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We present results on the accurate one-dimensional (1D) modeling of simple atomic and molecular systems
excited by strong laser fields. We use atomic model potentials that we derive from the corrections proposed
earlier using the reduced ground-state density of a three-dimensional (3D) single-active electron atom. The
correction involves a change of the asymptotics of the 1D Coulomb model potentials while maintaining the
correct ground-state energy. We present three different applications of this method: we construct correct 1D
models of the hydrogen molecular ion, the helium atom, and the hydrogen molecule using improved parameters
of existing soft-core Coulomb potential forms. We test these 1D models by comparing the corresponding
numerical simulation results with their 3D counterparts in typical strong-field physics scenarios with near- and
mid-infrared laser pulses, having peak intensities in the 1014−1015 W/cm2 range, and we find an impressively
increased accuracy in the dynamics of the most important atomic quantities on the time scale of the excitation.
We also present the high-order harmonic spectra of the He atom, computed using our 1D atomic model potentials.
They show a very good match with the structure and phase obtained from the 3D simulations in an experimentally
important range of excitation amplitudes.
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I. INTRODUCTION

The interpretation of typical experiments in attosecond
and strong-field physics, including the pioneering results in
Refs. [1–13], often relies on the quantum description of
the involved atomic system driven by a strong laser pulse
[14–22]. Despite recent progress in analytic and numerical
solution techniques [23–30], the exact solution of the corre-
sponding true three-dimensional (3D) Schrödinger equation
is beyond reach in this nonperturbative range (except for
the simplest cases), which justifies the importance of good
approximations.

If the strong driving laser pulse is linearly polarized then
the most important features of the resulting quantum dy-
namics can usually be captured by a one-dimensional (1D)
approximation [31–45]. Such 1D models have increasing
importance for longer laser wavelengths where typical 3D
simulations become inefficient [46,47]. These typically use
various 1D model potentials to account for the motion of the
atomic system along the direction of the laser polarization.
However, the particular model potential can strongly influence
some of the 1D results and their quantitative comparison
with the true three-dimensional results is usually nontrivial
[37,48–50].

We addressed this problem for a single active electron
atom in Ref. [51]: we introduced the density-based 1D model
potential and, based on its features, we also found improved
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parameters for other well-known 1D model potentials. The
promising strong-field simulation results inspired us to extend
our modeling approach to simple atomic systems like the
hydrogen molecular ion, the helium atom, and the hydrogen
molecule, which is the subject of the present paper. Our key
idea is to require the Coulomb asymptotes in the 1D model
potentials to be equal to those obtained from the correspond-
ing reduced 3D ground-state single-electron density along the
direction of the laser polarization. Then we present the results
of careful numerical simulations of strong-field ionization
scenarios using these 1D model potentials, considering nearly
single-cycle laser pulses with carrier wavelengths of 725 nm
and 3045 nm. Comparing them with the corresponding 3D
simulation results, we make a conclusion about the recom-
mended use of these 1D model systems. We use atomic units
in this paper.

II. 3D REFERENCE SYSTEMS

In this section, we specify in more detail the strong-field
modeling of the selected three-dimensional systems: the he-
lium atom, the hydrogen molecular ion, and the hydrogen
molecule driven by a linearly polarized laser pulse. We also
outline the underlying numerical simulations, the results of
which we use later as reference when we compare the corre-
sponding one-dimensional results.

Although a suitable laser pulse may create also vibrations
and rotations in a diatomic molecule, we assume the nuclear
motion to be frozen throughout this paper, and we set the
molecular axis parallel to the polarization of the laser pulse.
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For the H2
+, we solve the three-dimensional Schrödinger

equation, both to compute the ground state and to obtain the
time evolution when driven by the laser pulse. For the two-
electron systems, He and H2, we chose the time-dependent
Hartree-Fock (TDHF) approach as the reference model, us-
ing a single atomic orbital in real three-dimensional space.
According to Ref. [52], this method provides a good approxi-
mation of the more elaborate and numerically demanding two-
electron results for He, driven by a laser pulse with parameters
very close to those in the present work, since the effect of
electron correlation is relatively small for He. We assume that
the ground states of He and H2 are spin singlets and that the
laser pulse does not interact with the spin degrees of freedom;
thus the orbital part of the two-electron wave function remains
symmetric during the time evolution.

The governing equation of the electrons’ motion can be
cast for all of the above cases into the following form, using
cylindrical coordinates ρ =

√
x2 + y2 and z:

i
∂�3D

∂t
= [Tz + Tρ + V + zEz(t ) + (N − 1)VH]�3D, (1)

where the kinetic-energy operator is split as

Tz = −1

2

∂2

∂z2
, Tρ = −1

2

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

]
. (2)

The one-electron potential

V (z, ρ) = − 1√
ρ2 + (

z − d
2

)2
− 1√

ρ2 + (
z + d

2

)2
(3)

contains the Coulomb interaction with the nuclei. The pa-
rameter d is the internuclear distance for H2

+ and H2, while
for d = 0 we get the helium atom (with its nucleus in the
origin). The zEz(t ) term of (1) corresponds to the interac-
tion with the laser field, polarized along the z axis, using
dipole approximation and length gauge [53–55]. The Ez(t )
denotes the electric field of the laser pulse evaluated in the
origin and we assume that it is present only after t > 0, i.e.,
Ez(t � 0) = 0.

In (1), we distinguish the one- and the two-electron cases
by the parameter N . For N = 2 the electron-electron in-
teraction is described in (1) by the time-dependent Hartree
potential, which is given by

VH(r, t ; �3D) =
∫ |�3D(r′, t )|2

|r − r′| d3r′. (4)

The presence of this potential makes Eq. (1) nonlinear in
�3D. In actual computations, we obtain this potential by solv-
ing the corresponding discretized Poisson equation ∇2VH =
−4π |�3D(r, t )|2 in cylindrical coordinates, to avoid the high-
dimensional integration.

This time-dependent Hamiltonian in (1) has axial symme-
try around the polarization axis of the electric field of the laser
pulse, which makes the use of cylindrical coordinates practical
and provides efficient calculation of the reduced dynamics
along the z axis.

For actual simulations, we use the efficient numerical
method described in [56], which incorporates the singularity
of the Hamiltonian directly, using the required discretized
Neumann and Robin boundary conditions. We compute the

ground states via imaginary time propagation with high-order
split-operator approximations [57]; then we compute the time
evolution up to a specified time Tmax.

To characterize the effects of the external field, we shall
use the ground-state population loss in a single-electron wave
function or in an electron orbital, defined as

g(t ) = 1 − |〈�3D(t = 0)|�3D(t )〉|2, (5)

which is to be compared with the corresponding function in
the 1D models we consider below.

In our considerations, the electron density given by

�3D(z, ρ, t ) = N |�3D(z, ρ, t )|2 (6)

plays an important role as we shall construct our one-
dimensional model potentials by an appropriate reduction of
this quantity.

III. 1D MODEL SYSTEMS

In order to model the above described 3D strong-field
process in 1D, it is customary to use the following form of
the time-dependent 1D Hamiltonian:

H (t ) = H0 + zEz(t ) = Tz + V0(z) + zEz(t ), (7)

where the effects of a strong few-cycle laser pulse are to be
modeled by the very same electric field Ez(t ) as in 3D.

We want to verify the physical correctness of the
above models by numerically solving the time-dependent
Schrödinger equation

i
∂

∂t
�(z, t ) = H (t )�(z, t ) (8)

and compare the time-dependent physical response of this
system with that of the original 3D TDSE.

A. Overview of 1D density-based atomic model potentials

The main question in (7) is the form of V0(z)
[31–38,40,41,43,44]. One of the possibilities proposed in our
previous work [51] for one electron atomic systems was that
we have introduced the reduced one-dimensional ground-state
density depending only on the z coordinate as

�z(z) = 2π

∫
�3D(z, ρ) ρ dρ, (9)

where �3D(z, ρ) is the 3D ground-state density. This made it
possible to calculate the density based model potential

V0(z) = E0 + 1√
�z(z)

Tz

√
�z(z), (10)

where
√

�z(z) stands as the reduced ground-state wave func-
tion, while E0 is the corresponding exact 3D ground-state
energy. This construction ensures that the reduced problem
yields exactly the same properties for the ground state as does
the original 3D atomic calculation. It is also an important
feature that this form preserves the ground-state energy in our
case, since the original 3D problem has long-range Coulomb
asymptotics.

In addition to these important physical properties, in the
cases of single-electron atoms an analytic expression could
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be calculated for V0(z) [51], which is of the form of a short-
range correction plus a 1D regularized Coulomb potential.
This long-range Coulomb part had an asymptotic form of
− 1

2 Z/z, where Z is the nuclear charge in 3D. This inspired us
to develop [51] an alternative, improved soft-core Coulomb
potential form, which is smooth and easy to use:

V0,Sc(z) = − Z∗√
z2 + [α(Z∗)]2

. (11)

Here the parameter Z∗ in the numerator has been determined
by requiring one to obtain the same asymptotic behavior as
that of (10), while α is a fitting parameter depending on Z∗, set
by demanding the 1D atomic system to have the same ground-
state energy as the corresponding 3D system. In the case of
single-electron atoms, the parameters turned out to be [51]

Z∗ = Z

2
, α2 = 1

16(Z∗)2
= 1

4Z2
with E0 = −Z2

2
. (12)

By using these potentials in the solutions of the corresponding
one-dimensional time-dependent Schrödinger equation (8)
the results reproduced the 3D system’s strong-field response
quantitatively correctly for several physical quantities. A de-
tailed comparison can be also found in [51]. In those tests
the soft-core Coulomb form of the atomic model potential
gave the best physical response, despite yielding a slightly less
accurate ground-state density.

It has been also found that even the power spectrum p3D( f )
of coherent high-order-harmonic generation obtained from 3D
simulations could be recovered from the corresponding 1D
spectrum p( f ) by scaling the latter as p( f )/s( f ), where s( f )
is the simple scaling function

s( f ) = min(1 + 0.03(100 f − 1)2, 1 + |100 f − 1|), (13)

which turned out to be essentially independent from the
strength and the form of the exciting pulse Ez(t ).

The one-dimensional models we introduced in [51] proved
to be more than simple toy models, by their capability of
providing quantitatively comparable results to the 3D ones.
In this article we test the physical relevance of these one-
dimensional models by extending them to simple composite
atomic and molecular systems like the one-electron diatomic
molecule H2

+, as well as to two two-electron systems, namely
the He atom and the H2 molecule.

B. 1D hydrogen molecular ion model

In our 1D model of the H2
+ we assume that the molecular

axis is set along the z direction and the internuclear distance d
is fixed (i.e., we do not consider nuclear motion). We are in-
terested in the strong-field dynamics of the electron according
to the 1D Schrödinger equation with the Hamiltonian (7). For
the 1D model potential V0(z) in (7), we suggest and test two
candidates, V (M)

0 and V (M)
0,Sc , as follows.

Based on our earlier results, summarized in the previous
section, we define the density-based hydrogen molecular ion
potential on an equidistant grid zi as

V (M)
0 (zi; d ) = E0 + 1√

�z(zi; d )
T̃z

√
�z(zi; d ), (14)
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FIG. 1. Upper panel: the plot of the square root of reduced
density of the hydrogen molecular ion with d = 2.0 (in blue).
Lower panel: the plot of the density-based model potential (14) (in
purple) and the improved soft-core Coulomb model (15) with the
indicated parameter values (in gold). The ground-state energy is
E0 = −1.1026 for both of the potentials, using �z = 0.2 in (14).

where �z(zi; d ) is the reduced density of the 1σg ground state
of a 3D hydrogen molecular ion (with a fixed internuclear
distance d). This potential is calculated numerically with
the finite-difference version of the kinetic-energy operator,
denoted by T̃z in (14), and using the numerically exact ground-
state energy which equals that of the 3D reference system
[51].

The other 1D model potential we propose to use for the
H2

+ is the soft-core molecular model potential

V (M)
0,Sc (z; d ) = V0,Sc

(
z − d

2

)
+ V0,Sc

(
z + d

2

)
, (15)

where we assume an implicit dependence of the parameters
Z∗ and α2 in V0,Sc on the parameter d . The value of Z∗
determining the Coulomb asymptotics of (15) is calculated
from the potential given by (14). Then, α2 can be determined
by setting the correct single-electron energy from the ref-
erence 3D hydrogen molecular ion calculation. We plot the
shape of the corresponding 1D potentials with d = 2, along
with

√
�z(zi; d = 2.0) in Fig. 1 as well as the values of the

parameters Z∗ and α2 obtained in this way.
In these computations, we have typically employed a grid

spacing of �z = 0.2, which yields about 3–4 digit accuracy in
the ground-state density of the reference 3D method. For an
intermolecular distance d = 2.0—that is, near the equilibrium
distance of the hydrogen molecular ion—the ground-state
energy is E0 = −1.1026 based on both our 3D reference cal-
culation and the 1D model using (14). Schaad and Hicks [58]
give a very accurate result for the equilibrium distance as d =
1.9972 and an electron energy of E0 = −1.10334. (The bind-
ing energy they gave was −0.602 634 619 a.u., which also in-
corporated the 1/d Coulomb repulsion energy of the protons.)

C. 1D helium atom model

We turn now to model a two-electron system, the helium
atom in one spatial dimension denoting the electron coordi-
nates by z1 and z2. The key element of our model is that we
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replace the true Coulomb potentials with 1D improved soft-
core potentials V0,Sc of the form (11), both for the electron-
nucleus and for the electron-electron interaction. By setting
Z∗ = 1 in V0,Sc, we have the following Hamiltonian:

H1D
He =

2∑
k=1

[Tzk + V0,Sc(zk ) + zkEz(t )] − 1

2
V0,Sc(z1 − z2).

(16)
We solve the corresponding Schrödinger equation using this
Hamiltonian to get the wave function �(z1, z2, t ). Let us recall
that the latter is a symmetric function in the two spatial
variables. For the time evolution, we set the initial state as
the field-free ground state at t = 0 [using Ez(t � 0) = 0]. We
handle the numerical time evolution and the imaginary time
propagation (for obtaining the ground-state energy) with a
split-step finite difference method [51,56,59].

In this two-dimensional formalism we calculate the physi-
cal quantities that can be derived from the following form of
the reduced density:

�z(z, t ) = 2
∫

|�(z, z2, t )|2dz2, (17)

from which the mean values and the root-mean-square devi-
ations of the spatial coordinate follow straightforwardly. We
also make an approximate formula of

g(t ) = 1 − 1

2

∣∣∣∣
∫ √

�z(z, 0)
√

�z(z, t )dz

∣∣∣∣2

(18)

that we call ground-state population loss per electron orbital.
This is directly comparable to the ground-state population loss
of the 3D Hartree-Fock formalism.

The model potential V0,Sc(z) implicitly depends on the
fitting parameter α2, which is determined by setting the initial
two-electron energy. We use two types of parametrization. We
call the first “ab initio” parametrization, in which we use the
single-electron model parameters of (12) with Z = 2, corre-
sponding to Z∗ = 1, and α2 = 0.0625. For the ground-state
energy of this 1D model system we have obtained E0 = −3.02
without additional parameter fitting. This is to be compared
with the ground-state energy of the real helium: −2.903 [60],
indicating an error of about 3.4% in the ground-state energy
of this ab initio 1D model.

In the second parametrization of V0,Sc(z), the α2 was mod-
ified to reproduce the 1D ground-state energy E0 = −2.903
(i.e., it matches that of the real helium), with Z∗ = 1, and α2 =
0.0694. Since the 3D Hartree-Fock method yields a ground-
state energy E0 = −2.860, the corresponding 3D reference
simulations have also been modified to match the accurate
ground-state energy of −2.903. (To this end, the Hartree
potential was multiplied by a factor that is slightly different
from 1.)

D. 1D hydrogen molecule model

Finally, we create the 1D model of the hydrogen molecule
in a similar way to the case of the He atom. We use again a
wave function of two variables �(z1, z2, t ) and we replace the
true Coulomb potentials by our improved 1D soft-core poten-
tials (11) and (15), which gives the following Hamiltonian for

the 1D model hydrogen molecule:

H1D
H2

=
2∑

k=1

[
Tzk + V (M)

0,Sc (zk; d ) + zkEz(t )
] − 1

2
V0,Sc(z1 − z2).

(19)
Note that this Hamiltonian reduces to the one used for the
helium atom in Eq. (16) for the limiting value of the internu-
clear distance d = 0. The 1D potentials V (M)

0,Sc and V0,Sc depend
implicitly on the parameters Z∗ and α2 but we use identical
parametrization for these potentials. We are going to test the
case when Z∗ = 0.5 which equals that of the hydrogen atom,
and alternatively the case when the asymptotics determined
by Z∗ agree with the one derived from the 1D hydrogen
molecular ion model.

Regarding the energy values, Doma [61] gave
−1.173427 a.u. for the dissociation energy of the real 3D
hydrogen molecule with d = 1.4, which means −1.88729 a.u.
electronic ground-state energy. Our reference Hartree-Fock
computation gives E0 = −1.848 a.u. ground-state energy
which means a relative error of about 2.1% in our 3D
reference scheme. For consistency, the ground-state energy
of the 1D model system is adjusted to this Hartree-Fock
energy, by setting α2 to the proper value, as to be explained in
Sec. IV C.

IV. RESULTS AND COMPARISON OF THE
1D AND 3D SIMULATIONS

In this section, we present and compare the results of
strong-field simulations of the 1D models of the previous
sections to the results acquired from the 3D reference models.

In these simulations, we model the linearly polarized
few-cycle laser pulse with a sine-squared envelope function.
The corresponding time-dependent electric field has nonzero
values only in the interval 0 � t � NcycleT according to the
formula:

Ez(t ) = F sin2

(
πt

NcycleT

)
cos

(
2πt

T

)
, (20)

where T is the period of the carrier wave, F is the peak
electric-field strength, and Ncycle is the number of cycles under
the envelope function. In Secs. IV A–IV C, we model a near-
infrared laser pulse by setting T = 100, corresponding to a
ca. 725 nm carrier wavelength, and Ncycle = 3, which gives a
pulse with its main peak at its center. In order to simulate the
effect of a mid-infrared laser pulse in Sec. IV D, we set T =
420, corresponding to a carrier wavelength of 3045 nm, and
Ncycle = 1.5, which gives a pulse with a zero at its center. We
plot these pulse shapes in Fig. 2. From Fig. 2 on, the vertical
dashed lines denote the zero crossings of the respective Ez(t )
electric field.

In our calculations, we set the typical step sizes as �z =
0.2 and �t = 0.01, since these are sufficient for the numerical
errors to be within line thickness. We use box boundary
conditions and we set the size of the box to be sufficiently
large so that the reflections are kept below 10−8 atomic units
in the wave function.

The results belonging to the correct reference 3D simu-
lation of a given system are plotted in blue and labeled as
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FIG. 2. Pulse shape of the near-infrared (in blue) and mid-
infrared (in red) laser pulse, with the indicated parameters corre-
sponding to Eq. (20).

“3D-reference.” We also plot dashed blue overlays for these
reference curves for clarity.

A. Hydrogen molecular ion driven by a near-infrared laser pulse

In this section we present our results for the hydrogen
molecular ion with two selected external field amplitudes F
and three selected molecular distance parameters d . We have
investigated the following model potentials, the results of
which are plotted on each of the figures belonging to this
section (from Fig. 3 to Fig. 4): the density-based molecular
1D model potential (14) (in purple) and the 1D soft-core
model (15) using the correct asymptotes (in gold). In these
figures we plot the time dependence of the following physical
quantities: the mean value 〈z〉(t ), the standard root-mean-
square deviation σz(t ), and the ground-state population loss
g(t ), as determined by the time-dependent wave function.

Let us begin the discussion with a hydrogen molecular
ion frozen in its equilibrium distance (d = 2.0). From time-
independent calculations of the reduced ground-state density,
we inferred that the correct 1D density-based model does
not behave like the composition of two 1D density-based
atomic binding potentials having Coulomb asymptotes with
Z∗ = 0.5. Instead, in this case, these long-range 1D Coulomb
asymptotes have the value of around Z∗ = 0.625, that we
obtained by numerical calculations based on (14). This means
that, for this separation distance, the Coulomb cores exhibit
a screeninglike effect in the 1D model. Accordingly, we
parametrized the 1D improved soft-core model using d = 2.0
with Z∗ = 0.625 and α2 = 0.277.

In Fig. 3 we can see the time-evolution results for this
model system under the influence of the external fields with
F = 0.1 (left panels) and F = 0.15 (right panels), corre-
sponding to a peak intensity of 3.51 × 1014 W/cm2 and
7.89 × 1014 W/cm2, respectively. These results have compa-
rable accuracy to that of our previous calculations in Ref. [51]
using single-electron atom models (although we use larger F
values here). In the case of F = 0.1, hardly any ground-state
population loss occurs after the laser pulse, even though tem-
porarily it raises to relatively larger values, in sync with the
laser field. This behavior is quantitatively correctly predicted
by our 1D models. The curves of σz(t ) show that the 1D

improved soft-core model has somewhat lower accuracy for
the 1D ground state [σz(t ) has a somewhat larger initial value
in the soft-core case compared to 3D case], but its laser-field
induced dynamics follows better the 3D results overall. This
latter is even more pronounced for the stronger field value
F = 0.15. The curves of the mean value 〈z〉(t ) also show good
quantitative agreement.

Although these 1D models qualitatively reproduce even
the finer details of the 3D ionization dynamics of H2

+, we
should note that the 1D models yield high-order harmonics
with larger amplitudes than the 3D results. This is mainly
caused by the fact that the interference effects in the 1D
density are stronger than in the reduced 3D density (since
these latter are suppressed by the spatial integration along
the ρ coordinate). This feature of the HHG spectra was
successfully accounted for by the scaling function (13) for a
hydrogen atom [51], which turned out to be suitable also for
the present case of H2

+.
Next, let us discuss hydrogen molecular ion configura-

tions where the parameter d is different from its equilibrium
value d = 2.0. We chose for the case of closer nuclei d =
1.4, which may be regarded as an instantaneously ionized
static hydrogen molecule. Based on the calculation of the 1D
density-based potential (14), we computed the parameter of
the effective Coulomb asymptotes as Z∗ = 0.597, having a
ground-state energy of E0 = −1.284. Accordingly, the fitting
parameter has to be α2 = 0.2023. For the case of nuclei with
a larger distance, we chose the value d = 2.6, which is closer
to limit of the molecular dissociation. From the calculation
of the 1D density based potential (14) we get its ground-state
energy as E0 = −0.975 and the parameters of the Coulomb
asymptotes as Z∗ = 0.647 and α2 = 0.351. Note that the
dependence of these parameters on d is not negligible and
the parameter Z∗ appears to be increasing as d is increasing.
However, for nuclei very far apart, the asymptotic value of
Z∗ = 0.5 should hold to describe a 1D H atom and a proton.
For the other limiting case, d = 0, we get the 1D He+ with
the value of Z∗ = 0.5 again.

In Fig. 4 we plot the results for d = 1.4 (left panels)
and d = 2.6 (right panels) using the external electric field
with F = 0.15. We can see that the induced dynamics with
d = 1.4 is similar in behavior to the case of d = 2.0 using
F = 0.1 (see Fig. 3). In the case of d = 2.6, the ground-state
population loss is much larger than in the previous cases with
the same F value. Most importantly, both of these 1D models
reproduce even the finer details of the curves of g(t ), σz(t ),
〈z〉(t ) of the true 3D dynamics.

We can also observe that the accuracy of the results im-
proves as the value of d increases, especially for the 1D
improved soft-core potential, which is mainly due to the fact
that the probability concentrated between the nuclei decreases
with increasing d . This increasing accuracy suggests that
these 1D potentials are suitable also to model strong field
processes leading to molecular dissociation.

B. Helium atom driven by a near-infrared laser pulse,
high-order-harmonic spectra

In the following, we present our results regarding the
1D model helium atom based on Sec. III C under the
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Results for a static hydrogen molecular ion with d = 2.0, driven by the near-infrared laser pulse with F = 0.1 (left panels) and
F = 0.15 (right panels). We plot the time dependence of the mean values 〈z〉(t ) in (a),(b) and the standard deviations σz(t ) in (c),(d) and the
ground-state population losses g(t ) in (e),(f). Results of the corresponding 3D simulations are plotted in blue.

influence of an external laser pulse, for selected values of
F . In Figs. 5–7, we plot results of the following 1D model
soft-core potentials: (i) the 1D improved soft-core potentials
with ab initio parametrization (Z∗ = 1, α2 = 0.0625) from
(12) in red, (ii) the 1D improved soft-core potentials with
energy fitting (Z∗ = 1, α2 = 0.0694) in gold, and (iii) the
1D usual soft-core potentials [33] using the normal Coulomb
asymptotes and with the same form of energy fitting as the
previous case (Z∗ = 2, α2 = 0.5474) in green. Except for (i),
the time evolution of the 1D two-electron model systems starts

from a ground state that has the same energy as the reference
time-dependent Hartree-Fock simulation.

We show in Fig. 5 the time dependence of the mean
values 〈z〉(t ), the standard root-mean-square deviations σz(t ),
and the ground-state population losses per electron orbital
g(t ), with F = 0.15 (left panels) and F = 0.2 (right panels),
corresponding to a peak intensity of 7.89 × 1014 W/cm2

and 1.40 × 1015 W/cm2, respectively. For F = 0.15, we can
see that the dynamics induced by the laser field are weak,
which is true both for the 3D reference and the 1D improved
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Results for two static hydrogen molecular ions with intermolecular distances of d = 1.4 (left panels) and d = 2.6 (right panels),
driven by the near-infrared laser pulse with F = 0.15. We show the time dependence of the mean values 〈z〉(t ) in (a),(b) and the standard
deviations σz(t ) in (c),(d) and the ground-state population losses g(t ) in (e),(f). Results of the corresponding 3D simulations are plotted in blue.

soft-core models, while the results of the usual 1D model
are significantly off. Our ab initio parametrization (i) of the
1D improved soft-core Coulomb forms is still quantitatively
acceptable, and corresponds to a stronger bound than the real
helium atom. This latter seems to be in agreement with the
fact that it has a lower bound state energy by 0.1 a.u. If we
now look at the results corresponding to F = 0.2, we can
see that the results of our improved models are similar, albeit
slightly off with stronger ionization. Based on the similarity
to the results of 〈z〉(t ) and σz(t ), we also note that the quantity

g(t ) defined in (18) indeed bears the same meaning as in (5)
calculated from the Hartree-Fock orbital.

We also plot in Fig. 6 the 〈z〉(t ) and g(t ) results for
F = 0.25. We can see now that the 1D results are relatively
upshifted compared to the previous figures in such a way
that now the curves of 1D ab initio parametrization much
better match the 3D reference. Since such an effect does
not occur in the 1D models for the hydrogen molecular
ions (or hydrogen atoms) under similar conditions, this may
indicate the inaccuracy of our approximations at such high
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Time dependence of the mean values 〈z〉(t ) in (a),(b) and the standard deviations σz(t ) in (c),(d) and the ground-state population
losses g(t ) in (e),(f) for a helium atom driven by the near-infrared laser pulse with F = 0.15 (left panels) and F = 0.20 (right panels). Results
of the corresponding 3D simulations are plotted in blue.

intensities, which presumably affects also the Hartree-Fock
calculations.

Let us next investigate the high-order harmonic response
of the particular 1D model helium. The accurate computation
of the high-order harmonic spectrum is especially important
in strong-field physics: its well-known characteristic features
[20,62–65] represent the highly nonlinear atomic response
to the strong-field excitation, and its suitable phase relations

enable the generation of attosecond pulses of XUV radiation
[1–3,66–69]. In accordance with Ref. [51] we expect that
the structure of the spectra based on the 1D and the 3D
simulations is similar, but the amplitudes are larger in the 1D
results. The reason for the latter is that rescattering on the ion
core is a much stronger effect in a 1D dynamics than in a 3D
dynamics (amplifying the high-frequency oscillations in the
1D results) and, on the other hand, the integration over the
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(a) (b)

FIG. 6. Time dependence of the mean values 〈z〉(t ) in (a) and the ground-state population losses g(t ) in (b) for a helium atom driven by the
near-infrared laser pulse with F = 0.25.
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FIG. 7. Scaled power spectra versus the harmonic order of the emitted radiation for a helium atom driven by the near-infrared laser pulse
with F = 0.15 in (a), F = 0.20 in (b), and F = 0.25 in (c). Results of the corresponding 3D simulations are plotted in blue. The scaling
function of Eq. (21) was applied to all of the 1D results of this figure.
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transverse directions decreases the effect of the oscillations of
the 3D wave function on the mean values, like 〈z〉(t ). (These
also cause the small oscillations to be visible only on the 1D
curves, but not on the corresponding 3D curves, of some of the
plots in Figs. 5 and 6.) This feature of the 1D models can be
handled again by introducing a frequency-dependent scaling
function. In Fig. 7 we can see the scaled p( f )/s( f ) power
spectrum of the second derivative of 〈z〉(t ), where we applied
the following scaling function:

s( f ) = min(1 + 0.01(100 f − 1)3, 1 + 2.7|100 f − 1|),
(21)

which we obtained by fitting its parameters to reproduce
spectrum for the case F = 0.15. In Fig. 7(a) we can see that
the structure of the scaled spectra is indeed a good match
compared to the reference Hartree-Fock results. The spectrum
for the ab initio case has a similar structure, and it is shown
with the same scaling function. If we compare (21) to (13)
used for a single electron atom, we see that the 1D helium
atom needs a stronger scaling (by about 2.7 times) especially
for the higher harmonics. What makes this scaled spectrum
interesting is that it works for different configurations of
electric fields: in Figs. 7(b) and 7(c) we applied the same
scaling. For the larger field value of F = 0.2 the improved
soft-core results still replicate the 3D spectra really well.
(However, there seems to be some deviation near the 20th
harmonic.) For F = 0.25, we can see that the spectrum is
scaled properly, but the positions of the harmonics are slightly
shifted from the 3D reference. Here, the ab initio model better
describes the structure of the spectra, which is connected to
the closer matching to the 3D reference of the other quantities
of Fig. 6.

Finally we note that the match of the spectral phase is also
very good, especially in the higher frequency range, which
is of fundamental importance for the generation of isolated
attosecond pulses.

Overall we can say that the 1D improved soft-core models
replicate the strong-field response of a real helium atom
comparing to the time-dependent Hartree-Fock approxima-
tion up to around F = 0.2. This includes the low-frequency
response of the mean motion on the level of the reduced
density. The low dimensionality, however, gives a much larger
high-order-harmonic amplitude, which can be converted to
the corresponding 3D spectra using one scaling function. The
improved models discussed here appear to be quantitatively
correct 1D models of the helium atom.

The merits of these 1D model potentials may also pave
the way to simulate properties of a dilute medium, like an
atomic gas jet, used in actual strong field or attosecond physics
experiments with He [10,70,71]. Previously, this was done
[72,73] by calculating Lewenstein’s integral [16], but using
the density-based model potentials and integrating the low-
dimensional TDSE has now become also an option [74].

C. Hydrogen molecule driven by a near-infrared laser pulse

We present now the results for the 1D model hydrogen
molecule as introduced in Sec. III D. We apply the same two-
electron formalism as for the helium atom, and we compare
again the results with the corresponding 3D Hartree-Fock

simulation as the reference. We also make use of our results
given in Sec. IV A regarding the dependence of the Coulomb
asymptotes on the intermolecular distance d in the case of the
hydrogen molecular ion model. Now the presence of the extra
electron poses the question of whether it affects the values of
the Coulomb asymptotes. To get the answer, we have consid-
ered two different parametrizations of the improved soft-core
model V (M)

0,Sc in Eq. (19): (i) the model using the corresponding
hydrogen molecular ion asymptotes (d = 1.4, Z∗ = 0.597,
α2 = 0.235) and (ii) soft-core models using atomic asymp-
totes (d = 1.4, Z∗ = 0.5, α2 = 0.112). The α2 parameters
were determined by fitting the ground-state energies, so that
the time evolution of the 1D two-electron model systems
started from a ground state that had the same energy value as
the reference (3D) time-dependent Hartree-Fock simulation.
It turned out that a rather good agreement could be obtained
with the asymptotes from the H2

+ model, i.e., from the
choice (i), especially for lower excitation amplitudes. This
is demonstrated in Fig. 8, where the results are shown for
two specific values: F = 0.07 (left panels) and F = 0.1 (right
panels), in yellow for model (i). For comparison, the functions
obtained with model (ii) are also shown in orange.

The two particular F values for which we show the results
for H2 were chosen because the induced ionization response
is similar in magnitude to that of the He atom with the
amplitudes F = 0.15 and F = 0.2 shown in Fig. 5. If we
compare the left panels of Fig. 8 and Fig. 5, we can see that
the yellow curves of the physical quantities 〈z〉(t ) and σz(t )
behave similarly and they show a good match with the 3D
reference results if the ionization is low. We also note that
the quantity g(t ) behaves in the same way, compared to the
reference. This agreement is a consequence of the picture that
considers the He atom as the d = 0 limit of H2, but in the
case of He, which has more strongly bound electrons, larger
electric-field amplitudes are required to achieve a similar
effect. In the right panels of the respective figures, which show
simulation results with higher intensities, we can see that for
model (i) an upshift occurs, the size of which in Fig. 8 is again
consistent with the results of Fig. 5. This value of upshift
may still be quantitatively acceptable for a one-dimensional
molecular model, especially because the reference Hartree-
Fock method may certainly become inaccurate at these larger
field strengths. We also note that for higher intensities this
upshift becomes larger, causing that already for F = 0.15
the model (ii) matches the 3D reference better (similar to
Fig. 6, but not shown). From this we can conclude that using
the asymptote value Z∗ = 0.597 from the respective static
hydrogen molecular ion configuration behaves like the 1D
improved soft-core model of the helium calculations, i.e., it
gives quantitatively correct results for the physical quantities
in a similar manner shown here.

Overall it is impressive that using improved asymp-
totes with one-dimensional soft-core Coulomb potentials the
physics of a 3D hydrogen molecule becomes quantitatively
reproducible by the corresponding 1D model system. From
the results we can say that indeed the correct model is based
on the density based potential, and its asymptotes are surely
between the respective hydrogen molecular ion asymptote
with Z∗ = 0.597 and the hydrogen atom asymptote with
Z∗ = 0.5 in the tested peak electric-field strength range. For

023405-10



DENSITY-BASED ONE-DIMENSIONAL MODEL … PHYSICAL REVIEW A 101, 023405 (2020)

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Results for a static hydrogen molecule with d = 1.4, driven by the near-infrared laser pulse with F = 0.07 (left panels) and F = 0.1
(right panels). We plot the time dependence of the mean values 〈z〉(t ) in (a),(b) and the standard deviations σz(t ) in (c),(d) and the ground-state
population losses g(t ) in (e),(f). Results of the corresponding 3D simulations are plotted in blue.

more accurate tests, more accurate 3D reference simulation
methods are necessary.

D. H2
+ and He driven by a mid-infrared laser pulse

Although the established laser technology for strong-field
physics is mainly in the spectral range from ultraviolet to

near infrared currently, the use of longer carrier wavelengths
has several important advantages [75], which makes the use
of mid-infrared laser pulses a promising new research direc-
tion in strong-field physics [76–84]. However, the continuum
electron wave packets may travel much larger distances with
increasing wavelength in the case of gas targets, which raises
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the numerical demand of the corresponding 3D quantum
simulations sharply [46,47]. Thus accurate 1D simulations are
very important; therefore, we present below a few promising
results obtained with our 1D models for the hydrogen molec-
ular ion and the helium atom, driven by the mid-infrared laser
pulse specified after Eq. (20). (Since the 1D He atom models
show similar accuracy as the 1D H2 models do, we do not
consider the latter here.)

In particular, we test our 1D models of H2
+ (with d = 2.0)

and He in the same manner as we did in Secs. IV A and IV B,
respectively, with some simulation parameters adjusted to the
requirements due to the mid-infrared laser pulse. We perform
the simulations from 0 to 630 atomic time units, and we ensure
that the box size is large enough to keep the numerical errors
within line thickness by setting zmin = −2000, zmax = 2000,
ρmin = 0, and ρmax = 1750 for all simulations in this subsec-
tion. Note also that the mid-infrared pulse has a zero crossing
at its center (at t = 315), and the two main peaks in opposite
directions at t = 229.6 and t = 400.4 have a magnitude of
ca. 0.795F . The antisymmetry of this pulse with respect to
its center helps to keep the electron’s motion confined, which
makes the 3D simulations less demanding and more accurate.

We present the results for H2
+ driven by a mid-infrared

pulse of F = 0.15 in the left panels of Fig. 9. Comparing these
plots to those in Fig. 3, we see that the improved 1D soft-core
potential gives again a better model of the 3D process than the
density-based 1D potential does. However, the mid-infrared
pulse creates somewhat different dynamics with respect to the
near-infrared pulse: although 〈z〉(t ) in Fig. 3(a) yet follows
the near-infrared pulse shape, the 〈z〉(t ) in Fig. 9(a) deviates
from the mid-infrared pulse shape considerably more than
expected based on Fig. 3(b), due to the longer period. The
longer period also enables the continuum wave packets to
spread for a longer time; thus the σz(t ) has considerably
increased values in Fig. 9(c). On the other hand, the peaks of
the ground-state population loss in Fig. 9(e) are in accordance
both in magnitude and in timing with those in Figs. 3(e) and
3(f), but the final value of g(t ) in Fig. 9(e) is considerably
less than that in Fig. 3(f). This latter shows that strong-field
ionization from the double-well potential of H2

+, which has
interesting internal and strong-field dynamics [85], is very
sensitive to the peak value of the laser electric field which is
ca. 20% lower for the mid-infrared than for the near-infrared
pulse.

We present the results for He driven by a mid-infrared
pulse with F = 0.2 in the right panels of Fig. 9, which
are to be compared to the right panels of Fig. 5. The 1D
results corresponding to V0,Sc(z) with α2 = 0.0694 give even
better results than those for the near-infrared pulse, but the
ab initio parameter for V0,Sc(z) is clearly less accurate for
the mid-infrared pulse. This suggests that the exact match of
the 1D ground-state energy with the 3D ground-state energy
becomes more important with increasing laser wavelength.
The difference in the shapes of the 〈z〉(t ) for the near- and the
mid-infrared pulse is clearly due to the different pulse shapes
and the increased wavelength. The ground-state population
loss is very similar to Fig. 5(f), both in behavior and in
magnitude, which is readily explained by taking into account
that the increasing effect of the longer period of the mid-
infrared pulse is largely compensated by the actually ca. 20%

less peak electric-field strength. However, the longer period of
the mid-infrared pulse does considerably increase the values
of the 〈z〉(t ) and σz(t ) curves, since the continuum part of the
wave function has more time to travel and spread.

Summarizing this section, the carefully parametrized 1D
soft-core model potentials work very well also in the case of a
mid-infrared laser pulse. Note also that the small oscillations
visible on some of the 1D curves in Figs. 3–6 are absent now,
due to the mid-infrared pulse shape which causes only one
rescattering.

V. DISCUSSION AND CONCLUSIONS

In this paper we have shown that the density-based model
potentials, developed in [51] for strong-field simulations in
single-active-electron atoms, can be extended to two-electron
systems and simple molecules. Our results show that the mod-
eling based on low-dimensional Coulomb asymptotes selected
by the reduced density works also for two-electron problems,
not just for single-active electron systems. The molecular
potentials we built in this way fulfilled the requirement that the
1D model should recover a quantitatively correct ionization
response compared to the respective 3D molecular system
under the influence of a linearly polarized external laser
field. This improvement is mainly due to the accurate match
of the 1D and 3D ground-state energy and the correct 1D
asymptotics which provides better 1D continuum states.

For H2
+ one of the molecular potentials has been obtained

by using the reduced density according to Eq. (14). The
other choice for this system was a sum of two soft-core
Coulomb potentials as given by Eq. (11) with appropriate
values of the fitting parameters Z∗ and α2. For the two-
electron systems He and H2 the potentials were built by com-
bining 1D improved soft-core Coulomb potentials from the
corresponding single-electron density-based models. Here we
have used two different sets of parameters to simultaneously
reproduce the correct density based Coulomb asymptotics and
ground-state energies. We compared the results of numerical
strong-field simulations for the complete 3D systems with our
1D molecular models excited with the same linearly polarized
laser field. We have shown that our simpler 1D constructions
provide impressive accuracy, for being 1D models, for the
helium atom and the hydrogen molecular ion, driven by the
near-infrared and even by the mid-infrared pulse. These two
models performed exceptionally well, especially if the strong-
field ionization response was relatively weak. For the case
of the hydrogen molecule the correct asymptotic values of
the potential turned out to be near to that of the hydrogen
molecular ion with the same intermolecular distance. Exper-
imental interest in strong-field and attosecond processes of
He [10,70,71] inspired us to calculate high-order-harmonic
generation spectra by using our 1D model for He. It turned
out that quantitatively correct spectra could be recovered with
a simple scaling for different external electric fields.

These results overall provide more possibilities to explore.
One can extend the description of the molecular systems and
model them under strong-field circumstances with moving
nuclei. In order to include the motion of the nuclei into the
simulation using, e.g., the Born-Oppenheimer or the Ehren-
fest approximations [54,86], the determination of Z∗(d ) and
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. Results for a static hydrogen molecular ion with d = 2.0 (left panels), and for a helium atom (right panels), driven by the mid-
infrared laser pulse with F = 0.15 for H2

+ and F = 0.2 for He. We plot the time dependence of the mean value 〈z〉(t ) in (a),(b), the standard
deviation σz(t ) in (c),(d), and the ground-state population loss g(t ) in (e),(f). The color coding of the curves in the left and right panels
corresponds to those in Fig. 3 and Fig. 5, respectively.

α2(d ) is required beforehand numerically. Such a d dependent
molecular model potential seems to be a promising way of
modeling the true molecular dynamics in strong-field scenar-
ios with electron wave functions in one spatial variable, which
would make it especially effective. It is also a possibility to
model a linear chain of atomic cores in 1D by reducing the

proper 3D density in advance. Regarding the multiple electron
systems, one can apply the time-dependent Hartree-Fock or
multiconfigurational Hartree-Fock approach [87] to the 1D
helium and hydrogen systems directly, which may enable
massive performance gain, while providing quantitatively cor-
rect reduced dynamics and high-order-harmonic spectra. This
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would also enable one to efficiently perform low-dimensional
strong-field calculations in gas jets or statistical mixtures.
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[34] C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein,
Emission times in high-order harmonic generation, Phys. Rev.
A 81, 033412 (2010).

[35] A. A. Silaev, M. Yu. Ryabikin, and N. V. Vvedenskii, Strong-
field phenomena caused by ultrashort laser pulses: Effective
one-and two-dimensional quantum-mechanical descriptions,
Phys. Rev. A 82, 033416 (2010).

[36] K. A. Sveshnikov and D. I. Khomovskii, Schrödinger and Dirac
particles in quasi-one-dimensional systems with a Coulomb
interaction, Theor. Math. Phys. 173, 1587 (2012).

[37] S. Gräfe, J. Doose, and J. Burgdörfer, Quantum phase-space
analysis of electronic rescattering dynamics in intense few-
cycle laser fields, J. Phys. B: At., Mol., Opt. Phys. 45, 055002
(2012).

[38] A. Czirják, R. Kopold, W. Becker, M. Kleber, and W. P.
Schleich, The Wigner function for tunneling in a uniform static
electric field, Opt. Commun. 179, 29 (2000).

[39] M. G. Benedict, J. Kovács, and A. Czirják, Time dependence of
quantum entanglement in the collision of two particles, J. Phys.
A: Math. Theor. 45, 085304 (2012).

[40] A. Czirják, S. Majorosi, J. Kovács, and M. G. Benedict, Emer-
gence of oscillations in quantum entanglement during rescatter-
ing, Phys. Scr. T153, 014013 (2013).

[41] S. Geltman, Bound states in delta function potentials, J. Atom.
Mol. Opt. Phys. 2011, 573179 (2011).

[42] L. Zs. Szabó, M. G. Benedict, A. Czirják, and P. Földi, Rela-
tivistic electron transport through an oscillating barrier: Wave-
packet generation and Fano-type resonances, Phys. Rev. B 88,
075438 (2013).

[43] C. Baumann, H.-J. Kull, and G. M. Fraiman, Wigner represen-
tation of ionization and scattering in strong laser fields, Phys.
Rev. A 92, 063420 (2015).

[44] N. Teeny, E. Yakaboylu, H. Bauke, and C. H. Keitel, Ionization
Time and Exit Momentum in Strong-Field Tunnel Ionization,
Phys. Rev. Lett. 116, 063003 (2016).

[45] T. Nishi, E. Lötstedt, and K. Yamanouchi, Entanglement and
coherence in photoionization of H2 by an ultrashort XUV laser
pulse, Phys. Rev. A 100, 013421 (2019).

[46] A. Liu and U. Thumm, Laser-assisted XUV few-photon double
ionization of helium: Joint angular distributions, Phys. Rev. A
89, 063423 (2014).

[47] H. Miyagi and L. B. Madsen, Exterior time scaling with the
stiffness-free Lanczos time propagator: Formulation and appli-
cation to atoms interacting with strong midinfrared lasers, Phys.
Rev. A 93, 033420 (2016).

[48] A. D. Bandrauk, S. Chelkowski, D. J. Diestler, J. Manz, and
K.-J. Yuan, Quantum simulation of high-order harmonic spectra
of the hydrogen atom, Phys. Rev. A 79, 023403 (2009).

[49] S. Majorosi, M. G. Benedict, and A. Czirják, Quantum entan-
glement in strong-field ionization, Phys. Rev. A 96, 043412
(2017).

[50] I. A. Ivanov, C. H. Nam, and K. T. Kim, Entropy-based view of
the strong field ionization process, J. Phys. B: At., Mol., Opt.
Phys. 52, 085601 (2019).

[51] S. Majorosi, M. G. Benedict, and A. Czirják, Improved one
dimensional model potentials for strong-field simulations, Phys.
Rev. A 98, 023401 (2018).

[52] T. Sato, K. L. Ishikawa, I. Březinová, F. Lackner, S. Nagele,
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