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Exploiting landscape geometry to enhance quantum optimal control
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The successful application of quantum optimal control (QOC) over the past decades has unlocked the
possibility of directing the dynamics of quantum systems. Nevertheless, solutions obtained from QOC algorithms
are usually highly irregular, making them unsuitable for direct experimental implementation. In this paper, we
propose a method to reshape those unattractive optimal controls. The approach is based on the fact that solutions
to QOC problems are not isolated policies but constitute multidimensional submanifolds of control space. This
was originally shown for finite-dimensional systems. Here, we analytically prove that this property is still valid
in a continuous variable system. The degenerate subspace can be effectively traversed by moving in the null
subspace of the Hessian of the cost function, allowing for the pursuit of secondary objectives. To demonstrate
the usefulness of this procedure, we apply the method to smooth and compress optimal protocols in order to
meet laboratory demands.
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I. INTRODUCTION

Recent technological advances related to the manipulation
of quantum systems have triggered the development of new
quantum-based technology, also known as the second quan-
tum revolution. Proposals for communication, computation,
and simulation protocols based on quantum mechanical ef-
fects [1–4] are nowadays being transformed into reality thanks
to the extraordinary capabilities of physical platforms such as
ion traps, quantum dots, and superconducting qubits [5–8].
In addition, particular protocols require exquisite control of
external fields. In this context, optimization methods based
on optimal control theory were originally put forward in the
late 1980s and have been strikingly successful at producing
high-fidelity control protocols [9,10].

The standard problem in quantum optimal control (QOC)
is to find a control field, ω(t ), that maximizes a certain
objective functional, J[ω(t )], i.e., the probability of reaching
a target state or unitary transformation. In general, this is
achieved by introducing a parametrization on the control field
function, with M control variables, and by performing a gradi-
ent descent procedure [11]. A large number of pioneer simula-
tions and laboratory experiments rapidly indicated that QOC
optimization was remarkably easy [12]. To understand this sit-
uation, the theory of quantum control landscapes (QCL) was
developed [13]. The QCL is the hypersurface that maps the
space of controls into corresponding values of the objective
functional. Remarkably, when no constraints are imposed on
the control, the QCL is devoid of suboptimal local maxima.
This result was an important step in explaining the success
of QOC procedures but also led to misleading conclusions,
since constraints are inherent to both laboratory and numerical
real-world QOC [14,15].

More recently, it was shown that, for the state transfer con-
trol problem in finite-dimensional quantum systems, the Hes-
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sian of the landscape at a solution has an extensive null space
and only a finite number of negative eigenvalues [16,17]. The
result is Hamiltonian independent, and there are at most 2N −
2 nonzero Hessian eigenvalues, where N is the Hilbert-space
dimension. This is the number of free parameters needed to
specify an arbitrary target state. When more control variables
are introduced in the control setting, solutions multiply and
form connected level-sets of continuously changing control
fields that preserve the yield [18,19]. This emergent plurality
of solutions produce an almost trap-free QCL. Instead, if the
number of controls is shrunk and approaches Mmin, traps have
been shown to dominate the landscape [14,15]. Other types
of constraints, like limiting the pulse amplitudes, bandwidth,
fluence, or protocol duration, impact in a similar fashion. The
common approach to solve control problems is then to place
hundreds of control variables (many more than needed) and to
perform local optimizations in high-dimensional landscapes
where optimization algorithms work best.

In this paper, we exploit the existence of continuous
level-sets of solutions to enhance standard protocols pro-
duced by typical QOC algorithms. Originally stated for finite-
dimensional systems [17], we show the result is also valid in a
continuous variable control problem: the driving of a quantum
harmonic oscillator. We focus on the practical consequences
it may have on laboratory QOC. Raw QOC solutions are
not suited for experimental implementation due to differ-
ent reasons including high bandwidth or large amplitudes,
which makes it hard for the equipment to cope with [20–26].
In this context, we propose to exploit the aforementioned
geometric property to reshape optimal protocols in order
to meet two common experimental demands: the need to
smooth or to compress optimal control fields. Starting from
an unappealing solution produced with the standard QOC
pulse engineering framework, we launch secondary-objective
gradient descents constrained to the principal objective opti-
mal level-set. With this method we are able to produce, in a
straightforward way, high-fidelity solutions that meet labora-
tory requirements.
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This paper is organized as follows. In Sec. II, we introduce
the model, the control task, and the associated cost functional.
Section III provides analytic proof of the existence of optimal
level-sets in the control landscape. We compute the Hessian
of the cost functional and show that when it is evaluated at an
arbitrary globally optimal control, there are only two nonzero
eigenvalues. In Sec. IV we address real-world QCLs, which
are naturally constrained to finite-dimensional control spaces.
We show how to move inside these sets and provide two
examples of second-objective optimization. Finally, Sec. V
holds the concluding remarks.

II. MODEL AND CONTROL PROBLEM

Consider a particle in a one-dimensional time-dependent
harmonic trap. The evolution is described by the Hamiltonian

Ĥ (t ) = p̂2

2m
+ 1

2
mω(t )2x̂2, (1)

where x̂ and p̂ are the canonical operators, m is the mass of the
particle, and ω(t ) is the time-dependent frequency of the trap.
In the following we take 1

ω(0) as the unit of time and set m =
h̄ = 1 throughout the paper. Initially, the trap has frequency
ω(0) = ω0. Suppose we want to open the trap in such a way
that, at time t = T , its frequency is ω(T ) = ωT <ω0 while the
initial and final occupation numbers are the same (as defined
from the initial and final Fock basis, respectively). These
protocols are particularly important in the design of quantum
thermal machines [27–31].

Arbitrary protocols produce what is called quantum fric-
tion. This comes about because by the end of the protocol the
Hamiltonian is no longer diagonal in the basis of states with
well-defined particle number N̂ (0) = â†(0)â(0). The Hamil-
tonian can be diagonalized by introducing a new destruction
operator through a Bogoliubov transformation [32],

â(T ) = αâ(0) + βâ†(0), (2)

where α and β are protocol-dependent complex coefficients
satisfying |α|2 − |β|2 = 1. See Appendix A for a detailed
description on how to compute these parameters, given a
particular protocol. If the initial state is a well-defined particle
number state (or an incoherent superposition thereof), then the
mean particle number at the end, as measured by the operator
N̂ (T ) = â†(T )â(T ), will increase:

N (T ) = 〈â†(T )â(T )〉 = N (0)(1 + 2|β|2) + |β|2. (3)

Friction limits work extraction, so frictionless evolution is
particularly relevant when designing superadiabatic strokes in
the context of quantum heat engines [27–31]. This problem
has also been addressed within the shortcuts to adiabaticity
formalism [33–36]. A natural measure for the departure from
target frictionless evolution, or simply infidelity, is given by

Iω(t )(T ) = |β|2, (4)

so we use this as our objective. Note that for an optimal pro-
tocol with |β|2 = 0 the Bogoliubov transformation reduces to

â(T ) = â(0)eiθ , (5)

so the only remaining parameter is the phase factor θ .

The hypersurface defined by the functional Eq. (4), map-
ping real-valued functions ω(t ) into real numbers Iω(t ), is
referred to as the quantum control landscape (QCL). Min-
imization of Eq. (4) will achieve any one of the infinite θ -
parametrized possible frictionless evolutions. In the following
section, we prove solutions to the control problem, that is,
global minima of the QCL, form continuous submanifolds of
control space. This degeneracy is not related to the freedom in
θ from Eq. (5). For an inspection of θ -specific QCLs, which
also present degenerate subspaces of solutions, please refer to
Appendix B.

III. HESSIAN ANALYSIS

In this section we show that solutions to the unconstrained,
infinite-dimensional QCL live on infinite-dimensional sub-
manifolds of control space, with only a finite number of di-
rections heading away from the solution level-set. In order to
explore the critical topology of the landscape, let us calculate
the change in infidelity produced by a differential variation of
the protocol ω(t ), which is given by the inner product of the
gradient and the direction of perturbation δω(t ) as

δI =
∫ T

0
∇I (t )δω(t )dt ≡ 〈∇I (t ), ω(t )〉, (6)

where

∇I (t ) = 2Re[∇β(t )β∗]. (7)

In turn, the gradient of β is a complex function given by

∇β = β| f (t )|2 + α∗ f 2(t ), (8)

where f (t ) is the solution to the equation of motion, Eq. (A1)
in Appendix A. Follow Appendix C for the derivation of
Eq. (8). Points in the landscape can be classified into critical
and non-critical. Non-critical points have a nonzero gradient
vector ∇I . Movement along the directions that yield δI = 0,
those orthogonal to the gradient, preserves fidelity yield.
Instead, critical points are special points on the landscape
where the movement in any direction produces no first-order
variation, δI = 0. This is because the gradient is identically
zero. A second-order variation of the objective

δ2I =
∫ T

0
dt

∫ T

0
dt ′∇2I (t, t ′)δω(t )δω(t ′) (9)

can provide valuable information about the topology of the
QCL. The Hessian ∇2I is given by

∇2I (t, t ′) = 2Re[∇β(t )∇β∗(t ′) + ∇2β(t, t ′)β∗]. (10)

At a global optimum, where Iω(t ) ≡ |β|2 = 0, the second
term vanishes and the expression is reduced to

∇2I|opt (t, t ′) = 2∇β(t )∇β∗(t ′). (11)

Considering a basis for the space of allowed control func-
tions �i(t ), with i = 0, . . . ,∞, we can represent the gradient
as a vector, where each component is given by the inner
product of ∇β(t ) with the corresponding basis function

∇βi = 〈∇β(t ),�i(t )〉. (12)
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FIG. 1. Each point in three-dimensional (3D) space represents a
possible protocol, where ωi is the amplitude of the ith pulse in the
sequence. Solutions are scattered colored dots. They form continuous
curves, 1D submanifolds of 3D parameter space. An expansion task
with ω(0) = 1, ω(T ) = 0.25, and T = 1.8 was chosen.

Similarly, the Hessian can be expressed as an infinite-
dimensional square matrix, where each entry is given by

∇2Iopt
i, j = 2〈∇β(t ),�i(t )〉〈∇β∗(t ),� j (t )〉. (13)

It is clear from Eq. (11) that any basis function �i which
is orthogonal to both Re[∇β] and Im[∇β] will produce a
null entry in the ∇2Iopt

i, j matrix. This means that there are at
most two directions of decreasing fidelity in the vicinity of
any globally optimal point.

IV. NAVIGATION IN SOLUTION SETS AND SECONDARY
OBJECTIVE OPTIMIZATION

In this section, we deal with finite-length piecewise con-
stant controls. Real-world computer simulations and labora-
tory experiments are, as mentioned before, intrinsically con-
strained to finite-length control protocols. Consider a control
function ω(t ) represented by a vector of control variables,

ω(t ) → {ωk} ≡ 
ω, (14)

one for each constant-amplitude equal-length time step dtk =
tk+1 − tk = dt , where k = 1, 2, . . . , M. For the control prob-
lem considered we have shown, in the previous section, that
the Hessian evaluated at an optimal protocol has an extensive
null space with at most two nonzero eigenvalues. This implies
that, if M > Mmin = 2 parameters are used, continuous level-
sets of solutions arise. To get a better understanding of this
situation, in Fig. 1, we draw solution sets for M = 3. Eight
different closed sets of solutions are depicted in the image.
We have chosen, for the simulations, an expansion stroke with
ω(0) = 1, ω(T ) = 0.25, and T = 1.8.

An important practical consequence, unfolding from the
existence of continuous submanifolds of solutions to the

control problem, is that secondary-objective gradient de-
scents, constrained to these optimal sets, can be easily put
forward. We tackle two specific demands in present-day QOC:
(i) We show how noisy protocols can be leveled-up to produce
smooth, experiment friendly control fields, and (ii) we demon-
strate how long, high-dimensional control sequences can be
compressed into equally optimal low-dimensional solutions.

First, let us describe the smoothing procedure. We start
from an initial random field and perform a descent follow-
ing the gradient of |β|2, until a critical point in the land-
scape is met. If the infidelity is above a certain threshold,
I > Ith = 10−5, we choose a new random field and descend
again, repeating until a solution is obtained. Please refer to
Appendix D for details on the numerical methods employed.
Once we have a solution, we introduce an auxiliary cost
function,

C1 =
M∑

i=2

(ωi − ωi−1)2, (15)

that penalizes jumps between consecutive pulses in the control
sequence. Moving in the direction of the gradient of C1

will produce ever-smoother fields. Thus, we initiate a second
descent, starting from the original solution and following, this
time, the gradient of this auxiliary cost projected into the
null subspace of the Hessian, Eq. (11). To exemplify, we set
M = 48 and present the achieved trajectory in Fig. 2(a). The
initial solution, darkest blue curve in the figure, displays a
highly irregular profile with C1 = 243. This control is continu-
ously morphed until the projected gradient vanishes, reaching
the dark red curve, with C1 = 0.7. Although this is the best
C1 value for the level-set, it does not necessarily mean it is the
best-possible smooth solution. Very much like in Fig. 1, where
several disconnected solution level-sets exist, it may happen
that the smallest values of C1 reside in a different set than the
starting one. Since the algorithm is local, it will not be able
to reach those values. Nevertheless, although the M = 3 sets
look disconnected, higher-dimensional M = 6 paths between
them were found to exist. With that in mind, coming back to
our M = 48 problem, we take the final (dark red) solution and
double the entries of the field to produce a 96-dimensional
one. Now, we are able to continue the descent since the
projected gradient is no longer zero in this higher-dimensional
space. We attain cost values of C1 = 0.03. This observation
suggests local aspects of highly constrained QCLs may be
progressively lost when constraints are released, providing a
way of accessing ever-better values of secondary objective.

As a second example of this harnessing of the degeneracy
of solutions to QOC problems, we demonstrate how protocol
compression can be achieved. We contemplate the possibility
of compressing an originally M-dimensional field into L =
M/K dimensions, with integers L, K < M. The secondary
descent is performed with a new cost function that splits the
field into L chunks and penalizes the jumps between all of the
pulses contained in each chunk:

C2 =
L∑

k=1

K∑
i> j=1

(
ωk

i − ωk
j

)2
, (16)

where the superscript k indicates which of the L chunks
the pulse belongs to and the subscripts i and j span the K
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FIG. 2. Navigating in solution space to achieve secondary fea-
tures. Each point in the graph depicts the value of the ith component
of a given protocol, corresponding to the time interval �ti. That is,
the curves represent distinct protocols, which were colored relative
to their secondary-objective cost value. All of them are optimal with
respect to the main objective in Eq. (4). (a) A smoothing descent with
C1, and (b) a compression procedure with C2. Both processes start
with the same (dark blue) protocol and achieve remarkably different
optimal fields (dark red) depending on which secondary cost was
targeted.

pulses inside each chunk. In particular, we are interested in
casting the M = 48 solution into L = Mmin = 2 dimensions.
Figure 2(b) presents the compression sequence, starting again
with the same (dark blue) 48-dimensional field used to test the
smoothing procedure, this time yielding a secondary cost of
C2 = 2780 and achieving a perfect M = 2 (dark-red) protocol,
with C2 = 0.

V. SUMMARY AND OUTLOOK

In this work, we have exploited an extraordinary property
of QCLs, namely, that optima are not isolated points in
the landscape but form continuously varying level-sets that
allow for secondary-objective optimization. We chose a driven
quantum harmonic oscillator to explore the validity of this
result, which was originally formulated for discrete systems
[17], in a continuous variable setting.

Solutions provided by standard QOC techniques are usu-
ally not suited for direct experimental use [20,21], and there
is an ongoing effort to design methods to build protocols
that meet laboratory demands [24]. We have shown that the
exploitation of QCL’s geometry can provide a powerful and
systematic tool to address those requirements. To illustrate
this, we focused on two main experimental challenges. First,

we showed how to smooth originally irregular QOC solutions,
allowing for the experimental hardware to cope. In a second
example, we demonstrated how long optimal sequences can
be compressed into their minimal-length partners. Minimal-
length protocols are important because they minimize the
resources needed to control. Any given experimental setup
has a natural limit to the maximum number of pulses it can
implement. This is due to the fact that there are hardware
limitations both to the fastest switching time δTmin and to the
maximum protocol duration Tmax before decoherence comes
into play. Therefore, the protocol length is constrained to
M < Mexp = Tmax/δTmin. In turn, control experiments are re-

stricted to a maximum system size, Nmax = Mexp+2
2 , that is,

provided the Mmin protocols can be efficiently generated. Of
course, compressed protocols could be searched for within the
standard QOC framework, but previous work has indicated the
complex nature of highly constrained landscapes, featuring
large trap populations [14,15]. An approach based on the
compression of easy-to-get high-dimensional optimal fields,
bypassing optimization in trap-signed landscapes, may en-
able the production of otherwise unattainable solutions. Also,
compressed protocols may expose the relevant physical mech-
anisms employed by the control, in contrast to the obscure
nature of high-dimensional protocols.

Quantum control landscapes were originally put forward
to investigate the complexity of protocol search. Although
originally claimed to be trap free, traps have been shown to
exist in the most relevant situations, that is, when constraints
are imposed on the control. An efficient way to cope with
trap-dominated landscapes is still one of the main challenges
in QOC [37,38] and in optimization theory in general. Aside
from their original aim, the study of QCLs can also serve for
other purposes. In particular, understanding that solutions live
in continuous level-sets allows for the design of methods to
achieve secondary features in the controls, as we have shown.
A natural extension of the method to more complex scenarios,
based on numerical approximations of the Hessian, is treated
in Ref. [39].
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APPENDIX A: THE BOGOLIUBOV COEFFICIENT

In this Appendix, we explain how to relate the control
protocols ω(t ) with the infidelity values of Eq. (4). To do that,
we need an expression for the Bogoliubov coefficient β. In
fact, we do not need to calculate α because it only accounts for
the phase factor between the bases, θ . The reader is invited to
follow Appendix C, where we incorporate such a phase factor
into the control task.

The general evolution of the system is captured by the
equation of motion

f̈ (t ) + ω2(t ) f (t ) = 0, (A1)
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whose solution, f (t ), given initial conditions f (0) = 1√
2ω0

,

ḟ (0) = −i
√

ω0
2 , allows us to relate time-evolved canonical

operators in terms of initial creation and destruction operators:

x(t ) = f (t )a + f ∗(t )a†,

p(t ) = ḟ (t )a + ḟ ∗(t )a†. (A2)

We adopt the notation A ≡ a(T ) and a ≡ a(0). Similarly,
imposing final-time conditions to Eq. (1), another solution,
g(t ), relating canonical operators with final time second-
quantization operators is obtained:

x(t ) = g(t )A + g∗(t )A†,

p(t ) = ġ(t )A + ġ∗(t )A†,
(A3)

where g(T ) = 1√
2ωT

and ġ(T ) = −i
√

ωT
2 . Also, note that β

measures the degree of noncommutation between initial and
final time bases:

β∗ = [a, A]. (A4)

To link [a, A] with the solutions to the equation of motion,
f (t ) and g(t ), we can compute the commutator between
position and momentum operators written in terms of both
bases, (A2) and (A3), with the right-hand side of Eq. (2):

f (t )[a, A] + f ∗(t )[a†, A] = −g∗(t ),

ḟ (t )[a, A] + ḟ ∗(t )[a†, A] = −ġ∗(t ). (A5)

Finally, multiplying the first equation by ḟ ∗, the second
one by f ∗, and subtracting, we can solve for [a, A]. Noting
that the Wronskian between f (t ) and f ∗(t ) is f ḟ ∗ − ḟ f ∗ = i
(this condition follows directly from the preservation of the
canonical commutation relations), we arrive at

β = − i√
2ωT

[ ḟ (T ) + iωT f (T )]. (A6)

In summary, to calculate the performance of any given
protocol: (i) integrate EQ. (A1) for f (t ), (ii) time differentiate
f (t ) to get ḟ , (iii) evaluate both at time T , and (iv) plug in
expression (A6). An expression for α follows similarly from
Eq. (A5):

α = i√
2ωT

[ ḟ (T ) − iωT f (T )]. (A7)

APPENDIX B: THE FAMILY OF θ-PARAMETRIZED
LANDSCAPES

In this section, we explore a more specific class of control
problems in which, besides asking the field to generate a
frictionless evolution, we specify the phase, θ , between initial
and final bases in Eq. (5). To do so, we briefly introduce some
notions on the symplectic formalism. Let z(t ) = [x(t ), p(t )]T

denote the quadrature vector and S(t ) denote the symplectic
matrix associated with a propagator U (t ) such that

U †(t )zα (t )U (t ) =
∑

β

Sαβ (t )zβ (t ). (B1)

The time evolution of the quadrature vector is given by

z(t ) = S(t )z(0). (B2)

Combining Eqs. (A2) and (A3), we can express S(t ) as

S(t ) =
√

ω0

2

[
f (t ) + f ∗(t ) i

ω0
[ f (t ) − f ∗(t )]

ḟ (t ) + ḟ ∗(t ) i
ω0

[ ḟ (t ) − ḟ ∗(t )]

]
. (B3)

Now, regarding the objective, it is customary to express the
objective in terms of the Frobenious norm between the final-
time symplectic matrix S(T ) and a desired target W (θ ):

I[θ ] = tr{[S(T ) − W (θ )][S(T ) − W (θ )]T }. (B4)

To complete the derivation, let us find an expression for
the target. Introducing Eq. (5) into a time t = T version of
Eq. (A3), where g(T ) = 1√

2ωT
and ġ(T ) = −i

√
ωT
2 , we get

xtarg = 1√
2ωT

aeiθ + 1√
2ωT

a†e−iθ ,

(B5)

ptarg = −i

√
ωT

2
aeiθ + i

√
ωT

2
a†e−iθ ,

and having in mind(
xtarg

ptarg

)
= W (θ )

(
x0

p0

)
, (B6)

where

x0 = 1√
2ω0

(a + a†),

(B7)

p0 = −i

√
ω0

2
(a − a†),

we arrive at an expression for the family of target matrices:

W (θ ) =
√

ω0

4ωT
eiθ

[
1 + e−2iθ i

ω0
(1 − e−2iθ )

−iωT (1 − e−2iθ ) ωT
ω0

(1 + e−2iθ )

]
.

(B8)

Although this is the traditional approach to continuous
variable control, we opt in the main text to get rid of this
freedom of phase using a θ -independent objective, Eq. (4).
We explicitly tested the existence of level-sets of solutions
in any landscape belonging to the one-dimensional family of
landscapes in Eq. (B4). Thus, the degeneracy of solutions in
the QCL is not linked to this freedom.

APPENDIX C: THE GRADIENT OF β

In order to derive an expression for ∇β(t ), let us examine
how an infinitesimal variation of the control field perturbs the
Bogoliubov coefficient (A6):

δβ = i[g(T )δ ḟ (T ) − δ f (T )ġ(T )]

=
∫ T

0
[β| f (t )|2 + α∗ f 2(t )]δω(t )dt . (C1)

The functions δ f (t ) and δ ḟ (t ) were obtained by solving
the inhomogeneous equation

δ f̈ + ω2(t )δ f = −2 f δω(t )ω(t ), (C2)

with the Green’s function method

δ f = −
∫ T

0
Gret (t, t ′) f (t ′)δω(t ′)dt ′, (C3)
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with Gret (t, t ′) = −i[ f (t ) f ∗(t ′) − f ∗(t ) f (t ′)]. Associating
the infinitesimal variation of β with an inner product,
〈∇β(t ), δω(t )〉, we arrive at the expression for the gradient
of β, Eq. (7).

APPENDIX D: NUMERICAL METHODS

Let us discuss here the details of the numerical methods
applied in the simulations. To determine the evolution of the
system, given a particular time-dependent protocol for the trap
ω(t ), Eq. (1) has to be integrated for f (t ). In principle, f (t )
could be approximated using numerical integration methods.
But, since we restrict to piecewise constant controls, cf.
Eq (14), f (t ) and ḟ (t ) can be computed exactly by concatenat-
ing the exact solutions to each constant-amplitude time step

f̈i(t ) + ωi fi(t ) = 0 (D1)

for i = 1, 2, . . . , M. That is, for t ∈ [ti, ti + dt] we have

f (t ) = fi(t − ti ),

ḟ (t ) = ḟi(t − ti ),
(D2)

where fi(t ) and ḟi(t ) are solutions to the ith Eq. (D1) with
the final value of the solutions to the previous interval as the
initial conditions

fi(t ) = fi−1 cos(ωit ) + ḟi−1

ωi
sin(ωit ),

ḟi(t ) = −ωi fi−1 sin(ωit ) + ḟi−1 cos(ωit ). (D3)

Here, f0 = 1√
2ω0

and ḟ0 = −i
√

ω0
2 , and we have adopted

the notation fi−1 = fi−1(dt ) and ḟi−1 = ḟi−1(dt ). Finally,
plugging f (T ) = fM and ḟ (T ) = ḟM in Eq. (A6) for β, we
compute the infidelity of any given protocol.

To search for solutions, we perform gradient descents in the
M-dimensional space of controls. Note that the expression for
the gradient given in Eq. (7) is not suitable for this purpose,
since it would map our piecewise constant M-dimensional
protocols onto the infinite-dimensional space of continuous
functions. A discrete ∇I , with components

∇Ii = ∂I

∂ωi
= 2Re[∇βiβ

∗], (D4)

can be obtained from a discrete ∇β,

∇βi = ∂β

∂ωi
= − i√

2ωT

[
∂ ḟM

∂ωi
+ iωT

∂ fM

∂ωi

]
, (D5)

which, in principle, could be computed by building symbolic
expressions for

fM = fM (ω1, . . . , ωM ),

ḟM = ḟM (ω1, . . . , ωM ),
(D6)

and taking the derivatives with respect to each time step. As
a matter of fact, these expressions grow exponentially large
with M, rendering it impractical for our purposes. We take an
iterative approach instead, just like we did for f (t ). Consider
the following matrices:

df =

⎡
⎢⎣

∂ f1

∂ω1

...
. . .

∂ fM

∂ω1

∂ fM

∂ωM

⎤
⎥⎦, d ḟ =

⎡
⎢⎢⎣

∂ ḟ1

∂ω1

...
. . .

∂ ḟM

∂ω1

∂ ḟM

∂ωM

⎤
⎥⎥⎦,

(D7)

where each element [df ]i j corresponds to the derivative of
fi(t ) with respect to ω j , and again, it is understood that each
function is evaluated at final time ∂ fi

∂ω j
= ∂ fi

∂ω j
(dt ). Of course,

these are lower triangular matrices, since ∂ fi

∂ω j
= 0 for j > i.

Notice that the last row in each matrix is everything we need
to compute ∇β. To build the matrices, first observe that the
diagonal elements can be easily computed by differentiating
Eq. (D2):

∂ fi

∂ωi
= −dt

[
fi−1 sin(ωidt ) − ḟi−1

ωi
cos(ωidt )

]

− ḟi−1

ω2
i

sin(ωidt ),

∂ ḟi

∂ωi
= −dt[ωi fi−1 cos(ωidt ) + ḟi−1 sin(ωidt )]

− fi−1 sin(ωidt ). (D8)

These elements can be used, in turn, to compute the subdi-
agonal ones:

∂ fi

∂ωi−1
= ∂ fi−1

∂ωi−1
cos(ωidt ) + ∂ ḟi−1

∂ωi−1

sin(ωidt )

ωi
,

(D9)
∂ ḟi

∂ωi−1
= −ωi

∂ fi−1

∂ωi−1
sin(ωit ) + ∂ ḟi−1

∂ωi−1
cos(ωit ),

and with these, those below. Iterating this procedure we are
able to build the matrices. A similar approach was taken to
construct the exact discrete Hessian, ∇2βi j = ∂2β

∂ωi∂ω j
, this time

using three-dimensional arrays to represent d2 f and d2 ḟ .
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