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Calculations of electron scattering on H-like ions
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Electron-impact excitation and ionization of H-like ions of nuclear charge Z = 2, . . . , 8 have been calculated
from thresholds to high energies, with a particular focus on spin asymmetry of the cross sections. It is found that
the importance of electron exchange is undiminished with increasing Z . Away from resonance regions, scaling
considerations allow for accurate nonrelativistic estimates of the total-electron-spin-dependent cross sections for
Z > 8.
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I. INTRODUCTION

The field of electron-ion scattering has considerable history
and utility. Several reviews are available on the subject; see,
for example, Müller [1], Williams [2], and Bartschat and
Kushner [3]. Presently, our interest is in the simplest one-
electron ionic targets and particularly in the electron-spin-
dependent cross sections. Any nonzero electron-spin target
has two independent total-electron-spin S components. Ex-
periments that are able to resolve electron-spin phenomena
are relatively rare. However, they are invaluable in the testing
of theory; see the review of Andersen et al. [4] for extensive
examples. Furthermore, the behavior of the cross sections for
different S can be remarkably different [5].

Electron collisions with H-like ions are Coulomb three-
body problems. These are generally regarded as solved prob-
lems utilizing modern computational techniques whose valid-
ity is independent of the projectile energy. Such methods in-
clude R matrix with pseudostates [6–8], time-dependent close
coupling [9], and convergent close coupling [10]. The current
focus of the field has moved to more complicated collision
systems, as discussed by Schippers et al. [11]. However, there
is still some interesting physics to be found, and also, there is
a requirement for complete data sets for practical applications.

Recently, Bray et al. [12] found that with increasing charge
q of He-like ions, in the initial metastable 23S state, the
ionization spin asymmetries converged rapidly to a constant
as a function of u = Ei/EI, where Ei is the incident electron
energy and EI is the ionization threshold. Examination of
the ionization spin asymmetries in electron scattering on
Li-like targets in the ground state [13,14] also resulted in
the same conclusion [12]. The consequence of this is that
the importance of electron exchange remains undiminished
with increasing q, even though the incident energies increase
as q2. Furthermore, the spin asymmetries exhibited uniform

behavior where the cross section for one of the two total
electron spins dominated the other.

Here we check these ideas for H-like ions in the ground
state, not only for ionization, but for excitation cross sections
as well. In the process we generate complete data sets that
allow for self-consistent applications in collisional-radiative
models [15].

II. CONVERGENT CLOSE-COUPLING THEORY

The convergent close-coupling theory (CCC) theory was
initially developed for e-H scattering [16] and then extended
to H-like targets [17]. Presently, it has been extended to atomic
and molecular targets that can be modeled as quasi one- or
two-electron targets. In addition, projectiles now include pho-
tons, positrons and bare ions. For light projectiles the method
is valid for all projectile energies, and with the analytical
treatment of the singularity in the Green’s function [18], this
includes zero final energies (excitation thresholds). CCC is
based on solving coupled Lippmann-Schwinger equations in
momentum space upon expansion of the total wave function
in a Laguerre basis. Some of the more recent reviews of
applications of the CCC theory to diverse collision systems
are given in Refs. [19–22].

We are interested in calculating electron scattering on
H-like ions and begin by determining the parameters of the
Laguerre basis,

ξkl (r) =
√

λl (k − 1)!

(2l + 1 + k)!
(λl r)l+1 exp(−λl r/2)L2l+2

k−1 (λl r),

(1)
where L2l+2

k−1 (λl r) are the associated Laguerre polynomials.
Possible values of k range from 1 to the basis size Nl , and 0 �
l � lmax. As usual, we set Nl = N0 − l and λl = λ. Presently,
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we take lmax = 3, N0 = 25, and λ = Z , where Z is the nuclear
charge of the ion. The target states φn, n = 1, . . . , Nl are linear
combinations of the Laguerre basis functions and satisfy

〈φ f |HT|φi〉 = ε f δ f i, (2)

where HT is the target Hamiltonian. With such a choice we
obtain discrete ionic eigenstates of principal quantum number
n � 7 and a sufficiently dense discretization of the continuum,
which renders any pseudoresonances to be insignificant.

The calculations are performed on a broad range of en-
ergies, from excitation thresholds to around 10 times the
ionization threshold. The excitation and ionization thresholds,
in electronvolts, are

En = (1 − n−2)Z2Ry and EI = Z2Ry, (3)

respectively, where Ry = 13.6057 eV is the Rydberg constant.
We use a fine energy mesh below the ionization threshold to
ensure major resonances are found and a more coarse energy
mesh above the ionization threshold.

For a given incident electron energy, integrated cross sec-
tions σ f (S) are generated for all open final target states of
ε f < Ei + εi, where εi is the energy of the initial target state
and S = 0, 1 is the total electron spin. The spin-averaged cross
section σ f and the corresponding spin asymmetry A f are

σ f = σ f (0) + 3σ f (1)

4
and A f = σ f (0) − σ f (1)

σ f (0) + 3σ f (1)
. (4)

In the CCC method the total ionization cross section is
obtained by summing the cross sections for all target states
φ f for which ε f > 0. The spin asymmetry parameter ranges
from A f = −1/3, whenever σ f (1) � σ f (0), to A f = 1, when-
ever σ f (0) � σ f (1). A value of zero indicates that electron
exchange is negligible, and this is the limit with increasing
incident energy.

As we are interested in ionic targets with asymptotic charge
q = Z − 1 � 1, we need to generalize Eq. (8) of Bray et al.
[18] for the case of zero energy, as happens at the excitation
thresholds. The regular and irregular Coulomb functions for q
of interest, in the limit of zero energy, can be obtained from

lim
kn→0

fL(knr, q)/
√

kn = √
πrJ2L+1(

√
8qr),

(5)
lim

kn→0
gL(knr, q)/

√
kn = −√

πrY2L+1(
√

8qr),

where J and Y are the cylindrical Bessel functions of the first
and second kind, respectively.

The CCC computer code for electron scattering has re-
cently completed its third generation of parallel processing
implementation. It is now able to utilize graphics processing
units (GPUs) in addition to OpenMP (multicore) and MPI
(multinode) implementation. The details will be discussed
elsewhere, but we note that the GPU implementation leads to
1–2 orders of magnitude speedup. We take advantage of this
for the first time in this work, which required many energies,
partial waves, and targets.

III. RESULTS

We begin by validating the CCC calculations for the
total ionization cross sections, where experimental data are
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FIG. 1. Cross section (bottom) and its spin asymmetry (top) for
electron-impact total ionization of He+. The CCC calculations are
described in the text. The experimental data are due to Peart et al.
[23] and Defrance et al. [24].

available. In doing so we also establish the required incident
electron energies Ei for each target.

A. Ionization

In Figs. 1–6 the electron-impact total ionization cross
section and its spin asymmetry are presented for the specified
ions. We see excellent agreement with experiment for the
cross sections. The spin asymmetries all have the same shape,
starting at a positive value at the corresponding threshold
and diminishing monotonically towards zero with increasing
energy. The fact that they remain above zero at all energies
is due to the fact that the direct and exchange contributions
are combined with the factor of (−1)S for singlet (S = 0) and
triplet (S = 1) scattering. This explanation assumes that the
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FIG. 2. As for Fig. 1, except for the Li2+ target with the experi-
mental data due to Tinschert et al. [25].
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FIG. 3. As for Fig. 1, except for the B4+ target with the experi-
mental data due to Aichele et al. [27].

direct and exchange components are of a similar sign. We
shall see later that this is not always the case.

Note that in the case of ionization we cannot obtain ac-
curate results too close to the threshold. This is because of
limitations in practical discretization of the target continuum
via the Laguerre basis. Accurate results for ionization are only
possible once the number of open positive-energy states is
sufficiently large. Nevertheless, we see that the CCC method
is able to get quite close to the threshold here, as has been
demonstrated previously when addressing near-threshold be-
havior of ionization [26].

Having found good agreement of the calculated total
ionization cross sections with experiment, we now turn to
scaling considerations as proposed by Burgess and Rudge
[28], Burgess et al. [29], and Younger [30]. In Fig. 7 the
cross sections presented above have been multiplied by their
corresponding E2

I (in effect Z4) and plotted as a function of
u = Ei/EI.
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FIG. 4. As for Fig. 3, except for the C5+ target.
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FIG. 5. As for Fig. 3, except for the N6+ target.

Starting with the scaled cross sections, we see that they sys-
tematically increase and converge with increasing Z , allowing
for an accurate estimate of cross sections for Z > 8. The spin
asymmetries also increase systematically, and converge even
more rapidly than the scaled cross sections, with increasing
Z . Thus, despite requiring larger energies with increasing
Z , electron exchange remains significant at the considered
energies, which can be as high as 9 keV for the O7+ ion. In
light of similar findings for other targets [12] these results are
not surprising, though they needed to be confirmed. We next
consider discrete excitation.

B. Excitation

Due to unitarity of the CCC formalism, reliability of the
CCC calculations for ionization cross sections indicates relia-
bility of the corresponding discrete excitation cross sections
as well. In obtaining complete data sets for electron-ion
scattering, to be utilized in collisional-radiative models, it
is helpful to have excitation cross sections begin at exactly
their thresholds. As an example, here we start at the n = 2
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FIG. 6. As for Fig. 3, except for the O7+ target.
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FIG. 7. Spin asymmetries and scaled, by E 2
I , cross sections of

Figs. 1–6 as a function of u = Ei/EI.

thresholds, see Eq. (3). Rather than showing cross sections
for individual targets separately, as we did for ionization, we
combine them together to immediately focus on the scaling
considerations.

In Fig. 8 the spin asymmetries and scaled cross sections
are given for all considered ions as a function of u = Ei/En=2,
where En=2 is the energy of the n = 2 threshold. We use
a logarithmic scale for u in order to emphasize the lower
energy region, to show the values at the exact threshold,
and to broaden the resonance region. We see that away from
this region the scaling behavior is much the same as for the
ionization case. Here spin asymmetries converge even more
rapidly than the cross sections. Convergence is systematic and
monotonic, with the singlet cross sections being dominant
over the triplet ones over the entire energy range. The results
for 2P excitation are given in Fig. 9, and the same conclusions
as for 2S excitation apply.
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FIG. 8. Spin asymmetries and scaled, by E 2
n=2, cross sections

for electron-impact 2S excitation of H-like ions as a function of
u = Ei/En=2.
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FIG. 9. Spin asymmetries and scaled, by E 2
n=2, cross sections for

electron-impact 2P excitation of H-like ions as a function of u =
Ei/En=2.

C. Elastic scattering

We next consider elastic scattering. Note that we present
only the results arising from the close-coupling part of the
CCC calculations. Due to the additional contribution of
Rutherford scattering the physical elastic electron-ion cross
sections are infinite. Nevertheless, accurate matrix elements
for elastic transitions have application in the analysis of Stark
broadening [31,32] and also help to check the unitarity of
the close-coupling calculations. The elastic scattering case is
different from the others considered as it has no threshold, and
so for scaling purposes we use Z instead.

In Fig. 10 we present the elastic scattering spin asymme-
tries and scaled, by Z4, cross sections against u = Ei/Z2. For
consistency and ease of comparison the energy range is the
same as used for excitation, i.e., above the En=2 threshold. We
see that the Z4 scaled elastic scattering cross sections appear
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FIG. 10. Spin asymmetries and scaled, by Z4, cross sections for
elastic scattering of electrons on the ground state of H-like ions as
a function of u = Ei/Z2. Note that the Rutherford term has not been
included.
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FIG. 11. Zeroth partial-wave spin asymmetries and scaled, by
Z4, singlet cross sections for elastic scattering of electrons on the
ground state of H-like ions as a function of u = Ei/Z2.

to converge even faster than those for 2S and 2P excitation.
What is more interesting is that the spin asymmetry, which
is almost identical for all targets considered as a function
of u, has a completely different behavior to that previously
seen. Now we find it to be negative, indicating that triplet
scattering is dominant, or equivalently, direct and exchange
contributions have the opposite sign for elastic scattering. The
origin of this difference is that only in the elastic channel
does the direct potential have the −1/r term occurring [see
Eq. (52) of Bray and Stelbovics [10]]. It comes from the
nuclear potential −Z/r, with the Coulomb waves calculated
for q = Z − 1, leaving only −1/r in the direct matrix element
calculation. This is sufficient to change the sign of the radial
potentials when calculating the direct matrix elements.

Lastly, to illucidate the scaling behavior of resonances, we
take the example of the resonance below the En=2 threshold
in the singlet elastic zeroth partial wave, corresponding to the
formation of the two-electron (2s2) 1S autoionizing He-like
state. These results are presented in Fig. 11 using the same
scaling as in Fig. 10. We see that the resonances systematically
shift towards the lower values of u and also become narrower,
growing rapidly with increasing Z . Thus they do not scale as
simply as the underlying cross sections. This is not surprising,
since the scaling proposed by Burgess et al. [29] relates just
to the target properties whose energies have the Z2 factor
given in Eq. (3). The resonances are due to the combined
electron-ion system. For all targets the triplet cross section
σ1s(1) is smooth over the entire presented energy range, and
so the spin asymmetries indicate the existence of Fano-type

resonances, with the singlet cross section varying rapidly
from σ1s(0) � σ1s(1) to σ1s(0) � σ1s(1) over a very small
energy range.

We have also analyzed the resonance structure in the exci-
tation channels with the same conclusions as for the presented
elastic-scattering case. Namely, with increasing Z the corre-
sponding resonances move to lower energies u and become
narrower but greater in magnitude. Hence, they cannot be
readily estimated for higher Z using the scaling considered
here. An overview of the resonances in discrete excitation has
been given by Ballance et al. [6].

IV. CONCLUSIONS

Using the GPU-enabled CCC code, detailed and extensive
calculations of electron scattering on H-like ions for Z =
2, . . . , 8 have been performed, from thresholds through to
high energies. We confirmed the Z4 scaling rule for the cross
sections, and this may be generally used to obtain nonrelativis-
tic spin-dependent cross sections for Z > 8. One exception is
the resonance region below the ionization threshold, where the
resonances change shape and move systematically to lower
values as a function of the reduced energy u = Ei/Z2. As
found previously for He-like ions in the metastable initial state
23S and Li-like ions in the ground state [12], the spin asym-
metries converge even more rapidly than the cross sections
for a given value of u, indicating that exchange effects do not
diminish with increasing Z . Generally, the spin asymmetries
are dominated by the singlet case, with the exception of elastic
scattering, where the triplet cross sections dominate. The
complete data set for each Z � 8 has excitation cross sections
for n � 7 and may be used in collisional-radiative models as a
single self-consistent set with uncertainties, with uncertainties
of the order of 5% away from resonance regions. For higher
Z the existing data may be used to infer total ionization
cross sections quite accurately until relativistic effects become
important. This can be quantified using the Dirac-based fully
relativistic CCC method [33–35].
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