Sn
μ̄ + nS+1

μ [(n + 2μSz )(1 + μSz )m − (n − 1 + 2μSz )(μSz )m]Sn−1
μ̄

− n(n − 1)S
μ

[
1
2 (n − 1)(n − 2) + (2n − 3)μSz + 2(μSz )2

]
(μSz )mSn−2

μ̄ , (G15)

Q̃(G)
mn;μ ≡ G∗

μ̄GμP̃mn;μ + L̃(G)
mn;μ + M̃ (G)

mn;μ, (G16)
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we then have

D(G)
(
S

μ(μSz )mSn
μ̄

) =
∑

X∈{z,+,−}
|GX |2D(SX )

(
S

μ(μSz )mSn
μ̄

) + Q̃(G)
mn;μ + [

Q̃(G)
nm;μ

]†
. (G17)

Note that the sum  + m + n for operators S
μ(μSz )mSn

μ̄ grows by one if Gμ �= 0 or Gμ̄ �= 0, and does not grow otherwise.

APPENDIX H: EMULATING PARTICLE LOSS
IN A SPIN MODEL

Here we discuss the details of emulating particle loss with
O(1/N ) error, where N is the initial number of particles in a
system that we wish to describe with a spin model. Starting
with the full algebra of creation and annihilation operators
(whether bosonic or fermionic) in a system, spin models
are typically implemented by identifying a subalgebra of
relevant “spin” operators that satisfy appropriate commutation
relations. Two-state particles on a lattice, for example, are
described by annihilation operators c js indexed by a lattice
site j ∈ Z and an internal state index s ∈ {↑,↓}, enabling the
straightforward construction of spin operators

σ ( j)
x ≡ c†

j,↑c j,↓ + H.c., σ ( j)
y ≡ −ic†

j,↑c j,↓ + H.c.,

σ ( j)
z ≡ c†

j,↑c j,↑ − c†
j,↓c j,↓, 1( j) ≡ c†

j,↑c j,↑ + c†
j,↓c j,↓, (H1)

which satisfy the same commutation relations as the standard
Pauli operators. These spin operators can be more compactly
defined in the form

σ ( j)
α ≡

∑
r,s∈{↑,↓}

c†
jr 〈r|σα|s〉 c js, (H2)

where σα for α ∈ {x, y, z,1} is a Pauli operator, with σ1 ≡ 1,
and 〈r|σα|s〉 denotes a matrix element of σα . This construc-
tion exemplifies how the set of jump operators J bare

loss ≡ {c js}
that generate particle loss cannot be constructed from spin
operators, which are generally bilinear in particle creation or
annihilation operators. When working on the level of a spin
model, therefore, we can at best only emulate the effect of
particle loss by some indirect means.

To understand the effect of particle loss on collective spin
operators, we first define a single multibody spin operator
addressing sites j = { j1, j2, . . . , j| j|},

σ jα ≡
∏
j∈ j

σ ( j)
α j

, (H3)

and expand

D
(
J bare

loss

)
σ jα =

∑
k,s

(
c†

ksσ jαcks − 1

2
[c†

kscks, σ jα]+

)
(H4)

=
∑
k∈ j

∑
s

c†
ksσ

(k)
αk

cks

∏
j ∈ j
j �= k

σ ( j)
α j

+
∑
k /∈ j

∑
s

c†
kscksσ jα

− 1

2

∑
k

[1(k), σ jα]+ (H5)

=
∑
k∈ j

∑
q,r,s

〈q|σαk |r〉 c†
ksc

†
kqckrcks

∏
j ∈ j
j �= k

σ ( j)
α j

− | j|σ jα. (H6)

In order to have an actual spin model, fermionic statistics
or energetic considerations must forbid multiple occupation
of individual lattice sites. In that case, the on-site four-point
product c†

ksc
†
kqckrcks = 0 vanishes, and

D
(
J bare

loss

)
σ jα = −| j|σ jα. (H7)

Up to O(1/N ) corrections, a collective spin operator Sm

essentially consists of |m|-body operators of the form σ jα

with | j| = |m|, which implies that the dissipator Dloss defined
by DlossSm = −|m|Sm describes particle loss with O(1/N )
error. We note that the dissipator Dloss is essentially the depo-
larizing channel, i.e., Dloss = D(Jloss) for Jloss = {s( j)

α } with
α ∈ {x, y, z} and j ∈ {1, 2, . . . , N}. A direct implementation
of Dloss with DlossSm = −|m|Sm, however, is much more
efficient than evaluating the depolarizing channel D(Jloss)
with the ingredients in Appendices D and E.

APPENDIX I: INITIAL CONDITIONS

Here we compute the expectation values of collective spin operators with respect to spin-polarized (also Gaussian, or spin-
coherent) states. These states are parametrized by polar and azimuthal angles θ ∈ [0, π ), φ ∈ [0, 2π ), and lie within the Dicke
manifold spanned by states |k〉 ∝ SS+k

+ |↓〉⊗N with S ≡ N/2 and Sz |k〉 = k |k〉:

|θ, φ〉 ≡ [cos (θ/2)e−iφ/2 |↑〉 + sin (θ/2)eiφ/2 |↓〉]⊗N =
S∑

k=−S

(
N

S + k

)1/2

cos (θ/2)S+k sin (θ/2)S−ke−ikφ |k〉 . (I1)

We can likewise expand, within the Dicke manifold,

Sz =
S∑

k=−S

k|k|k〉〈k|, Sμ =
S−δμ,1∑

k=−S+δμ,−1

gμ(k)|k + μ〉〈k| =
S−δμ̄,1∑

k=−S+δμ̄,−1

gμ̄(k)|k〉〈k + μ̄|, (I2)
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where μ̄ ≡ −μ ∈ {+1,−1} and

gμ(k) ≡
√

(S − μk)(S + μk + 1), (I3)

which implies

S
μ

(
μSm

z

)
Sn

μ̄ =
S−δμ,1 max{,n}∑

k=−S+δμ,−1 max{,n}
(μk)m

⎡
⎣−1∏

p=0

gμ(k + μp)

⎤
⎦

⎡
⎣n−1∏

q=0

gμ(k + μq)

⎤
⎦|k + μ〉〈k + μn| (I4)

=
μS−δμ,1 max{,n}∑

μk=−μS−δμ,−1 max{,n}
(μk)m (S − μk)!

(S + μk)!

[
(S + μk + )!

(S − μk − )!

(S + μk + n)!

(S − μk − n)!

]1/2

|k + μ〉〈k + μn| (I5)

=
S−max{,n}∑

k=−S

km (S − k)!

(S + k)!

[
(S + k + )!

(S − k − )!

(S + k + n)!

(S − k − n)!

]1/2

|μ(k + )〉〈μ(k + n)|. (I6)

This expansion allows us to compute the expectation value

〈θ, φ|S
μ

(
μSm

z

)
Sn

μ̄|θ, φ〉 = eiφμ(−n)N!
S−max{,n}∑

k=−S

km(S − k)! fμn(k, θ )

(S + k)!(S − k − )!(S − k − n)!
(I7)

= eiφμ(−n)(−1)mN!
N−max{,n}∑

k=0

(S − k)m(N − k)! f̃μn(k, θ )

k!(N − k − )!(N − k − n)!
(I8)

where

fμn(k, θ ) ≡ cos (θ/2)N+μ(2k++n) sin (θ/2)N−μ(2k++n), (I9)

f̃μn(k, θ ) ≡ fμn(k − S, θ ) = cos (θ/2)2Nδμ,−1+μ(2k++n) sin (θ/2)2Nδμ,1−μ(2k++n). (I10)

Defining the states

|+Z〉 ≡ |0, 0〉 = |↑〉⊗N , |−Z〉 ≡ |π, 0〉 = |↓〉⊗N , |X 〉 ≡ |π/2, 0〉 =
( |↑〉 + |↓〉√

2

)⊗N

, (I11)

some particular expectation values of interest are

〈νZ|S
μ(μSz )mSn

μ̄|νZ〉 = δn ×
{

(S − n)m N!n!
(N−n)! μ = ν

δn,0(−S)m μ �= ν
(I12)

and

〈X |S
μ(μSz )mSn

μ̄|X 〉 = (−1)m N!

2N

N−max{,n}∑
k=0

(S − k)m(N − k)!

k!(N − k − )!(N − k − n)!
. (I13)

APPENDIX J: COMPUTING CORRELATORS WITH THE
TRUNCATED SHORT-TIME EXPANSION

Here we provide a pedagogical tutorial for computing
correlators using the truncated short-time TST expansion. For
concreteness, we nominally consider N spins evolving under
the OAT Hamiltonian

HOAT = χS2
z , (J1)

additionally subject to spontaneous single-spin decay at rate
γ−, with jump operators J− = {s( j)

− : j = 1, 2, . . . , N}. The
equation of motion for a Heisenberg operator (S

+Sm
z Sn

−)(t )
is

d

dt

〈
S

+Sm
z Sn

−
〉 = iχ

〈[
S2

z , S
+Sm

z Sn
−
]
−
〉 + γ−

〈
D(J−)

(
S

+Sm
z Sn

−
)〉
,

(J2)

where we have suppressed the explicit time dependence of
operators for brevity. Using the results in Appendices C and
E1, respectively, to evaluate the commutator [S2

z , S
+Sm

z Sn
−]−

and dissipator D(J−)(S
+Sm

z Sn
−) in (J2), we can expand

d

dt

〈
S

+Sm
z Sn

−
〉

= iχ
〈
( − n)S

+( + n + 2Sz )Sm
z Sn

−
〉

+ γ−

〈
S

+

[
(S +Sz )(−1+ Sz )m−

(
S + +n

2
+ Sz

)
Sm

z

]
Sn

−

〉
.

(J3)

In practice, we do not want to keep track of such an expansion
by hand, especially in the case of, e.g., the TAT and TNT
models with more general types of decoherence, for which
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the analog of (J3) may take several lines just to write out
in full. Defining the operators Sm ≡ Sm+

+ Smz
z Sm−

− with m ≡
(m+, mz, m−) for shorthand, we note that the vector space
spanned by {Sm} is closed under time evolution. We therefore
expand

d

dt
〈Sn〉 = 〈TSn〉 =

∑
m

〈Sm〉 Tmn, (J4)

where T is a superoperator that generates time evolution
for Heisenberg operators. In the present example, the matrix
elements Tmn ∈ C of T are defined by (J3) and (J4). For
any Hamiltonian H with decoherence characterized by sets
of jump operators J and decoherence rates γJ , the matrix
elements Tmn are more generally defined by

TSn = i[H,Sn]− +
∑
J

γJD(J )Sn =
∑

m

SmTmn. (J5)

The results in Appendices C, E, and G can be used to write
model-agnostic codes that compute matrix elements Tmn, tak-
ing a particular Hamiltonian H and decoherence processes
{(J , γJ )} as inputs.

In order to compute a quantity such as spin squeezing,
we need to compute correlators of the form 〈Sn(t )〉, where
for clarity we will reintroduce the explicit time dependence
of Heisenberg operators Sn(t ). The order-M TST expansion
takes

〈Sn(t )〉 = 〈etTSn(0)〉 =
∑
k�0

t k

k!
〈T kSn(0)〉

=
∑
k�0

t k

k!

∑
m

〈Sm(0)〉 T k
mn →

M∑
k=0

t k

k!

∑
m

〈Sm(0)〉 T k
mn,

(J6)

where T k
mn are matrix elements of the kth time derivative

operator T k , given by

T 0
mn ≡

{
1 m = n,

0 otherwise , T 1
mn ≡ Tmn,

T k>1
mn ≡

∑
p1,p2,...,pk−1

Tmpk−1
· · · Tp3 p2

Tp2 p1
Tp1n. (J7)

Matrix elements T k
mn and initial-time expectation values

〈Sm(0)〉 are thus computed as needed for any particular cor-
relator 〈Sn(t )〉 of interest, and combined according to (J6).
Note that initial-time expectation values 〈Sm(0)〉 are an input
to the TST expansion, and need to be computed separately for
any initial state of interest; expectation values with respect to
spin-polarized (Gaussian) states are provided in Appendix I.
In practice, we further collect terms in (J6) to write

〈Sn(t )〉 →
M∑

k=0

cnkt k, cnk ≡ 1

k!

∑
m

〈Sm(0)〉 T k
mn, (J8)

where cnk are time-independent coefficients for the expansion
of 〈Sn(t )〉. After computing the coefficients cnk , there is only

negligible computational overhead to compute the correlator
〈Sn(t )〉 for any time t .

APPENDIX K: ANALYTICAL RESULTS FOR THE
ONE-AXIS TWISTING MODEL

The OAT Hamiltonian for N spin-1/2 particles takes the
form

HOAT = χS2
z = 1

2
χ

∑
j<k

σ ( j)
z σ (k)

z + 1

4
Nχ, (K1)

where σ
( j)
z represents a Pauli-z operator acting on spin j. This

model is a special case of the zero-field Ising Hamiltonian
previously solved in Ref. [64] via exact, analytical treatment
of the quantum trajectory Monte Carlo method for computing
expectation values. The solution therein accounts for coherent
evolution in addition to decoherence via uncorrelated single-
spin decay, excitation, and dephasing, respectively, at rates γ−,
γ+, and γz (denoted by �ud, �du, and �el in Ref. [64]). Letting
S ≡ N/2 and μ, ν ∈ {+1,−1}, we adapt expectation values
computed in Ref. [64] for the initial state |X 〉 ∝ (|↑〉 + |↓〉)⊗N

with Sx |X 〉 = S |X 〉 evolving under HOAT, finding

〈S+(t )〉 = Se−κt�(χ, t )N−1, (K2)

〈(SμSz )(t )〉 = −μ

2
〈Sμ(t )〉 + S

(
S − 1

2

)

× e−κt�(μχ, t )�(χ, t )N−2, (K3)

〈(SμSν )(t )〉 = (1 − δμν )(S + μ 〈Sz(t )〉) + S

(
S − 1

2

)

× e−2κt�([μ + ν]χ, t )N−2, (K4)

where

�(X, t ) ≡ e−λt

[
cos (ωX t ) + λ

ωX
sin (ωX t )

]
,

�(X, t ) ≡ e−λt

(
� + iX

ωX

)
sin (ωX t ), (K5)

for

κ ≡ 1
2 (γ+ + γ− + γz ), λ ≡ 1

2 (γ+ + γ−),

� ≡ γ+ − γ−, ωX ≡
√

X 2 − λ2 − iX�. (K6)

In order to compute spin squeezing as measured by the Ram-
sey squeezing parameter ξ 2 defined in (14), we additionally
need analytical expressions for 〈Sz(t )〉 and 〈S2

z (t )〉. As these
operators commute with both the OAT Hamiltonian and the
single-spin operators σ

( j)
z , their evolution is governed entirely

by decay-type decoherence (see Appendix E1), which means

d

dt
〈Sz(t )〉 = S(γ+ − γ−) − (γ+ + γ−) 〈Sz(t )〉 , (K7)

d

dt

〈
S2

z (t )
〉 = S(γ+ + γ−) + 2

(
S − 1

2

)
(γ+ − γ−) 〈Sz(t )〉

− 2(γ+ + γ−) 〈S2
z (t )〉 . (K8)
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FIG. 4. Spin squeezing throughout decoherence-free evolution
of N = 100 spins initially in the state |X 〉, computed using both
exact methods (solid lines) and the TST expansion in Eq. (10) with
M = 35 (dashed lines). Solid circles mark the times at which the TST
expansion gives an unphysical result with ξ 2 < 0.

The initial conditions 〈Sz(0)〉 = 0 and 〈S2
z (0)〉 = S/2 then

imply

〈Sz(t )〉 = S

(
γ+ − γ−
γ+ + γ−

)
(1 − e−(γ++γ− )t ),

(K9)〈
S2

z (t )
〉 = 1

2
S + S

(
S − 1

2

)( 〈Sz(t )〉
S

)2

.

With appropriate assumptions about the relevant sources of
decoherence, the expectation values in (K2)–(K4) and (K9)
are sufficient to compute the spin squeezing parameter ξ 2 in
(14) at any time throughout evolution of the initial state |X 〉
under HOAT.

APPENDIX L: DIAGNOSING BREAKDOWN OF
THE TST EXPANSION

In Fig. 1 of the main text, the TST expansion provided
nearly exact results for squeezing until a sudden departure
that quickly resulted in an unphysical squeezing parameter,
ξ 2 < 0. In general, however, there is no fundamental relation-
ship between the breakdown of the TST expansion and the
conditions for a physical squeezing parameter ξ 2. A proper
diagnosis of breakdown therefore requires inspection of the
correlators 〈Sn(t )〉 used to compute the squeezing parameter
ξ 2, which upon breakdown will rapidly take unphysical values
with |〈Sn(t )〉| � S|n|. As an example, Fig. 4 shows the squeez-
ing parameter ξ 2 throughout decoherence-free evolution of
N = 100 spins initially in the state |X 〉. In this example, the
squeezing computed by the TST expansion for the TAT model
diverges from the exact answer without an immediate and
obvious signature of breakdown. Nonetheless, breakdown can
still be diagnosed by inspection of individual correlators, as
shown in Fig. 5, where we plot Im 〈S2

+〉 as a function of time
for N = 100 spins evolving under the TAT without decoher-
ence. Figure 5 shows that breakdown clearly occurs around
Nχt � 7, when the correlator 〈S2

+〉 begins to diverge to values
�S2 = (N/2)2 = 2500 in magnitude. A joint inspection of
Figs. 4 and 5 suffices to trace the anomalous behavior of ξ 2

0 2 4 6 8

Time (Nχt)

−3

−2

−1

0

1

2

3

S
2 +

×103

FIG. 5. A collective spin correlator in the TAT model with N =
100 spins and no decoherence, computed using the TST expansion
with M = 35. The divergence of correlators of this sort can be used
to diagnose the breakdown of the TST expansion.

from Nχt ≈ 7 back to Nχt ≈ 6, when it first took a sudden
turn before becoming unphysical at Nχt ≈ 8.

APPENDIX M: SPIN SQUEEZING WITH
STRONG DECOHERENCE

Here we provide supplementary evidence of our finding
in Sec. III that the TNT model can produce more squeezing
than the OAT or TAT models in the presence of strong
decoherence. To this end, Fig. 6 shows the minimal squeezing
parameter ξ 2

min achievable with N = 100 spins through the
OAT, TAT, and TNT models as a function of the rate γ0 at
which individual spins undergo spontaneous decay, excitation,
and dephasing. These results were computed with quantum
trajectory simulations, with 103 trajectories per data point.
While the OAT and TAT models produce more squeezing than
the TNT model with weak decoherence, this squeezing falls
off faster with an increasing decoherence rate γ0. The relative
robustness of TNT is in part a consequence of the fact that
TNT initially generates squeezing at a faster rate than OAT
or TAT, thereby allowing it to produce more squeezing before
the degrading effects of decoherence kick in.

10−2 10−1 100

γ0/χ

10−1

ξ
2 m

in

OAT

TAT

TNT

FIG. 6. Optimal spin squeezing of N = 100 spins undergoing
spontaneous decay, excitation, and dephasing at rates γ− = γ+ =
γz = γ0, computed using quantum trajectory simulations with 103

trajectories per data point.
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APPENDIX N: HEISENBERG OPERATORS
IN OPEN QUANTUM SYSTEMS

Here we explain the origin and character of the mean-
zero “noise” operators EO(t ) that appear in the expan-
sion of a Heisenberg operator O(t ) = ∑

m Om(t )Sm + EO(t )
with time-dependent coefficients Om(t ) for time-independent
Schrödinger operators Sm. Our discussion should clarify why
noise operators play no role in our calculation of expectation
values of the form 〈O(t )〉 and 〈OQ(t )〉, despite the fact that
noise operators generally do need to be considered in the
calculation of more general multitime correlators in open
quantum systems [65].

In any closed quantum system with initial state ρ and prop-
agator U (t ), such that the state at time t is ρ(t ) ≡ U (t )ρU †(t ),
time-dependent Heisenberg operators O(t ) are uniquely de-
fined from time-independent Schrödinger operators O by

〈O(t )〉 ≡ tr [ρ(t )O] = tr [ρO(t )]. (N1)

Enforcing (N1) for arbitrary initial states ρ forces O(t ) =
U †(t )OU (t ). In an open quantum system, however, the def-
inition of a Heisenberg operator is not so straightforward.
Open systems can often be understood as subsystems of a
larger closed system. Consider therefore an open system S
with environment E , a joint initial state ρSE , and propagator
USE (t ). The reduced state ρS (t ) of S at time t is

ρS (t ) ≡ tr E [ρSE (t )] = tr E [USE (t )ρSEU †
SE (t )] ≡ US (t )ρS,

(N2)

where ρS ≡ ρS (0) is a time-independent state of S in the
Heisenberg picture, S denotes the space of operators on S, and
the quantum channel US (t ) has the decomposition [71]

US (t )ρS =
∑

j

U ( j)
S (t )ρSU ( j)†

S (t ) (N3)

with ordinary operators U ( j)
S (t ) on S. We can therefore expand

〈OS (t )〉 = tr [ρS (t )OS] = tr [US (t )ρSOS] = tr [ρSU†
S (t )OS]

= tr [ρSOS (t )] = 〈OS (t )〉 , (N4)

where U†
S (t ) is the adjoint map of US (t ) (with respect to a trace

inner product between operators on S), and we define the time-
dependent operator

OS (t ) ≡ U†
S (t )OS =

∑
j

U ( j)†
S (t )OSU ( j)

S (t ). (N5)

We thus find that substituting OS (t ) in place of OS (t ) suffices
for the calculation of correlators 〈OS (t )〉, thereby accounting
for the validity of the equation of motion in (2). As we show
below, this substitution also suffices for the calculation of two-
time correlators of the form 〈OSQS (t )〉 when the environment
E is Markovian.

The problem with defining Heisenberg operators OS (t )
by OS (t ) only becomes evident when considering products
of Heisenberg operators. One would like for the product
of two Heisenberg operators OS (t ) and QS (t ) to satisfy
OS (t )QS (t ) = (OSQS )(t ). This intuition can be formalized by

observing that

〈OS (t )〉 = tr [ρSE (t )(OS ⊗ 1E )] = tr [ρSE (OS ⊗ 1E )(t )]

= 〈(OS ⊗ 1E )(t )〉 , (N6)

where 1E is the identity operator on E , expectation values of
Heisenberg operators on system A ∈ {S, E , SE} are taken with
respect to the state ρA, and

(OS ⊗ 1E )(t ) ≡ U †
SE (t )(OS ⊗ 1E )USE (t ). (N7)

By expanding Heisenberg operators similarly to (N6) and
(N7), we then find

〈OS (t )QS (t )〉 = 〈(OS ⊗ 1E )(t )(QS ⊗ 1E )(t )〉
= 〈(OSQS ⊗ 1E )(t )〉 = 〈(OSQS )(t )〉 . (N8)

The expression in (N5), however, makes it clear that generally
OS (t )QS (t ) �= (OSQS )(t ). To correct for this discrepancy, we
define

OS (t ) ≡ OS (t ) + EOS (t ) (N9)

in terms of new “noise” operators EOS (t ) that are essentially
defined to enforce the consistency of operator products such
as OS (t )QS (t ) = (OSQS )(t ). Self-consistency forces noise
operators to be mean zero, as

〈EOS (t )〉 = 〈OS (t )〉 − 〈OS (t )〉 = 0. (N10)

Furthermore, if the environment E is Markovian, then noise
operators are also uncorrelated with initial-time observables,
i.e., 〈OSEQS (t )〉 = 0, which means that noise operators can
be neglected in the calculation of two-time correlators of the
form 〈OSQS (t )〉. To see why, we observe that a Markovian
environment is essentially defined to satisfy

ρSE (t ) = USE (t )ρSEU †
SE (t ) ≈ ρS (t ) ⊗ ρE = US (t )ρS ⊗ ρE ,

(N11)

with ρE a time-independent steady state of the environment. If
we enforce (N11) for all states ρS , e.g., the maximally mixed
state ρ

(1)
S ∝ 1S and ρ

(2)
S ≡ ρ

(1)
S + OS with OS any traceless

operator on S with operator norm ‖OS‖ � 1/tr 1S (i.e., such
that ρ

(2)
S remains positive semidefinite, or a valid quantum

state), then by linearity we find that

USE (t )(1S ⊗ ρE )U †
SE (t ) ≈ US (t )1S ⊗ ρE ,

(N12)
USE (t )(OS ⊗ ρE )U †

SE (t ) ≈ US (t )OS ⊗ ρE ,

which implies that the Markov approximation (N11) holds
even if we replace ρS by any operator on S, and in particular

USE (t )ρSE (OS ⊗ 1E )U †
SE (t ) = USE (t )(ρSOS ⊗ ρE )U †

SE (t )

≈ US (t )(ρSOS ) ⊗ ρE . (N13)

We can therefore expand

〈OSQS (t )〉 = tr [ρSE (OS ⊗ 1E )U †
SE (t )(QS ⊗ 1E )USE (t )]

(N14)

= tr [USE (t )ρSE (OS ⊗ 1E )U †
SE (t )(QS ⊗ 1E )],

(N15)
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and invoke the Markov approximation in (N13) to find that

〈OSQS (t )〉 ≈ tr [US (t )(ρSOS )QS] = tr [ρSOSU†
S (t )QS]

= 〈OSQS (t )〉 , (N16)

which implies

〈OSEQS (t )〉 = 〈OSQS (t )〉 − 〈OSQS (t )〉 ≈ 0. (N17)

Noise operators thus play no role in the calculation of correla-
tors such as C(t ) in (15). In contrast, noise operators generally
do play a role in the calculation of multitime correlators of
the form 〈∏ j O

( j)
S (t j )〉 [65]. Furthermore, these calculations

generally require additional assumptions about the environ-
ment. To keep our discussion simple and general, we therefore
exclude the effects of noise terms in Sec. IV.

APPENDIX O: SHORT-TIME LINEAR RESPONSE AND
TWO-TIME CORRELATORS

Here we discuss the appearance of two-time correlation
functions in the short-time linear response of correlators to
perturbations of a Hamiltonian. Consider an initial Hamilto-
nian H perturbed by an operator V with ‖V ‖ � ‖H‖, where
‖O‖ denotes the operator norm of O, such that the net Hamil-

tonian is H̃ = H + V . We denote the generator of Heisenberg
time evolution under the perturbed (unperturbed) Hamiltonian
by T̃ (T ). These generators are related by

T̃ = T + iV (O1)

where V is a superoperator the action of which on operators
O is defined by

VO ≡ [V,O]−. (O2)

Through quadratic order in the time t and linear order in the
perturbation V , we can say that

etT̃ ≈ 1
2 [etT , eitV ]+ ≈ etT + 1

2 it[etT ,V ]+. (O3)

Defining perturbed and unperturbed Heisenberg operators
Õ(t ) and O(t ) that, respectively, satisfy 〈Õ(t )〉 = 〈etT̃O〉 and
〈O(t )〉 = 〈etTO〉, we thus find that for sufficiently small times
t and weak perturbations V

〈Õ(t ) − O(t )〉 = 〈(etT̃ − etT )O〉
≈ 1

2 it (〈[V,O]−(t )〉 + 〈[V,O(t )]−〉). (O4)

Two-time correlators 〈VO(t )〉 and 〈O(t )V 〉, in addition to the
expectation values 〈(VO)(t )〉 and 〈(OV )(t )〉, thus determine
the short-time linear response of correlators 〈O(t )〉 to pertur-
bations V of a Hamiltonian.
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