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Quasibound states of tetrahedral quantum structures

A. D. Barr, F. J. Estrella , and L. E. Reichl *

Center for Complex Quantum Systems and Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

(Received 20 December 2019; accepted 23 January 2020; published 18 February 2020)

Chemical reaction dynamics is known to be influenced by quasibound states (unstable electron standing
waves) that exist in the positive-energy continuum in the spatial neighborhood of molecules. These unstable
spatial structures give rise to resonances in the scattering dynamics between molecules or between electrons and
molecules. Here we analyze the quasibound states associated with both an attractive and a repulsive molecule-
size tetrahedral structure by using Wigner-Eisenbud R-matrix theory. Our results indicate that quasibound states
typically exist in the neighborhood of all small molecules and other small quantum objects.
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I. INTRODUCTION

The atomic structure of molecules largely determines the
spatial distribution of electrons attached to the atoms that
comprise the molecule. The electrons form bound-state (neg-
ative energy) quantum standing waves on the molecular struc-
ture, and they can also form quasibound (positive energy)
standing waves that can exist in the positive-energy contin-
uum. Although quasibound states have a finite lifetime, they
can have a large influence on the dynamics of chemical reac-
tions [1,2]. Visualization of the spatial structure of quasibound
states has proved elusive. However, recent experiments have
begun to image their spatial structure [3,4].

An important tool for determining the energy of quasi-
bound states is scattering theory because quasibound states
generally give rise to scattering resonances. However, numer-
ical simulations of quantum waves scattering from a molecule,
or other extended objects, can be daunting, because the anal-
ysis of the scattering process generally has to be repeated for
each incident energy. In Ref. [5], a formalism was developed
to study wave scattering from two- and three-dimensional
localized objects using Wigner-Eisenbud (W-E) scattering
theory [6,7] (also called R-matrix theory). This formalism
forms the model for the approach we use here. Wigner-
Eisenbud scattering theory has a long and distinguished
history. It was first developed by Wigner and Eisenbud to
study nuclear scattering processes [8] and subsequently as a
framework to compare predictions of random matrix theory to
experimental nuclear scattering data [9,10]. It has been used
extensively to model atomic scattering processes [11–14] and
electron-molecule collisions [15–18]. W-E scattering theory
has also been used to study quasibound state formation in a
two degree of freedom (DoF) model of HO-Cl dissociation
[19,20], electron scattering in two DoF waveguides [21–23],
scattering of waves from a chaotic system with cylindrical
symmetry [24–26], scattering from periodic lattices [27,28],
and a search for bound states in the energy continuum [29].
In subsequent sections, we show that W-E scattering theory
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provides a means to visualize the structure of quasibound-
electron waves that form in the positive-energy continuum of
three DoF objects.

In addition to the study of quantum wave dynamics in
molecules and small quantum devices, the study of electro-
magnetic waves in optical microcavities has become a field
of growing interest [30]. For example, Nöckel, Stone, and
Redding [31,32] showed that D-shaped optical resonators
with internal chaotic dynamics [33] could be used to construct
lasers with unique directional emissions. These new appli-
cations of small open quantum and electromagnetic systems
invite a detailed examination of the quantum dynamics (wave
properties) of other small quantum systems that could be
used to model unique nanometer scale quantum and optical
devices.

In subsequent sections, we explore the quantum wave
dynamics of a molecule-size tetrahedron and use W-E the-
ory to analyze the scattering properties of a complex three-
dimensional object. Molecules with tetrahedral structure oc-
cur commonly in nature. Nuclei whose distribution of protons
and neutrons have tetrahedral symmetry have high stability
[34–36] and have been suggested as a means to explain
the order of elements in the periodic table [37]. Tetrahedral
structures have been shown to have fractal scattering proper-
ties [38]. Thus, the scattering of waves from tetrahedrons is
relevant for molecules, atomic nuclei, and even metal clusters
[39].

W-E theory decomposes configuration space into a reaction
region that fully contains the potential-energy distribution and
an asymptotic scattering region in which the potential energy
is zero. The asymptotic region can be characterized by a
complete set of good quantum numbers. The reaction region
may be partially chaotic and does not have a complete set
of good quantum numbers. However, it can be described in
terms of a complete set of basis states that satisfy certain
boundary conditions on the interface between the reaction and
asymptotic regions. The reaction region basis states are then
coupled to the asymptotic region through a singular coupling
[40,41].

We begin in Sec. II with a description of the tetrahedron
system. In Sec. III, we formulate the exact scattering problem
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for the three-dimensional system considered here. In Sec. IV,
we formulate the W-E scattering theory. In Sec. V, we de-
scribe the scattering properties of the attractive tetrahedron
and show the structure of some of its quasibound states. In
Sec. VI, we perform a similar analysis for the repulsive tetra-
hedron. And finally in Sec. VII, we make some concluding
remarks.

II. TETRAHEDRON SYSTEM

We consider a particle of mass m1 (an atom or an elec-
tron for example) scattering from the tetrahedron which has
mass m2 and is extended in space but fairly localized (falls
off faster than 1

r ). Let us assume that, in the laboratory
frame, m1 has displacement r̂1 and m2 has displacement r̂2.
The relative displacement of the two masses is r̂ = r̂2 − r̂1

and their center-of-mass displacement is R̂ = m1
M r̂1 + m2

M r̂2,
where M = m1 + m2 is the total mass. We will assume that
the interaction potential energy V (r̂) depends only on the
relative displacement of the two objects. We let p̂1 and p̂2

denote the momentum of particles m1 and m2, respectively,
in the laboratory frame. The center-of-mass momentum is
P̂ = p̂1 + p̂2 and the relative momentum is p̂ = m1

M p̂2 − m2
M p̂1.

The Hamiltonian for this system is

Ĥ = p̂2
1

2m1
+ p̂2

2

2m2
+ V (r̂) = P̂2

2M
+ p̂2

2μ
+ V (r̂), (1)

where μ = m1m2
(m1+m2 ) is the reduced mass. Because the Hamilto-

nian is independent of R̂, the center-of-mass momentum is a
constant of the motion. We can assume that the center-of-mass
momentum is zero and set P̂ = 0 without loss of generality.

The total angular momentum of the system can be writ-
ten as

L̂ = r̂1 × p̂1 + r̂2 × p̂2 = R̂ × P̂ + r̂ × p̂. (2)

The center-of-mass angular momentum L̂cm = R̂ × P̂ is a
constant of the motion and can be set to zero without loss of
generality. For interaction potentials of the type V = V (r̂), the
relative angular momentum of the particles can change during
the scattering process.

The energy eigenstates |�E 〉, which describe the scattering
process, satisfy the time-independent Schrödinger equation
Ĥ |�E 〉 = E |�E 〉. In spherical coordinates, (r, θ, φ), the time-
independent Schrödinger equation can be written

Ĥ�E (r) = − h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]
�E (r) + L̂2

2μr2
�E (r)

+V (r)�E (r) = E�E (r), (3)

where h̄ is Planck‘s constant, μ is the reduced mass of the
system, �E (r) is the probability amplitude, and L̂2 is the
angular-momentum operator

L̂2 = −h̄2

[
1

sin(θ )

∂

∂θ

(
sin(θ )

∂

∂θ

)
+ 1

sin2(θ )

∂2

∂φ2

]
. (4)

The eigenstates of L̂2 are the spherical harmonics Y m
� (θ, φ) so

that

L̂2Y m
� (θ, φ) = h̄2�(� + 1)Y m

� (θ, φ). (5)

FIG. 1. Schematic picture of the tetrahedron.

We assume that the particle moves in a tetrahedral potential.
The basic geometry of a tetrahedron is shown in Fig. 1. A
potential with this basic structure can be modeled by the
following function:

V (r, θ, φ) = U0

(
1√

2πσ

)2 1

3α
e− (r−r0 )2

2σ2 e− (θ−0.9553)2

2σ2 ϑ3

×
(

π (φ − 3π/4)

3α
, e− ε2π2

2α2

)

+U0

(
1√

2πσ

)2 1

3α
e− (r−r0 )2

2σ2 e− (θ−(π−0.9553))2

2σ2 ϑ3

×
(

π (φ − 5π/4)

3α
, e− ε2π2

2α2

)
, (6)

where θ3 is an elliptic theta function, r0 is the radius of
the sphere that the four corners of the tetrahedron sit on,
α = 1.0 determines the number of potential wells along the
φ direction, ε = 0.25, and σ = 0.25 determines the standard
deviation of the widths of the potential wells. In Fig. 2, we

FIG. 2. The tetrahedron formed from elliptic theta functions:
(a) spherical coordinates, (b) Cartesian coordinates.
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plot this potential energy for r0 = 1.0 d.u. and U0 = 10 d.u.
(d.u. denotes dimensionless units).

Throughout, we use the following units, based roughly
on those of tetrahedral molecules [42], and the quasibound
state structures that we find should be fairly typical of those
molecules: The spacing between atoms at the corners of
the tetrahedron is about d = 2.24 Å, which means they lie

on a sphere of radius a =
√

3
8 2.24 Å = 1.37 Å. We take as

our energy unit E0 = h̄2

μa2 = 5.9 × 10−10 ergs = 3.62 eV. We
consider both an attractive tetrahedral distribution of potential
wells with U0 = −10E0, r0 = 1a, and a repulsive distribution
of potential peaks with U0 = +10E0, r0 = 1a. Therefore, the
depth or height of our potential is about 36 eV.

III. THE REACTION AND SCATTERING MATRICES

To solve the scattering problem, it is useful to divide the
scattering system into a reaction region that fully contains
the scattering potential, and an asymptotic region outside any
influence from the scattering potential. The energy eigenfunc-
tion �E (r) = 〈r|�E 〉 [the solution to Eq. (3)] is then divided
into a part that lies in the reaction region (r < a), �R

E (r), and
a part that lies in the asymptotic region (r > a), �A

E (r). The
functions �R

E (r) and �A
E (r) and their slopes must be continu-

ous across the r = a interface. This can be accomplished by
equating the logarithmic derivatives of these two functions at
the interface so that

�̇R
E (a, θ, φ)

�R
E (a, θ, φ)

= �̇A
E (a, θ, φ)

�A
E (a, θ, φ)

, (7)

where �̇E (a, θ, φ)≡ ∂�E (r,θ,φ)
∂r |r=a.

In the asymptotic region, angular momentum and energy
are conserved because V (r̂) = 0. �A

E (r) will be a superposi-
tion of incident and scattered waves. Thus, it can be written in
the form

�A
E (r) =

∞∑
�=0

�∑
m=−�

[
A�,mχ in

�,m(kr) + B�,mχout
�,m(kr)

]
Y�,m(θ, φ),

(8)
where χ in

�,m(kr) [χout
�,m(kr)] contains the radial dependence

of incoming (outgoing) waves with energy E and quantum
numbers �, m.

In the reaction region, the wave function takes the form

�R
E (r) =

∞∑
�=0

�∑
m=−�

φE ,�,m(r)Y�,m(θ, φ), (9)

where the form of φE ,�,m(r) depends on the interaction po-
tential. Angular momentum will be conserved only if the
interaction potential is spherically symmetric, V = V (|r|).
When angular momentum is conserved, each value of (�, m)
in �A

E (r) couples only to the same value of (�, m) in �R
E (r).

The R matrix Rν1;ν2 , where ν1 = {�1, m1} and ν2 =
{�2, m2}, relates the value of �A

E (r) with angular-momentum
channel {�1, m1} to the slope of �A

E (r) with angular-
momentum channel {�2, m2} at the interface. The R matrix

thus satisfies

∞∑
�2=0

�2∑
m2=−�2

aRν1,ν2 (E )
[
Aν2 χ̇

in
ν2

(ka) + Bν2 χ̇
out
ν2

(ka)
]

= Aν1χ
in
ν1

(ka) + Bν1χ
out
ν1

(ka), (10)

where χ in
ν (ka) = h(2)

l (ka) and χout
ν (ka) = h(1)

l (ka) (h(2)
l and

h(1)
l are spherical Hankel functions). The quantity Rν,ν ′ (E ) is

the (ν, ν ′)th element of the R matrix. More explicitly, Eq. (10)
takes the form∑

�′,m′
aR�,m;�′,m′ (E )ḣ(2)

�′ (ka)A�′,m′

+
∑
�′,m′

aR�,m;�′,m′ (E )ḣ(1)
�′ (ka)B�′,m′

= A�,mh(2)
� (ka) + B�,mh(1)

� (ka), (11)

where ḣ(2)
�′ (ka) = ∂h(2)

�′ (kr)

∂r |r=a.
The scattering matrix relates the coefficients A�,m of incom-

ing states to coefficients B�,m of outgoing states. Equation (11)
can be written in matrix form as

a ¯̄R(E )· ¯̄̇h
(2)

·Ā + a ¯̄R(E )· ¯̄̇h
(1)

·B̄ = ¯̄h
(2)·Ā + ¯̄h

(1)·B̄, (12)

where ¯̄R(E ) is a M × M matrix, Ā and B̄ are M × 1 column

matrices, and ¯̄h
(2)

and ¯̄h
(1)

are M × M diagonal matrices. The
S matrix ¯̄S(E ) is given by the relation B̄ = ¯̄S(E )·Ā. Solving
Eq. (12) for B̄, we get

¯̄S(E ) = −[ ¯̄h
(1) − a ¯̄R· ¯̄̇h

(1)
]−1·[ ¯̄h

(2) − a ¯̄R· ¯̄̇h
(2)

]. (13)

To simplify the notation, let χ̄in = ¯̄h
(2)

and χ̄out = ¯̄h
(1)

. Then

¯̄S(E ) = −[χ̄out − a ¯̄R· ¯̇χout]
−1·[χ̄in − a ¯̄R· ¯̇χ in]. (14)

The general structure of the R matrix and the S matrix is
determined by the behavior of states in the reaction region.
The R matrix is nondiagonal in the indices ν when angular
momentum is not conserved in the reaction region. This means
that incident waves with quantum numbers {E , ν} give rise to
outgoing waves with quantum numbers {E , ν ′}. Conversely,
when angular momentum is conserved in the reaction region,
the R matrix is diagonal in indices ν.

IV. WIGNER-EISENBUD SCATTERING THEORY

The tetrahedral potential energy is spatially localized. This
allows us to separate the system into a “reaction region”
(0 � r � a,), which fully contains the tetrahedral potential,
and an asymptotic region (a � r � ∞) in which the potential
energy is effectively zero. This spatial separation can be
accomplished by using projection operators. Let

Q̂ =
∫ a

0
r2dr

∫ π

0
sin(θ )dθ

∫ 2π

0
dφ|r, θ, φ〉〈r, θ, φ| (15)

project onto the reaction region 0 � r � a and let

P̂ =
∫ ∞

a
r2dr

∫ π

0
sin(θ )dθ

∫ 2π

0
dφ|r, θ, φ〉〈r, θ, φ| (16)
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project onto the asymptotic region a � r � ∞, where the
states |r, θ, φ〉 are delta normalized,

〈r1, θ1, φ1|r2, θ2, φ2〉
= 1

r2
1sin(θ1)

δ(r2 − r1)δ(θ2 − θ1)δ(φ2 − φ1). (17)

It is straightforward to show that P̂P̂ = P̂, Q̂Q̂ = Q̂, and
P̂Q̂ = 0 so that P̂ + Q̂ = 1̂. Then the eigenvalue equation
Ĥ |E〉 = E |E〉 takes the form

Q̂ĤQ̂|E〉 + Q̂Ĥ P̂|E〉 = EQ̂|E〉, (18)

P̂Ĥ P̂|E〉 + P̂ĤQ̂|E〉 = EP̂|E〉. (19)

We can write the projections of the Hamiltonian into the
reaction and asymptotic regions.

Q̂ĤQ̂ =
∮

R
dr|r, θ, φ〉

{
− h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]

+ L̂2

2μr2
+ V (r)

}
〈r, θ, φ|, (20)

and

P̂Ĥ P̂ =
∮

A
dr|r, θ, φ〉

{
− h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]

+ L̂2

2μr2

}
〈r, θ, φ|, (21)

respectively, where∮
R

dr =
∫ a

0
r2dr

∫ π

0
sin(θ )dθ

∫ 2π

0
dφ and

∮
A

dr =
∫ ∞

a
r2dr

∫ π

0
sin(θ )dθ

∫ 2π

0
dφ. (22)

The coupling terms Q̂Ĥ P̂ and P̂ĤQ̂ are defined in terms of
the singular operator [40,41], which can be written as

V̂ = −2h̄2

μ

1

a2
δ(r − a)

∂

∂r
, (23)

so that

Q̂Ĥ P̂ = −Q̂V̂P̂

= 2h̄2

μa2

∮
R

dr1

∮
A

dr2|r1〉〈r1|r2〉δ(r2 − a)
∂

∂r2
〈r2|,

(24)

where |r1〉 = |r1, θ1, φ1〉.
We next introduce eigenstates Q̂|φα〉 of the reaction re-

gion Hamiltonian Q̂ĤQ̂ and eigenstates, P̂|�(k)〉, of the
asymptotic region Hamiltonian P̂Ĥ P̂. Then, the exact energy
eigenstates can be expanded in the form

|E〉 =
∞∑

α=1

γα (E )Q̂|φα〉 + �k(E )P̂|�(k)〉, (25)

where γα (E ) = 〈φα|E〉 and �k(E ) = 〈�(k)|E〉 are complex
coefficients that determine the weight of the contribution of
each of the basis states Q̂|φα〉 and P̂|�(k)〉, respectively, to
the energy eigenstates |E〉 of the system.

A. Reaction region eigenstates

The eigenvalue problem in the reaction region can be
written

ĤQQQ̂|φα〉 = λαQ̂|φα〉, (26)

where HQQ = Q̂ĤQ̂. The eigenstates Q̂|φα〉 are orthonormal
and complete so

〈φα|Q̂|φα′ 〉 = δα,α′ and
∑

α

Q̂|φα〉〈φα|Q̂ = Q̂. (27)

The reaction region eigenstates in the position basis can be
written

〈r|Q̂|φα〉 =
∞∑

�=0

�∑
m=−�

∞∑
n=1

Cα
�,m,nN�,n j�

(κ�,n

a
r
)
Y m

� (θ, φ),

(28)
where κ�,n ensures that the Bessel function j�( κ�,n

a r) has zero
slope at r = a and N�,m is the normalization constant

N�,n =
[∫ a

0
r2dr j2

�

(κ�,n

a
r
)]−1/2

. (29)

Note also the normalization condition∫ π

0
sin(θ )dθ

∫ 2π

0
dφY ∗

�1,m1
(θ, φ)Y�2,m2 (θ, φ) = δ�1,�2δm1,m2 .

(30)
The eigenvalue equation in the reaction region takes the

form

〈r|Q̂ĤQ̂|r〉〈r|Q̂|φα〉

=
{
− h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]
+ L̂2

2μr2
+ V (r)

}
〈r|Q̂|φα〉

= λα〈r|Q̂|φα〉. (31)

This can be solved with spherical Bessel functions j�(x) if we
note the identity

x2 d2

dx2
j�(x) + 2x

d

dx
j�(x) + [x2 − �(� + 1)] j�(x) = 0. (32)

Let x = k�,nr, where k�,n = κ�,n

a . Then, Eq. (32) takes the form

− 1

r2

∂

∂r

(
r2 ∂

∂r

)
j�
(
k�,nr

) + �(� + 1)

r2
j�(k�,n) = k2

�,n j�(k�,n).

(33)

Now substitute Eqs. (28) and (33) into Eq. (31) to get

∞∑
�=0

�∑
m=−�

∞∑
n=1

Cα
�,m,nN�,n

(
h̄2k2

�,n

2μ
+ V (r)

)
j�(k�,mr)Y m

� (θ, φ)

= λα

∞∑
�=0

�∑
m=−�

∞∑
n=1

Cα
�,m,nN�,n j�(k�,mr)Y m

� (θ, φ). (34)

If we multiply Eq. (34) by j�o (k�o,nor)Y�o,mo (θ, φ) and inte-
grate over (r, θ, φ), we get

h̄2

2m

κ2
�o,no

a2
Cα

�o,mo,no
+

∞∑
�=0

�∑
m=−�

∞∑
n=1

〈�o, mo, no|V |�, m, n〉Cα
�,m,n

= λαCα
�o,mo,no

, (35)
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FIG. 3. Absolute value of the probability amplitude for bound
states of the attractive tetrahedron. The bound states have ener-
gies (a) E = −1.6837 d.u., (b) E = −0.48746 d.u. (this state is
antisymmetric about y = 0), (c) E = −0.32975 d.u. (this state is
antisymmetric about x = 0), (d) E = −0.30059 d.u.

where

〈�o, mo, no|V |�, m, n〉
= N�o,mo,noN�,m,n

∫
R

dr j�o

(
k�o,nor

)
×Y�o,no (θ, φ)V (r) j�(k�,nr)Y�,m(θ, φ). (36)

We can solve Eq. (35) for the eigenvalues λα and coefficients
Cα

�o,mo,no
, and then use the results to plot the eigenstates in the

reaction region. For the attractive tetrahedron with U0 = −10,
there are four bound states which have energies E = −1.6837,
E = −0.48746, E = −0.32975, and E = −0.30059. The ab-
solute value of the probability amplitudes for the bound states
(in Cartesian coordinates) is shown in Fig. 3 for the reaction
region radius a = 4. The bound states sit in the potential
wells of the tetrahedron. Although it is not shown explicitly
in the figure, the bound state in Fig. 3(b) is antisymmetric
about y = 0, and the bound state in Fig. 3(c) is antisymmetric
about x = 0. There are no bound states for the repulsive
tetrahedron.

B. Asymptotic region eigenstates

The Schrödinger equation for the asymptotic region can be
written as

〈r|P̂Ĥ P̂|E〉 =
{
− h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]
+ L̂2

2μr2

}
〈r|P̂|E〉

= E〈r|P̂|E〉, (37)

and the basis states can be written as

〈r|P̂|E〉 =
∞∑

�=0

�∑
m=−�

��,m(r)Y�,m(θ, φ), (38)

where

��,m(r) = A�,mh(2)
�

(kr) + B�,mh(1)
�

(kr). (39)

The spherical Hankel function h(2)
� (kr) denotes the incoming

part of the wave function, and the spherical Hankel function
h(1)

� (kr) denotes the outgoing part of the wave function.

C. The Wigner-Eisenbud R matrix

The first step to obtain an expression for the W-E R matrix
is to consider again the projection of the eigenvalue equation
(18) and note that the spectral decomposition of Q̂ĤQ̂ is

Q̂ĤQ̂ =
∑

α

λαQ̂|φα〉〈φα|Q̂. (40)

We can therefore write Eq. (18) in the form∑
α

λαQ̂|φα〉〈φα|Q̂|E〉 + Q̂Ĥ P̂|E〉 = EQ̂|E〉. (41)

Now multiply by 〈φα′ |, and use the orthonormality of the
states |φα〉, to get so that

(λα − E )〈φα|Q̂|E〉 + 〈φα|Q̂Ĥ P̂|E〉 = 0. (42)

The matrix element 〈φα|Q̂Ĥ P̂|E〉 is computed in Appendix A.
Combining the result for 〈φα|Q̂Ĥ P̂|E〉 obtained in

Appendix A with Eq. (42), we can write

(λα − E )〈φα|Q̂|E〉 − h̄2a2

2μ

∞∑
�=0

�∑
m=−�

∞∑
n=1

Cα∗
�,m,nN�,n j�(κ�,n)

×
(

∂��,m(kr)

∂r

)
r=a

= 0. (43)

Now remember that

|E〉 =
∞∑

α=1

γα (E )Q̂|φα〉 + �k(E )P̂|�(k)〉, (44)

so γα (E ) = 〈φα|Q̂|E〉 and we finally obtain

(λα − E )γα (E ) − h̄2a2

2μ

∞∑
�=0

�∑
m=−�

∞∑
n=1

ξα∗
�,m,n(a)

×
(

∂��,m(kr)

∂r

)
r=a

= 0, (45)

where ξα∗
�,m,n(r) = Cα∗

�,m,nN�,n j�(k�,nr), so

γα (E ) = h̄2a2

2μ

∞∑
�=0

�∑
m=−�

∞∑
n=1

ξα∗
�,m,n(a)

(λα − E )

(
∂��,m(kr)

∂r

)
r=a

. (46)
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Because the energy eigenstates can be divided into reaction
region and asymptotic region contributions, we find that

〈r|E〉 =
∞∑

α=1

γα (E )〈r|Q̂|φα〉 + 〈r|P̂|E〉

=
∞∑

α=1

γα (E )
∞∑

�=0

�∑
m=−�

∞∑
n=1

ξα
�,m,n(r)Y�,m(θ, φ)

+
∞∑

�=0

�∑
m=−�

��,m(kr)Y�,m(θ, φ). (47)

Next impose the condition that the scattering eigenstate
〈r, φ|E〉 be continuous at r = a so 〈a, φ|Q̂|E〉 = 〈a, φ|P̂|E〉.
This takes the form

∞∑
α=1

γα (E )ψα;�,m(a) = ��,m(ka), (48)

where ψα;�,m(a) = ∑∞
n=1ξ

α
�,m,n(a) = ∑∞

n=1C
α
�,m,nN�,n j�(κ�,n).

Combining Eqs. (46) and (48), we obtain

h̄2a2

2μ

∞∑
�′=0

�′∑
m′=−�′

ψα;�,m(a)ψ∗
α;�′,m′ (a)

(λα − E )

(
∂��′,m′ (kr)

∂r

)
r=a

= ��,m(ka). (49)

The R matrix is obtained from the condition
∞∑

�′=0

�′∑
m′=−�′

aR�,m;�′,m′ (E )

(
∂��′,m′ (kr)

∂r

)
r=a

= ��,m(ka).

(50)

Therefore, the R matrix is given by

R�,m;�′,m′ (E ) = h̄2a

2μ

∞∑
α=1

ψα;�,m(a)ψ∗
α;�′,m′ (a)

(λα − E )
. (51)

If we substitute this expression for the W-E R matrix into
Eq. (14), we obtain an explicit expression for the scattering
matrix for the tetrahedral system. Below we show the results
of this scattering theory for both an attractive tetrahedron and
a repulsive tetrahedron.

V. SCATTERING FROM AN ATTRACTIVE
TETRAHEDRON

We used the W-E theory described above to compute the
scattering matrix for the eigenstate basis � = 0, . . . , 7; −� �
m � �; n = 1, . . . , 8. The radial quantum numbers n are
summed over when computing the R matrix. For this ba-
sis, the S matrix is then a 512 × 512 matrix composed of
scattering amplitudes for all possible scattering processes
{�1, m1}→{�2, m2} for � = 0, . . . , 7; −� � m � �. The scat-
tering matrix elements are labeled left to right and top to
bottom in the order

{�, m} = {(0, 0), (1,−1), (1, 0), (1,+1),

× (2,−2), (2,−1), . . . , (2,+2), (3,−3), . . . .

In Fig. 4, we show the absolute value of four S-matrix
elements as a function of energy. Figure 4(a) shows |S3,3| as a

FIG. 4. Absolute value of scattering amplitude for U0 = −10
and incident energy E = 0→6 d.u. (a) |S3,3| scattering ampli-
tude for {�, m} = {1, 0}→{1, 0}. (b) |S5,3| scattering amplitude for
{�, m} = {2, −2}→{1, 0}. (c) |S6,4| scattering amplitude for {�, m} =
{2, −1}→{1, +1}. (d) |S9,5| scattering amplitude for {�, m} =
{2, +2}→{2, −2}. Peaks and dips are due to quasibound-state scat-
tering resonances.

function of energy. |S3,3| is the square root of the probability
for an incoming particle with angular momentum {� = 1, m =
0} to scatter as an outgoing particle with angular momentum
{� = 1, m = 0}. Note that there are scattering resonances in
the neighborhoods of energies E = 0.6, E = 2.8, E = 3.8,
and E = 6. Figure 4(b) shows |S5,3| as a function of energy.
|S5,3| is the square root of the probability to scatter from
{� = 2, m = −2} to {� = 1, m = 0}. Figure 4(c) shows |S6,4|
as a function of energy. |S6,4| is the square root of the
probability to scatter from {� = 2, m = −1} to {� = 1, m =
+1}. Figure 4(d) shows |S9,5| as a function of energy. |S9,5|
is the square root of the probability to scatter from {� = 2,
m = +2} to {� = 2, m = −2}. All four scattering processes
have scattering resonances in the neighborhood of energies
E = 0.6, E = 2.8, E = 3.8, and E = 6.

In Fig. 5, we plot the absolute value of S-matrix ele-
ments Sn1,n2 with n1 = 1, . . . , 16 and n2 = 1, . . . , 16. This
corresponds to scattering amplitudes between all angular-
momentum states � = 0, . . . , 3 and the corresponding values
of m. In these plots, we only show values of |Sn1,n2 | > 0.2
so that we pick up the dominant scattering processes. In
Figs. 5(a), 5(c), and 5(d), we show the S matrix for energies
E = 0.435, E = 2.76, and E = 3.8, which are energies at
which scattering resonances occur in Fig. 4. At these energies,
there are multiple transitions between different angular mo-
menta. In Fig. 5(b), we show the S matrix for energy E = 1.5
which is an energy at which no significant scattering occurs in
Fig. 4.

In Fig. 6, we show the poles of the S-matrix element S3,3 in
the complex energy plane. All of the scattering resonances that
appear in Fig. 4 can be associated with poles of the S matrix in
the complex energy plane. Note that the imaginary part of the
energy increases as the real part of the energy increases. This
indicates that the higher energy quasibound states have shorter
lifetime than the lower-energy quasibound states because the
lifetime is proportional to h̄/Im(E ) (in dimensioned units).
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FIG. 5. Plots of the absolute value of S-matrix elements for
attractive potential U0 = −10 d.u.: (a) at resonance E = 0.435 d.u.,
(b) off resonance E = 1.5 d.u., (c) at resonance E = 2.76 d.u., (d) at
resonance E = 3.8 d.u. Only matrix elements with absolute value
greater than 0.2 are plotted.

Finally, in Fig. 7, we show some of the quasibound states
(reaction region eigenstates) that give rise to the scattering
resonances. All the states in Fig. 7 sit in, or are tightly wrapped
around, the position of the potential wells of the tetrahedron.
The state in Fig. 7(a), with energy E = +0.43186 is purely
imaginary. The lighter (orange) surface in Fig. 7(a) has the
value Im[φ6(r)] = −0.06034 and the darker (blue) surface
has the value Im[φ6(r)] = +0.06034. The state in Fig. 7(b),
with energy E = +2.65181, is real. The lighter (orange)
surface in Fig. 7(b) has the value Re[φ30(r)] = −0.08861, and

FIG. 6. S-matrix poles obtained from S3,3 for the attractive
potential.

FIG. 7. Quasibound states of the attractive tetrahedron with
energies (a) E = +0.43186 d.u., (b) E = 2.65181 d.u., (c) E =
2.75598 d.u., (d) E = 3.8135 d.u. These are localized reaction region
states.

the darker (blue) surface has value Re[φ30(r)] = +0.04315.
The state in Fig. 7(c), with energy E = +2.75598, is purely
imaginary. The lighter (orange) surface in Fig. 7(c) has he
value Im[φ31(r)] = −0.07974, and the darker (blue) surface
has the value Im[φ31(r)] = +0.07974. The state in Fig. 7(d),
with energy E = +3.8135, is purely imaginary. The lighter
(orange) surface has the value Im[φ48(r)] = −0.09246, and
the darker (blue) surface has value Im[φ48(r)] = +0.09246.
In the neighborhood of each of the energies listed, there are
several quasibound states. We have only shown a selected few
quasibound states here. Each of these states can be associated
with the poles of the S matrix shown in Fig. 6.

As pointed out in Ref. [29], for scattering systems with-
out a well-defined boundary, such as the tetrahedral system
we are considering here, the reaction region contains two
types of states: localized states, whose probability distribu-
tion is localized in the neighborhood of the potential energy
and do not depend on the size of the reaction region; and
extended states, which only see the walls of the reaction
region and are not influenced by the potential energy. In
Fig. 8, we show some examples of extended reaction region
states. The state in Fig. 8(a), with energy E = +1.27137,
is real. The lighter (orange) surface in Fig. 8(a) has value
Im[φ15(r)] = −0.08872, and the darker (blue) surface has
value Im[φ15(r)] = +0.08601. The state in Fig. 8(b), with
energy E = +1.99251, is real. The lighter (orange) surface
in Fig. 8(b) has the value Re[φ28(r)] = −0.08911, and the
darker (blue) surface has the value Re[φ28(r)] = +0.09789.
The state in Fig. 8(c), with energy E = +2.75598, is purely
imaginary. The lighter (orange) surface in Fig. 7(c) has value
Im[φ36(r)] = −0.1353, and the darker (blue) surface has the
value Im[φ36(r)] = +0.1353. The state in Fig. 8(d), with
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FIG. 8. Extended reaction region states of the attractive tetrahe-
dron with energies (a) E = +1.27137 d.u., (b) E = +1.99251 d.u.,
(c) E = +2.85299 d.u., (d) E = +3.8524 d.u.

energy E = +3.8524 is real. The lighter (orange) surface in
Fig. 8(d) has value Re[φ48(r)] = −0.1470, and the darker
(blue) surface has the value Re[φ48(r)] = +0.0629.

VI. SCATTERING FROM A REPULSIVE TETRAHEDRON

To obtain the repulsive tetrahedral potential, we set U0 =
+10. The repulsive tetrahedron has no bound states, but it
does have quasibound states. Evidence for this comes from
scattering resonances and poles of the S matrix in the complex
energy plane.

In Fig. 9, we show four S-matrix elements as a function of
energy. Figure 4(a) shows that |S3,3| is the square root of the
probability for an incoming particle with angular momentum
{� = 1, m = 0} to scatter as an outgoing particle with angular
momentum, {� = 1, m = 0}. Note that there are weak scat-
tering resonances in the neighborhoods of energies E = 2.6,
E = 3.6, and E = 6. Figure 4(b) shows |S5,3| as a function of
energy. |S5,3| is the square root of the probability to scatter
from {� = 2, m = −2} to {� = 1, m = 0}. Figure 4(c) shows
|S6,4| as a function of energy. |S6,4| is the square root of the
probability to scatter from {� = 2, m = −1} to {� = 1, m =
+1}. Figure 4(d) shows |S9,5| as a function of energy. |S9,5|
is the square root of the probability to scatter from {� = 2,

m = +2} to {� = 2, m = −2}. All four scattering processes
have scattering resonances in the neighborhood of energies
E = 2.6, E = 3.6, and E = 6.

In Fig. 10, we plot the absolute value of S-matrix ele-
ments Sn1,n2 with n1 = 1, . . . , 16 and n2 = 1, . . . , 16. This
corresponds to scattering amplitudes between all angular-
momentum states � = 0, . . . , 3 and the corresponding values
of m. In these plots, we only show values of |Sn1,n2 | > 0.1
so that we pick up the dominant scattering processes. In
Fig. 10(a), we show the S matrix for energy E = 0.7 which is

FIG. 9. Absolute value of scattering amplitude for U0 = +10
and incident energy E = 0→6 d.u. (a) |S3,3| scattering ampli-
tude for {�, m} = {1, 0}→{1, 0}. (b) |S5,3| scattering amplitude for
{�, m} = {2, −2}→{1, 0}. (c) |S6,4| scattering amplitude for {�, m} =
{2, −1}→{1, +1}. (d) |S9,5| scattering amplitude for {�, m} =
{2, +2}→{2, −2}. Peaks and dips are due to quasibound-state scat-
tering resonances.

an energy at which no significant scattering occurs in Fig. 9. In
Figs. 10(b)–10(d), we show the S matrix for energies E = 2.5,
E = 3.5, and E = 5.9, which are energies at which scattering
resonances occur in Fig. 9. At these energies there are multiple
transitions between different angular momenta.

In Fig. 11, we show the poles of the S-matrix element
S3,3 in the complex energy plane. The scattering resonances

FIG. 10. Plots of the absolute value of S-matrix elements for
U0 = +10 d.u.: (a) at apparent resonance E = 0.70 d.u., (b) at reso-
nance E = 2.5 d.u., (c) at resonance E = 3.5 d.u., (d) at resonance
E = 5.9 d.u. Only matrix elements with absolute value greater than
0.1 are plotted.
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FIG. 11. S-matrix poles for S3,3 for the repulsive potential.

that appear in Fig. 4 can be associated with poles of the S
matrix in the complex energy plane. Note that the complex
part of the energy increases as the real part of the energy
increases, indicating that the higher-energy quasibound states
have shorter lifetime than the lower-energy quasibound states.

Finally in Fig. 12, we show some of the quasibound states
(localized reaction region eigenstates) that give rise to the
scattering resonances for the repulsive tetrahedron. All the
states in Fig. 12 sit in the neighborhood of the potential peaks
of the tetrahedron. The state in Fig. 12(a), with energy E =
+2.47325, is real. The lighter (orange) surface in Fig. 12(a)
has the value Re[φ28(r)] = −0.06773, and the darker (blue)
surface has the value Re[φ28(r)] = +0.07162. The state in
Fig. 12(b), with energy E = +2.51459 is purely imaginary.
The lighter (orange) surface in Fig. 12(b) has the value
Im[φ29(r)] = −0.07256, and the darker (blue) surface has the
value Im[φ29(r)] = +0.07256. The state in Fig. 12(c), with
energy E = +3.42772 is real. The lighter (orange) surface in
Fig. 12(c) has value Re[φ42(r)] = −0.05065, and the darker
(blue) surface has the value Re[φ42(r)] = +0.09413. The
state in Fig. 12(d), with energy E = +3.47192, is purely
imaginary. The lighter (orange) surface in Fig. 12(d) has the
value Im[φ43(r)] = −0.08618, and the darker (blue) surface
has the value Im[φ43(r)] = +0.08618. In the neighborhood
of each of the energies listed, there are several quasibound
states. We have only shown a selected few quasibound states
here. Each one of these states can be associated with the poles
of the S matrix shown in Fig. 11.

The repulsive tetrahedron also has a series of extended
reaction region states which look very much like those shown
in Fig. 8.

FIG. 12. Quasibound states of the repulsive tetrahedron with
energies (a) E = 2.47325 d.u., (b) E = 2.51459 d.u., (c) E =
3.42772 d.u., (d) E = 3.47192 d.u. These are localized states of the
reaction region.

VII. CONCLUSIONS

Wigner-Eisenbud scattering theory provides an efficient
method to visualize quasibound-state structures in the neigh-
borhood of small quantum objects, such as small molecules.
Quasibound states are unstable standing waves associated
with parts of the molecule that can dissociate from the main
structure. Because they are unstable, they are difficult to
visualize.

For a simple molecule-size tetrahedral quantum structure,
we have found that quasibound electron states can exist in the
positive-energy continuum when the tetrahedron is composed
either of four attractive potential wells or four repulsive
potential wells. It is well known that W-E theory provides
an efficient means to model the scattering dynamics of small
quantum objects but, as we have shown above, it also provides
an efficient means to visualize the spatial structure of three-
dimensional unstable standing-wave structures.
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APPENDIX

We can obtain an explicit form for the matrix element Q̂Ĥ P̂:

Q̂Ĥ P̂ = −Q̂V̂P̂ = 2h̄2

μa2

∮
R

dr1

∮
A

dr2|r1〉〈r1|r2〉δ(r2 − a)
∂

∂r2
〈r2|. (A1)
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This then takes the form

〈φα|Q̂Ĥ P̂|E〉 = − 2h̄2

μa2

∫ a

0
r2

1dr1

∫ ∞

a
r2

2dr2

∫
d�1δ(r1 − r2)δ(r2 − a)〈φα|r1, θ1, φ1〉 ∂

∂r2
〈r2, θ1, φ1|P̂|E〉

= − 2h̄2

μa2

∫ a

0
r2

1dr1

∫ ∞

a
r2

2dr2

∫
d�1δ(r1 − r2)δ(r2 − a)

∞∑
�′=0

�′∑
m′=−�′

∞∑
n′=1

Cα∗
�′,m′,n′N�′,n′ j�′ (k�′,n′r1)Y�′,m′ (θ1, φ1)

× ∂

∂r2

( ∞∑
�=0

�∑
m=−�

��,m(kr2)Y�,m(θ1, φ1)

)
, (A2)

where d�1 = sin(θ1)dθ1dφ1.
Integrate over θ1 and φ1 and sum over �′ and m′ to get

〈φα|Q̂Ĥ P̂|E〉 = − 2h̄2

μa2

∫ a

0
r2

1dr1

∫ ∞

a
r2

2dr2δ(r1 − r2)δ(r2 − a)
∞∑

�=0

�∑
m=−�

∞∑
n′=1

Cα∗
�,m,n′N�,n′ j�(k�,n′r)

∂

∂r2
[��,m(kr2)]. (A3)

Note that since δ functions are even functions with area equal to one, when they are evaluated at the limits of integration r = a,
only one half of the δ function contributes and they each give a factor of 1

2 . We obtain

〈φα|Q̂Ĥ P̂|E〉 = − h̄2a2

2μ

∞∑
�=0

�∑
m=−�

∞∑
n=1

Cα∗
�,m,nN�,n j�(κ�,n)

(
∂��,m(kr)

∂r

)
r=a

. (A4)
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