
PHYSICAL REVIEW A 101, 022702 (2020)

Model-potential calculations of positron binding, scattering, and annihilation
for atoms and small molecules using a Gaussian basis
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A model-potential method is employed to calculate binding, elastic scattering, and annihilation of positrons
for a number of atoms and small nonpolar molecules, namely, Be, Mg, He, Ar, H2, N2, Cl2, and CH4. The
model potential contains one free parameter for each type of atom within the target. Its values are chosen
to reproduce existing ab initio positron-atom binding energies or scattering phase shifts. The calculations are
performed using a Gaussian basis for the positron states, and we show how to obtain values of the scattering phase
shifts and normalized annihilation rate Zeff from discrete positive-energy pseudostates. Good agreement between
the present results and existing calculations and experimental data, where available, is obtained, including
the Zeff value for CH4, which is strongly enhanced by a low-lying virtual positron state. An exception is the
room-temperature value of Zeff for Cl2, for which the present value is much smaller than the experimental value
obtained over 50 years ago. Our calculations predict that among the molecular targets studied, only Cl2 might
support a bound state for the positron, with a binding energy of a few meV.
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I. INTRODUCTION

We have recently proposed a model-potential approach that
enables one to calculate the energies and annihilation rates for
positron bound states with molecules, including large alkanes
[1,2]. In this paper we show that the method can also be used
to describe low-energy positron scattering and annihilation in
small nonpolar molecules. We also validate it by performing
binding, scattering, and annihilation calculations for a num-
ber of atoms for which accurate theoretical predictions are
available.

The positron (e+) is an important tool in many areas of
science, e.g., in tests of QED and the standard model [3–5],
astrophysics [6], condensed-matter physics [7], and in medical
imaging [8]. However, the basic interactions of positrons with
ordinary matter are still not fully understood. In particular,
this concerns the problem of low-energy positron annihilation
in molecules and its resonant enhancement, and the related
problem of positron binding to neutral atoms and molecules.

The ability of certain neutral atoms to support bound states
for positrons was suggested by many-body-theory calcula-
tions in 1995 [9] and rigorously proved by variational calcu-
lations of the e+Li binding energy two years later [10,11].
A plethora of calculations for other atoms followed (see
Ref. [12] for a 2002 review), and it is now expected that
about 50 atoms in their ground states can bind a positron [13].
Unfortunately, positron-atom bound states have not yet been
observed experimentally, though several detection schemes
have been proposed [14–17].
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Conversely, positron binding energies have been deter-
mined experimentally for about 85 polyatomic molecules
[18–27]. This has been done by making use of resonant
annihilation. When a positron collides with a molecule, it can
annihilate with a target electron “in flight.” Additionally, for
polyatomic molecules, annihilation can also proceed by cap-
ture of the positron into a bound state, its excess energy being
transferred into excitation of a vibrational mode with near-
resonant energy [28–30]. This results in resonances in the
annihilation rate at positron energies εν = h̄ων − εb, where
εb is the positron binding energy and ων is the vibrational
frequency of mode ν. The binding energy is thus measured
as a downshift of the resonance energy with respect to that of
the vibrational mode.

Note that resonant annihilation can occur only for
molecules that support a bound state for the positron [31,32].
The vast majority of molecules studied experimentally to date
are nonpolar or weakly polar, e.g., alkanes, arenes, alcohols,
formates, and acetates. On the side of theory, calculations
of positron-molecule binding have had limited success. Most
studies have considered strongly polar molecules, i.e., those
with a dipole moment greater than the critical value of 1.625 D
that guarantees binding even at the static level of theory
[33,34]. (For molecules that are free to rotate, the critical
dipole moment is greater, and it increases with the molecule’s
angular momentum [35].) In fact, only six species have been
studied both theoretically and experimentally, namely, car-
bon disulfide CS2, acetaldehyde C2H4O, propanal C2H5CHO,
acetone (CH3)2CO, acetonitrile CH3CN, and propionitrile
C2H5CN [36–40]. The best agreement is currently at the level
of 25% for acetonitrile, where a configuration-interaction cal-
culation gave εb = 135 meV [39], compared to the measured
binding energy of 180 meV [24]. On the other hand, the cal-
culation found no binding for CS2 [36], while the experiment
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gives εb = 75 meV [24]. The calculations are difficult because
of strong electron-positron correlation effects that are hard
to describe in a complete manner ab initio. An overview of
calculations of positron-molecule binding carried out to date
can be found in Ref. [1].

Recently, we proposed a model-potential method for cal-
culating positron-molecule binding energies. In this method,
the electrostatic potential of the molecule is first calculated at
the static (Hartree-Fock) level. The Schrödinger equation is
then solved for a positron in this potential, with the addition
of a model potential that accounts for the long-range polar-
ization of the molecule and short-range correlations [1]. We
tested this idea by examining positron binding to hydrogen
cyanide (HCN) [1] and obtained good agreement with existing
ab initio calculations [41,42]. However, the true strength of
our approach is that it can be easily applied to large systems.
In Ref. [2] we used it to study positron binding to alkanes with
up to 16 carbon atoms. We found good agreement between
the calculated and measured binding energies, and we also
computed the rates of positron annihilation from the bound
states.

In our method [1,2], the positron wave function is ex-
panded in a basis of square-integrable Gaussian functions.
Here we show that in spite of the absence of true continuum,
the method can be adapted to calculate low-energy positron
scattering and direct annihilation for nonpolar molecules. To
test the idea, we first perform calculations for a number of
atoms, both positron-binding (Be and Mg) and nonbinding
(He and Ar), where accurate calculations exist. Our model
positron-molecule correlation potential contains just one free
parameter (viz, the cutoff radius) for an atomic target, or
one free parameter for each type of atom within a molecular
target. Their values for Be, Mg, He, Ar, and H are taken
from existing model-potential calculations of positron bind-
ing, scattering, and annihilation with atoms [43], or adjusted
to reproduce many-body-theory scattering phase shifts [44].
Our calculations for molecular targets, viz, H2, N2, Cl2, and
CH4, are more predictive in nature. Here, we calculate s-wave
scattering phase shifts, scattering lengths, and annihilation
rates for all species. We also explore the possibility of positron
binding to Cl2 and make comparisons with existing theoretical
and experimental data.

Atomic units (a.u.) are used throughout.

II. THEORY AND NUMERICAL IMPLEMENTATION

A. Schrödinger equation for positron

The details of our model-potential treatment of the
positron-molecule interaction are given in Ref. [1]. Here we
briefly repeat the salient features for convenience.

The nonrelativistic Hamiltonian for a positron interacting
with an atomic or molecular target with Ne electrons and Na

nuclei (treated in the Born-Oppenheimer approximation) is

H =
Ne∑

i=1

he(ri ) + hp(r) +
Ne∑

i=1

∑
j<i

1

|ri − r j | −
Ne∑

i=1

1

|r − ri| ,

(1)

where

he(ri ) = −1

2
∇2

i −
Na∑

A=1

ZA

|ri − rA| , (2)

hp(r) = −1

2
∇2 +

Na∑
A=1

ZA

|r − rA| , (3)

ri is the position of electron i, rA is the position of nucleus
A (with charge ZA), and r is the position of the positron,
all relative to an arbitrary origin. A direct solution of the
Schrödinger equation H� = E� for the total energy E and
the (Ne + 1)-particle wave function �(r1, . . . , rNe , r) is nu-
merically intractable for systems with more than a few elec-
trons. We therefore proceed by first calculating the energy and
wave function of the bare target (i.e., without the positron) in
its ground state, using the Hartree-Fock method. This wave
function �(r1, r2, . . . , rNe ) is a Slater determinant of the Ne

electronic spin orbitals. The positron-target interaction is then
taken to be

V (r) = Vst(r) + Vcor(r), (4)

where Vst is the electrostatic potential of the target, calculated
at the Hartree-Fock level, and Vcor accounts for the correlation
effects beyond the frozen-target Hartree-Fock approximation.

In what follows, we assume that the target is closed-shell;
thence there are Ne/2 doubly occupied electronic molecular
orbitals ϕi, and the electrostatic potential of the target is
given by

Vst(r) =
Na∑

A=1

ZA

|r − rA| − 2
Ne/2∑
i=1

∫ |ϕi(r′)|2
|r − r′| dτ ′, (5)

where dτ ′ is the volume element associated with r′. The
correlation potential Vcor can be derived using many-body
theory [9,44–49] or approximated using density-functional-
theory approaches, based on the positron correlation en-
ergy in an electron gas and correct long-range asymptotic
form [50,51]. It can also be represented by a model po-
tential with correct long-range behavior and parametrized
form at short range. This approach has long been used for
studying low-energy electron-molecule scattering (see, e.g.,
Ref. [52]). Model potentials have been used previously to
study positron interactions with atoms and polar molecules
(see, e.g., Refs. [12,43,53,54]).

So far, the many-body-theory approach has only been de-
veloped for atoms [55]. The density-functional-theory-based
approach has been used in quantum-chemistry calculations
of positron-molecule binding [56] but lacks the quantitative
accuracy. Following Refs. [1,2], we use a model potential, viz,

Vcor(r) = −
Na∑

A=1

αA

2|r − rA|4
[

1 − exp

(
−|r − rA|6

ρ6
A

)]
, (6)

where αA is the hybrid dipole polarizability of atom A within
the target [57] (which for an atomic target is just the usual
atomic dipole polarizability), and ρA is a cutoff radius specific
to atom A. At large distances from the target, Vcor(r) �
−α/2r4 (where α = ∑

A αA is the total polarizability of the
target and r is the distance from the target to the positron),
which is the asymptotic polarization potential for a positron
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interacting with a closed-shell atom or spherical-top molecule.
For molecules with anisotropic polarizabilities, the asymptotic
form of Vcor(r) is the spherical average of the anisotropic
polarization potential [58]. The function in brackets in Eq. (6)
moderates the unphysical growth of the potential near nucleus
A. Values of ρA correlate with the radius of atom A and are
typically in the range 1.5–3.0 a.u. [1,2,43].

The short-range part of Vcor effectively parametrizes corre-
lation effects other than polarization, such as virtual positro-
nium (Ps) formation. This latter is notoriously difficult to
describe in an ab initio manner, as it requires large numbers
of electron and positron partial waves [48,59] or addition of
basis states centered at points outside the molecule [60,61]. In
our approach, the precise analytical form of the short-range
cutoff function will not strongly affect the results, so long as
the cutoff radii ρA are chosen judiciously.

The single-particle Schrödinger equation for the positron,[− 1
2∇2 + V (r)

]
ψ (r) = εψ (r), (7)

is solved to obtain the positron energy ε and wave function
ψ (r), for the total potential (4). This is referred to as the
frozen-target-plus-polarization (FT+P) method in Ref. [1].
The total wave function of the positron-target system is the
product of the electronic Slater determinant and the positron
wave function:

�(r1, r2, . . . , rNe , r) = �(r1, r2, . . . , rNe )ψ (r). (8)

In practice, Eq. (7) is solved by expanding ψ (r) in a
Gaussian basis (see below). If the potential V (r) is sufficiently
attractive, the eigenvalue spectrum will contain negative en-
ergies, which correspond to the positron bound states. The
binding energy εb for such a state is related to its negative
energy eigenvalue ε by εb = |ε|. However, most (or all, for
nonbinding species) of the energy eigenvalues ε are posi-
tive, and the corresponding wave functions represent positron
pseudostates that span the continuum. As shown in Secs. II C
and II E, they can be used to obtain information on positron
scattering and direct annihilation by the target.

B. Numerical details

The Hartree-Fock electronic molecular orbitals and the
resulting electrostatic potential of the molecule are calculated
using GAMESS [62,63]. The Schrödinger equation for the
positron, Eq. (7), is solved using the NEO package [64,65],
which we have modified to include the model correlation
potential Vcor in the Roothaan equation for the positron [1].

The electron and positron wave functions are written in
terms of Gaussian basis sets, with several Gaussian primitives
centered on each of the atomic nuclei, viz,

ϕi(ri ) =
Na∑

A=1

Ne
A∑

j=1

C(i)
A j gA j (ri ), (9)

ψ (r) =
Na∑

A=1

N p
A∑

j=1

C(p)
A j gA j (r), (10)

where

gA j (r) = (x − xA)nx
A j (y − yA)ny

A j (z − zA)nz
A j e−ζA j |r−rA|2 (11)

is a Gaussian primitive with angular momentum nx
A j + ny

A j +
nz

A j . There are Ne
A (N p

A ) Gaussian primitives centered on nu-
cleus A for the electron (positron).

For the electrons, the standard 6–311++G(d, p) basis set
has been used throughout. The geometry of each molecule
(assumed to be in its rovibrational ground state) is optimized
at the Hartree-Fock level, using this basis. For the positron,
an even-tempered Gaussian basis has been adopted. For the
functions of a specific angular-momentum type (e.g., s, p, d)
centered on nucleus A, we choose the exponents ζA j as

ζA j = ζA1β
j−1

(
j = 1, . . . , N p

A

)
, (12)

where ζA1 > 0 and β > 1 are parameters. In principle, differ-
ent choices of ζA1, β, and N p

A can be made for each nucleus. A
prudent choice of the smallest exponents ζA1 is very important
for an accurate description of weakly bound positron states.
At large distances, the bound-state wave function behaves as
ψ (r) ∼ e−κr/r, where κ = √

2εb and εb is the binding energy.
To ensure that expansion (10) accurately describes the wave
function at distances r ∼ 1/κ , we must have ζA1 � κ2 = 2εb.
For nonbinding targets, the value of ζA1 determines the energy
of the lowest positive-energy pseudostate, ε ∼ ζA1.

For the atomic targets (Be, Mg, He, and Ar), we have used
two different positron basis sets. The first consists of 12 s-type
Gaussians with ζA1 = 0.0001 and β = 3. The second consists
of 19 s-type Gaussians with ζA1 = 0.0001 and β = 2. These
shall be referred to as the 12s and 19s basis sets, respectively.

For H2, we have used three different basis sets. The first is
identical to the 12s basis set used for the atomic targets, but
with 12 s-type Gaussians centered on each H atom (making
a total of 24 basis functions). The second set is obtained
by taking the first set and adding eight p-type Gaussians on
each H atom (each of these Gaussians has three projections,
making a total of 2 × 8 × 3 = 48 additional basis functions),
the values of the exponents ζA j starting from 0.0081 and
increasing with a common ratio of β = 3. The third set is
obtained by taking the second set and adding eight d-type
Gaussians on each H atom (each of these Gaussians has six
projections, making a total of 2 × 8 × 6 = 96 additional basis
functions), again with ζA1 = 0.0081 and β = 3. These shall
be referred to as the 12s, 12s 8p, and 12s 8p 8d basis sets,
respectively.

For N2 and Cl2, we use the 12s 8p 8d basis set again.
Finally, for CH4, we use the 12s 8p 8d basis functions on
the C atom, and on each of the H atoms, we use a set of
8 s-type Gaussians, with ζA1 = 0.0081 and β = 3. This shall
be referred to as the 12s 8p 8d / 8s basis set.

In Ref. [43] Mitroy and Ivanov used Vcor in the form of
Eq. (6) (with a single term in the sum over A) to investigate
positron interactions with a number of atomic targets, includ-
ing Be, Mg, He, Ar, and H. They determined appropriate
values of the cutoff radius ρA for each atom by compar-
ing the model-potential calculations with accurate ab initio
calculations. For Be and Mg, for which a positron bound
state exists, they chose ρA so that the binding energy εb fit a
stochastic-variational calculation [66]. For He and Ar, which
do not bind the positron, they determined ρA by comparing
the s-wave scattering phase shift at the positron momentum
k = 0.1 a.u. with the Kohn-variational calculation [67] (He) or
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TABLE I. Values of atomic (He, Be, Mg, Ar) or hybrid (H, C,
N, Cl) polarizabilities αA, and cutoff radii ρA used in the correlation
potential, Eq. (6).

Atom A αA (a.u.) ρA (a.u.)

He 1.383 1.500
Be 38 2.686
Mg 72 3.032
Ar 11.1 1.710, 1.88
H 2.612 2.051
C 7.160 2.051
N 6.451 2.051
Cl 15.62 1.88, 2.20

polarized-orbital calculation [68] (Ar). For H, they determined
ρA by comparing the scattering length with close-coupling
calculations [69,70].

For Be, Mg, He, and Ar, we use the same values of αA

and ρA as given in Table I of Ref. [43]. This enables a direct
comparison of our results for the binding energies, scattering
phase shifts, and annihilation rates with those of Ref. [43].
For Ar, we also carry out calculations for a cutoff radius of
ρAr = 1.88 a.u., chosen to reproduce the s-wave scattering
phase shift from the many-body-theory calculations by Green
et al. [44]. For H2, N2, CH4, and Cl2, we use the atomic
hybrid polarizabilities from Ref. [57]. We take the cutoff
radius for H to be ρH = 2.051 a.u. [43]. For C and N, we
take the cutoff radius to be the same as for H (as was done in
Refs. [1,2]). Finally, for Cl we use either ρCl = 1.88 a.u., i.e.,
the second cutoff radius of Ar (its periodic-table neighbor), or
ρCl = 2.20 a.u., chosen to reproduce the experimental binding
energy εb = 57 meV for CCl4 [26]. The latter value of the
cutoff radius is in accord with the fact that the mean radius of
the valence orbital in Cl is 10% larger than that of Ar [71].
These data are summarized in Table I.

C. Elastic scattering

After solving the Schrödinger equation (7), the positive-
energy pseudostates can be used to extract information about
positron elastic scattering from the target. Specifically, we
can find values of the s-wave scattering phase shift for a
set of discrete energies [72]. We restrict our interest to the
low-energy region ε < 0.5 a.u., which corresponds to positron
momenta k < 1 a.u.

For a spherically symmetric (atomic) target, each positive-
energy pseudostate has a definite orbital angular momentum
l . The wave function of each pseudostate factorizes into radial
and angular parts as

ψ (r) = 1

r
P(r)Ylm(�), (13)

where Ylm is a spherical harmonic, with m the magnetic
quantum number. We restrict our interest to s-wave scatter-
ing and ignore the pseudostates with l > 0. For atoms, our
positron basis sets contain only s-type Gaussians, so all of the
pseudostates do, in fact, have l = 0, with Y00 = 1/

√
4π .

For molecular targets, the lack of spherical symmetry
means that the pseudostates do not have a definite angular

momentum. However, for small nonpolar molecules, the mix-
ing of the positron partial waves by the potential is small at
low positron energies [72]. Hence, we can select the “s-type”
pseudostates, for which the expectation value of the squared
orbital angular momentum operator L2 (see Appendix A) is
close to zero.

For a true positron continuum state with l = 0, the asymp-
totic form of the radial wave function is

P(r) � A sin(kr + δ0)

k
, (14)

where A is a normalization constant and δ0(k) is the s-wave
scattering phase shift. One way to find δ0, is to fit the ra-
dial function P(r) for a positive-energy pseudostate to the
asymptotic form (14) with k = √

2ε at intermediate values of
r, for which the potential V (r) is negligible compared to the
positron energy, while the wave function is still described well
by the Gaussian basis. For s-type states in molecules, we can
also spherically average the positron wave function around the
molecular center of mass (see Appendix B), before fitting to
Eq. (14).

However, we found that fitting the pseudostate wave func-
tions to Eq. (14) resulted in values of δ0 that were sensitive
to the range of r used for the fit, making it difficult to obtain
reliable phase shifts in this way. We have therefore adopted
an alternative and more universal method which allowed us to
determine the phase shifts using only the energy eigenvalues.
In this method one first solves the Schrödinger equation for
a free positron [i.e., Eq. (7) with V (r) = 0] using a Gaussian
basis. This gives a discrete set of positive-energy pseudostates,
and as before, we retain only the s-type states. We denote
the energies of these states by ε(0)

n , where n = 1, 2, . . . . Since
these energies increase monotonically with n, there exists an
invertible function f of a continuous variable n such that

f (n) = ε(0)
n (15)

for positive integer n.
Solving the Schrödinger equation for the positron in the

field of the target [i.e., Eq. (7) with V (r) given by Eq. (4)] in
the same basis, and retaining only the s-type states, yields a
different set of energy eigenvalues, which we denote εn. If the
positron-target potential supports one or more bound s-type
levels, the corresponding value(s) of εn will be negative. Let
�εn denote the difference between εn and the corresponding
free-particle energy ε(0)

n , viz, �εn = εn − ε(0)
n . A positive

(negative) value of �εn indicates that the positron-target
interaction is effectively repulsive (attractive) at the positron
energy εn, and consequently one expects the s-wave scattering
phase shift to be smaller (greater) than Nsπ , where Ns is the
number of bound s levels supported by the potential [73]. For
n > Ns, i.e., for the positive-energy pseudostates, the energies
εn are related to the s-wave phase shift by

εn = f

(
n − δ0

π

)
. (16)

Equation (16) is inverted to determine the phase shift as

δ0 = [n − f −1(εn)]π, (17)
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FIG. 1. The function g(ln ε) for the 12s atomic basis set. Black
circles correspond to the integer values n = g(ln ε(0)

n ) for n = 1–7;
the dashed line is a cubic-spline fit of the above data; red crosses
correspond to the energies εn obtained for a positron interacting with
the Be atom.

where the functional inverse f −1 can be obtained by plotting
integer n against ε(0)

n and constructing a continuous function
f −1(ε) by interpolation.

In practice, for even-tempered Gaussian basis sets, the
energies ε(0)

n and εn grow approximately exponentially with
n, making f (n) a rapidly changing function. Hence, we plot
values of n against ln ε(0)

n and interpolate them to obtain a
function g(ln ε) ≡ f −1(ε). Since the values of ln ε(0)

n grow
in a near-linear fashion with n, this interpolation is accurate
and robust. The phase shift at the positron energy εn is then
given by

δ0 = [n − g(ln εn)]π. (18)

As an example, in Fig. 1 black circles show n plotted
against ln ε(0)

n , where the ε(0)
n are the free-particle energies

computed using the 12s atomic basis set [recall that g(ln ε) =
n for ε = ε(0)

n ]. Only the data for the seven states with ε(0)
n <

0.5 a.u. are shown. The black dashed line is the function
g(ln ε) obtained as a cubic-spline fit to the free-particle data.
Finally, the figure shows the values of ln εn and the corre-
sponding values of g(ln εn) for a positron in the field V (r) of
the Be atom (red crosses). Note that Be has a bound s state for
the positron (ε1 < 0), so the first cross corresponds to n = 2.
The phase shifts obtained in this way are shown in Sec. III.

Considering the phase shift δ0 as a function of the positron
momentum k = √

2ε, and fitting to one or more terms of the
effective-range-theory expansion [74]

k cot δ0 = −1

a
+ πα

3a2
k + O(k2 ln Ck) (19)

at small k, provides estimates of the scattering length a. If
the positron-target potential supports a weakly bound s state
with binding energy εb = −ε1 > 0, the scattering length will
be positive and large in magnitude, and related to the binding
energy by εb � 1/2a2. In contrast, a large negative scattering
length indicates the presence of a low-lying virtual s level
with energy ε ≈ 1/2a2. In either case, the zero-energy elastic

0 0.02 0.04 0.06 0.08 0.1
Positron momentum k (a.u.)

-0.07

-0.06

-0.05

-0.04

k 
co

t δ
0

FIG. 2. Values of k cot δ0 for Be for the lowest three positive-
energy pseudostates, as calculated in the 12s basis set. Black circles,
calculated values; solid black line, fit (20a); short-dashed red line,
fit (20b); long-dashed blue line, fit (20c); dot-dashed green line, fit
(20d).

scattering cross section σ = 4πa2 is much greater than the
geometrical cross-sectional area of the target [75]. The rate of
positron direct annihilation is similarly enhanced [28,47], e.g.,
as observed in Ar, Kr, and Xe [44] (see Secs. II E and III).

As an example, Fig. 2 shows the values of k cot δ0 for
Be for the lowest three positive-energy pseudostates, as cal-
culated in the 12s basis set. Also shown are four different
fits, based on Eq. (19), that have been used to estimate the
scattering length a, as follows:

k cot δ0 = −1

a
, (20a)

k cot δ0 = −1

a
+ Ck, (20b)

k cot δ0 = −1

a
+ πα

3a2
k, (20c)

k cot δ0 = −1

a
+ πα

3a2
k + C1k2 ln C2k, (20d)

where a (the scattering length), C, C1, and C2 are fitting
parameters, and α = 38 a.u. is the polarizability of Be. Fits
(20a) and (20c) use only the lowest-momentum value of δ0, fit
(20b) uses only the first two pseudostates, and fit (20d) uses
all three pseudostates. The resulting estimates of the scattering
length are a = 15.95 [fit (20a)], 14.98 [fit (20b)], 15.22 [fit
(20c)], and 15.03 a.u. [fit (20d)]. The two estimates that are
closest to each other are those obtained using fits (20b) and
(20d). Consequently, we will use the simpler of these fits,
Eq. (20b), throughout, i.e., perform a linear fit for k cot δ0 in
terms of k using the two lowest-energy pseudostates.

D. Annihilation from a bound state

For targets that support a bound state for the positron, we
can evaluate the corresponding 2γ annihilation rate,

� = πr2
0cδep. (21)
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Here r0 is the classical electron radius, c is the speed of light,
δep is the average electron density at the positron,

δep =
∫ Ne∑

i=1

δ(r − ri )
∣∣�(r1, . . . , rNe , r)

∣∣2
dτ1 · · · dτNe dτ,

(22)

also known as the contact density, and �(r1, . . . , rNe , r) is the
total wave function of the positron bound state, normalized to
unity. The lifetime of the positron bound state is 1/�.

In the independent-particle approximation, the total wave
function has the form of Eq. (8), and Eq. (22) reduces to

δep = 2
Ne/2∑
i=1

∫
|ϕi(r)|2|ψ (r)|2 dτ, (23)

with the electron and positron wave functions normalized as∫
|ϕi(r)|2 dτ = 1, (24)∫
|ψ (r)|2 dτ = 1. (25)

The independent-particle approximation does not account for
the electron-positron Coulomb attraction at short range that
increases the contact density. As a result, Eq. (23) underesti-
mates the true value of δep. This deficiency can be rectified by
introducing enhancement factors γi � 1, which are specific to
each electronic molecular orbital, into Eq. (23), viz,

δep = 2
Ne/2∑
i=1

γi

∫
|ϕi(r)|2|ψ (r)|2 dτ. (26)

Many-body-theory calculations show (see Refs. [76,77]) that
the enhancement factors can be approximated by

γi = 1 +
√

1.31

−εi
+

(
0.834

−εi

)2.15

, (27)

where εi < 0 is the energy of electronic orbital i.

E. Annihilation from the continuum

Similarly to Eq. (21), the cross section of 2γ annihilation
for a positron incident on a closed-shell target is

σa = πr2
0

c

v
Zeff, (28)

where v is the positron velocity and Zeff is the effective
number of electrons that contribute to annihilation. It is given
by

Zeff =
∫ Ne∑

i=1

δ(r − ri )
∣∣�(r1, . . . , rNe , r)

∣∣2
dτ1 · · · dτNe dτ,

(29)

which is similar to Eq. (22) for δep, except that the wave
function �(r1, . . . , rNe , r) now describes positron scattering
by the target. At large positron-target separations,

�(r1, . . . , rNe , r) � �(r1, . . . , rNe )

[
eik·r + fel(k, k′)

eikr

r

]
,

(30)

where �(r1, . . . , rNe ) is the ground-state wave function of the
target, k (k′) is the momentum of the positron before (after)
the collision, and fel(k, k′) is the elastic scattering amplitude,
with k = k′ [78].

Due to the use of a discrete Gaussian basis, the positive-
energy positron pseudostates that we calculate are not bona
fide scattering states; they decay exponentially, rather than os-
cillate, at large positron-target separations and are normalized
to unity [see Eq. (25)], instead of an asymptotic plane wave, as
in Eq. (30). However, extraction of the values of Zeff at the en-
ergies of the pseudostates is still possible. As in the calculation
of the elastic scattering phase shift, we consider only s-type
pseudostates. This means that we calculate only the s-wave
contribution to Zeff, which dominates at low positron momenta
k. Here the contributions of higher partial waves to Zeff are
suppressed as (kRa)2l , where Ra is the radius of the target,
so are typically small, unless one of the higher partial waves
possesses a shape resonance. In principle, the method could
be extended to compute the contributions to Zeff from higher
partial waves by considering the non-s-type pseudostates.

The s-wave part of the positron scattering wave function,
normalized according to Eq. (30), has the asymptotic form

ψ (r) � sin(kr + δ0)

kr
. (31)

Comparing this with Eqs. (13) and (14), we see that Zeff for
the s-wave positron can then be found as

Zeff = 4π

A2
δep, (32)

where δep is the contact density calculated for a positive-
energy s-type pseudostate, normalized by Eq. (25). The nor-
malization constant A can be determined by fitting the radial
part of the positive-energy pseudostate by the form (14)
in an intermediate range of r. In the case of a molecular
target, the wave functions of s-type pseudostates should also
be spherically averaged before fitting (see Appendix B). A
similar approach was used in Ref. [49,79] to compute the
pickoff annihilation parameter 1Zeff for Ps-atom collisions.

As an example, Fig. 3 shows the radial function P(r) for
a positron incident on Be, calculated using the 12s basis,
for the first and third positive-energy pseudostates. (Since Be
supports a bound state for the positron, these are actually the
n = 2 and n = 4 pseudostates, respectively.) Also shown are
fits of the form (14). The phase shift δ0 has been taken as a
parameter of the fit. Note that due to the presence of a bound
state, the radial functions P(r) have a node at r ≈ 18 a.u., even
for the lowest positive-energy pseudostate (n = 2). The range
of r used for the fit is chosen in the region between the first and
second extrema of P(r). Thus, for n = 2 we used r = 10–50
a.u., and for n = 2, r = 10–25 a.u. For larger r, the decrease of
the pseudostate wave function due to the use of the Gaussian
basis becomes apparent.

There is, however, an alternative way of determining the
values of A2, that does not rely on the fitting of the radial wave
function and is free from related uncertainties. The use of a
finite discrete Gaussian basis effectively confines the positron
within a soft-walled cavity of (varying) radius R0. In this case,
the neighboring positive-energy pseudostates are separated by
a momentum difference �k ≈ π/R0. Away from the target,
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FIG. 3. Radial functions P(r) for a positron incident on Be,
calculated using the 12s basis. Solid black line, P(r) for n = 2
(ε = 1.532 × 10−4 a.u.); solid blue line, P(r) for n = 4 (ε = 3.507 ×
10−3 a.u.); dashed black line, fit for n = 2 in range r = 10–50 a.u.;
dashed blue line, fit for n = 4 in range r = 10–25 a.u.

the wave function of s states takes the form

ψ (r) = 1√
4π

A sin(kr + δ0)

kr
. (33)

Assuming that the target size is small compared with R0, the
normalization condition (25) gives∫ R0

0

A2 sin2(kr + δ0)

(kr)2
r2 dr = 1. (34)

Replacing sin2(kr + δ0) with its average value of 1
2 , we obtain

A2 = 2k2

R0
≈ 2k2�k

π
. (35)

Since k = √
2ε, we have �k = �ε/

√
2ε, to first order in �ε.

This can be rewritten as

�k = 1√
2ε

�ε

�n
�n, (36)

where n enumerates the pseudostates. Using �n = 1 for two
neighboring pseudostates, and replacing �ε/�n by dε/dn,
we have

�k = 1√
2ε

dε

dn
, (37)

so that

A2 = 2
√

2ε

π

dε

dn
. (38)

The value of the derivative dε/dn can be obtained numerically
by plotting ε as a function of n and interpolating to real values
of n (cf. Sec. II C and Fig. 1).

III. RESULTS

A. Atoms: Be, Mg, He, and Ar

We first test the method by computing the binding energy
εb and contact density δep for the positron bound states in

TABLE II. Binding energy εb and electron-positron contact den-
sity δep for Be and Mg. Brackets indicate powers of 10. Values in
bold are the present calculations and those upon which the values of
ρA were based. The most accurate calculations are denoted (rec.).

Calculation εb (a.u.) δep (a.u.)

e+Be calculations
Present, 12s basis 3.090[−3] 9.261[−3]
Present, 19s basis 3.129[−3] 9.376[−3]
Stochastic variational [80] 1.687[−3] 6.62[−3]
Stochastic variational [66] 3.147[−3] 8.24[−3]
Configuration interaction [81] 3.083[−3] 7.77[−3]
Configuration interaction [82] 3.169[−3] 8.143[−3]
Diffusion Monte Carlo [83] 1.2[−3]
Stochastic variational (rec.) [84] 3.163[−3] 8.55[−3]
Relativistic coupled cluster [85] 6.76[−3]
Relativistic coupled cluster [13] 7.86[−3]
RXCHFa [86] 3.02[−3] 8.12[−3]

e+Mg calculations
Present, 12s basis 1.555[−2] 2.365[−2]
Present, 19s basis 1.555[−2] 2.368[−2]
Polarized orbital [87] 5.5[−4]
Polarized orbital [88] 4.59[−3]
Many-body perturbation theory [9] 3.2[−2]
Many-body perturbation theory [89] 3.62[−2]
Stochastic variational [66] 1.561[−2] 1.89[−2]
Diffusion Monte Carlo [83] 1.68[−2]
Configuration interaction [90] 1.615[−2] 1.8[−2]
Configuration interaction (rec.) [82] 1.704[−2] 1.962[−2]
Relativistic coupled cluster [85] 1.88[−2]
Relativistic coupled cluster [13] 2.34[−2]
RXCHFa [86] 1.19[−2] 1.58[−2]

aReduced explicitly correlated Hartree-Fock.

Be and Mg. The results are shown in Table II, along with a
summary of previously published results.

For Be, changing from the 12s basis to the 19s basis in-
creases the binding energy by 1.3% and the contact density by
1.2%. Such small changes show that the 12s basis is already
almost complete. Comparing our 19s binding energy with
the stochastic-variational calculation of Mitroy and Ryzhikh
[66], which was used as the reference in determining the
values of ρA [43], we see that we have agreement at the level
of 0.6%. This very small discrepancy can be ascribed to a
slightly different description of the electrostatic field of the Be
atom and possibly also due to our basis set not being totally
complete. The best currently available value of the binding
energy is the more recent stochastic-variational calculation
[84]; both our 12s and 19s values are in close agreement with
this result.

Regarding the contact density for Be, the present values
are 12%–14% larger than those of Mitroy and Ryzhikh [66].
The difference is partly because the Hartree-Fock method,
which was used to compute the electrostatic potential of
the Be atom, underestimates the ionization potential of the
atom, i.e., the Hartree-Fock energy of the valence orbital is
too small in magnitude, which leads to an overestimate of
the enhancement factor from Eq. (27). Table III shows the
Hartree-Fock energies of the 1s and 2s orbitals of the Be
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TABLE III. Contributions δ(nl )
ep to the electron-positron contact

density δep from each orbital nl for positron bound states in Be and
Mg. Brackets indicate powers of 10. Enhancement factors have been
calculated using the Hartree-Fock (HF) orbital energies εnl for the
core orbitals, and using either the Hartree-Fock (HF) or experimental
(exp.) [91] orbital energies εnl for the valence orbitals.

δ(nl )
ep (a.u.)

Atom nl εnl (a.u.) Unenhanced Enhanced

Be 1s −4.73235 (HF) 5.83830[−5] 9.04980[−5]
2s −0.309258 (HF) 8.07573[−4] 9.28518[−3]

−0.342603 (exp.) 8.07573[−4] 7.85547[−3]
Mg 1s −49.0374 (HF) 1.65552[−6] 1.92637[−6]

2s −3.76634 (HF) 9.93184[−5] 1.61777[−4]
2p −2.28282 (HF) 3.28824[−4] 6.15655[−4]
3s −0.253030 (HF) 1.40759[−3] 2.28982[−2]

−0.280994 (exp.) 1.40759[−3] 1.90445[−2]

atom, along with the contribution δ(nl )
ep to the contact density

δep from each orbital nl , calculated using the 19s positron
basis without and with the enhancement factors, Eqs. (23)
and (26). Also shown is the experimental value of the energy
of the valence 2s orbital [91], along with the enhanced value
of δ(2s)

ep obtained using this experimental energy. Adding the
enhanced contributions to δep of the core 1s orbital and the
valence 2s orbital, where the experimental 2s energy has been
used to calculate the enhancement factor, gives δep = 7.946 ×
10−3 a.u. This is in much better agreement with the value of
Mitroy and Ryzhikh [66], at the level of 3.6%. The remaining
discrepancy is partly due to our use Eq. (27) to compute
the enhancement factors. If we instead scale the unenhanced
contact density by Mitroy and Ryzhikh’s enhancement factors
of 2.5 for the 1s orbital and 10.18 for the 2s orbital [66], we
obtain δep = 8.367 × 10−3 a.u., within 1.5% of the value in
Ref. [66].

For Mg, the two basis sets give essentially identical results
for both the binding energy and the contact density. The
difference in the present binding energy from that of Ref. [66]
is 0.4%. The best currently available calculation by Bromley
and Mitroy [82] gives the binding energy which is 10% greater
than our model-potential value.

Our calculated contact density for Mg is 25% larger than
that of Ref. [66]. Again, this difference is mostly due to an
overestimation of the enhancement factor for the valence 3s
orbital when using the Hartree-Fock orbital energy. Table III
shows the Hartree-Fock energy of each orbital of the Mg atom,
along with the contribution δ(nl )

ep to the contact density δep

from each orbital, as calculated using the 19s positron basis,
without and with the enhancement factors. Also shown is the
experimental value of the energy of the valence 3s orbital [91],
along with the enhanced contribution of the 3s orbital to δep,
obtained using this energy. Adding the enhanced contribution
to δep from the core orbitals to that from the valence 3s orbital,
where the experimental 3s energy has been used to calculate
the enhancement factor, gives δep = 1.982 × 10−2 a.u., which
is within 4.9% of the value of Mitroy and Ryzhikh [66].
Again, the remaining discrepancy may be partly due to our
use of Eq. (27) for the enhancement factors. If we instead

scale the unenhanced contact density by Mitroy and Ryzhikh’s
enhancement factors of 2.5 for the core orbitals and 13.2 for
the 3s orbital [66], we obtain δep = 1.965 × 10−2 a.u., which
reduces the discrepancy to 4.0%. Interestingly, the latter value
of δep is in near-exact agreement with the recommended
configuration-interaction value of 1.962 × 10−2 a.u. [82].

We next consider positron elastic scattering from Be, Mg,
He, and Ar. Figure 4 shows the s-wave phase shifts for the four
atoms, obtained from Eq. (18), as functions of the positron
momentum. For each of the atoms, the phase shifts obtained
using the 12s and 19s positron basis sets are very close.
Figure 4 also shows results of several existing calculations.

For Be and Mg, most of the existing calculations use model
potentials [98]. We obtain near-exact agreement with the
calculation of Bromley et al. [92], which used the same model
as the present calculations, with just slightly different values
of the cutoff radii: ρBe = 2.7084 a.u. and ρMg = 3.0720 a.u.
We obtain excellent agreement with the other calculations,
except the many-body-theory calculation for Mg of Gribakin
and King [89]; however, that calculation overestimated the
attractive virtual-Ps-formation component of the many-body
correlation potential, which resulted in a larger binding energy
(see Table II) and higher phase shifts. Also, this is the only
calculation shown that incorporated the Ps-formation channel
which is open for k > 0.25 a.u., making the phase shift
complex and leading to a rapid momentum dependence of
Re δ0.

For He, we have very close agreement with the calculation
of Mitroy and Ivanov [43] that used the same model potential.
We also obtain excellent agreement with the near-exact Kohn-
variational calculation of van Reeth and Humberston [67]
(which was used in Ref. [43] to choose the value of ρHe)
and the recent many-body-theory calculation of Green et al.
[44]. For Ar, the calculations with ρAr = 1.710 a.u. closely
follow the polarized-orbital calculation of McEachran et al.
[68] (which was the reference calculation for choosing ρAr

in Ref. [43]). On the other hand, using ρAr = 1.88 a.u., we
reproduce the more advanced many-body-theory calculation
of Green et al. [44] across the energy range considered.

Table IV shows the values of the scattering length obtained
for Be, Mg, He, and Ar, using the 12s and 19s basis sets, along
with a selection of existing calculations and an experimental
datum for Ar. Note that for He and Ar, which do not bind
the positron, the scattering length has been calculated via
Eq. (20b) using the second and third positive-energy pseu-
dostates rather than the first and second positive-energy
pseudostates. This is because for the first positive-energy
pseudostate (n = 1), we have �εn < 0, which means that
to calculate the phase shift for this pseudostate, one has to
extrapolate g(ln ε) to a value of ε that is smaller than the
lowest free-particle energy, ε

(0)
1 . Such extrapolation is less

reliable than interpolation to values of ε that are within the
range of the free-particle energies.

For both Be and Mg, the 12s value of the scattering length
is 10% larger than the 19s value. For He and Ar, the difference
between the 12s and 19s values is much smaller, less than
1%. Broadly speaking, there is reasonably good agreement
with the existing calculations for all four atoms. We can make
a direct comparison with the results of Ref. [43], where the
same model was used as in the present calculations (taking
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FIG. 4. Calculations of the s-wave phase shift for elastic scattering of a positron by Be, Mg, He, and Ar. Black circles, present calculations
using the 12s positron basis; red squares, present calculations using the 19s positron basis; for Ar, open (filled) symbols are for ρAr = 1.710 a.u.
(ρAr = 1.88 a.u.) Lines are results of existing calculations, as follows. For Be and Mg: solid blue lines, model potential [92]; short-dashed cyan
lines, model potential [93]; dotted brown line (Be only), effective single-particle potential [94]; long-dashed orange line (Mg only), model
potential [95]; dot-dashed brown line (Mg only), close coupling with model potential [96]; dot-dash-dotted indigo line (Mg only), Re δ0 from
many-body theory [89]. For He and Ar: dotted green lines, polarized orbital [68,97]; short-dashed magenta lines, many-body theory [44]; solid
blue line (He only), Kohn variational [67]; dot-dashed orange line (He only), model potential [43].

ρAr = 1.710 a.u.). Our 19s values of the scattering length for
Be, Mg, He, and Ar are in agreement with those of Ref. [43]
at the level of 13%, 0.75%, 5.1%, and 9.6%, respectively. The
discrepancies are due to the different method we have used to
extract the scattering length: we have used an effective-range-
theory fit to the s-wave phase shift, while in Ref. [43] it is
inferred from the zero-energy elastic scattering cross section
[107]. As expected, the scattering length for Be and Mg is
large and positive (since they support weakly bound states for
the positron), while for He and Ar it is negative. For Ar it is
quite large in magnitude. Using our 19s value of the scattering
length for ρAr = 1.88 a.u., a = −4.76 a.u., we estimate the
energy of the virtual level to be ε ≈ 1/2a2 = 0.022 a.u. This
scattering length is in perfect agreement with experiment
[106], though the latter has relatively large error bars.

Finally, we compute the annihilation parameter Zeff for Be,
Mg, He, and Ar. Figure 5 shows the results, along with several
previous calculations, some of which reported the s-wave
component of Zeff (which is what we calculate), while others
reported the total Zeff. For each target atom, we show values of
Zeff obtained from Eq. (32) with either the 12s or 19s positron
basis, and using the normalization factor A2 from either the
radial fit (14) (as in Fig. 3) or from Eq. (38). For Ar, the

results for ρAr = 1.710 a.u. and ρAr = 1.88 a.u. are presented
in separate panels.

Considering Zeff as a function of k, our results are largely
independent of the positron basis set used and of the method

TABLE IV. Positron scattering lengths in a.u. for Be, Mg, He,
and Ar, from the present 12s and 19s and other calculations and
experiment.

Be Mg He Ar

12s 14.98 7.397 −0.5017 −5.786a, −4.758b

19s 13.61 6.709 −0.5056 −5.797a, −4.764b

Other 15.6 [43] 6.76 [43] −0.481 [43] −5.29a [43]
13.3 [93] 6.2 [93] −0.529 [97] −5.30 [68]
13.8 [99] 4.2 [89] −0.48 [100] −4.3 [101]
18.76 [94] 7.23 [95] −0.435 [44] −4.41 [44]

16 [92] 8.5 [102] −0.474 [103]
−0.452 [104]
−0.45 [105]

Exp. −4.9 ± 0.7 [106]

aρAr = 1.710 a.u.
bρAr = 1.88 a.u.
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FIG. 5. Calculations of Zeff for Be, Mg, He, and Ar. Black circles, 12s calculation of s-wave Zeff using radial fit (14) for normalization; red
squares, 19s calculation of s-wave Zeff using radial fit for normalization; blue diamonds, 12s calculation of s-wave Zeff using analytical estimate
(38) for normalization; green triangles, 19s calculation of s-wave Zeff using analytical estimate for normalization. Solid green lines are fits of
the form (39) to the 19s calculation using analytical estimate for normalization. Other lines are results of existing calculations, as follows:
short-dashed magenta lines, polarized orbital (total Zeff) [68,97]; long-dashed orange lines, many-body theory (s-wave Zeff) [44]; long-dashed
indigo line, model potential (s-wave Zeff) [95]; dotted black lines, model potential (total Zeff) [43].

of normalization of the positron wave function. The most
significant discrepancies occur for small k. In fact, with the
exception of the 12s basis set, the value of Zeff that comes from
the first positive-energy pseudostate for each atom appears
to be an outlier that sits above the trend set by the other
pseudostates with small momenta. The exact reason for this
behavior is unclear, but it may relate to the uncertainty in
normalizing the lowest-energy pseudostate correctly. The 12s
basis with normalization determined by radial fit appears to
yield smaller values of Zeff near k = 0 when compared to the
other calculations.

Figure 5 shows that for all atoms except He, the Zeff is
strongly enhanced at low positron momenta. This occurs when
the positron-atom potential supports a weakly bound or low-
lying virtual s level. In this case the momentum dependence

of Zeff at low momenta k has the form [28,44,46,47,108]

Zeff = F

κ2 + k2
+ B, (39)

where B and F are constants. The first term, in which κ ≈ 1/a
(|κ| 	 1), with a the scattering length, is due to the s-wave
component of the positron wave function being “in resonance”
with the bound or virtual level. The constant B accounts for
the nonresonant background Zeff, which depends weakly on k.
Figure 5 shows fits of the form (39) for the calculations that
used the 19s positron basis set and the analytical estimate for
the normalization of the positron wave function; the values
of the fitting parameters are given in Table V. Note that the
outlying value of Zeff for the first positive-energy pseudostate
was ignored when determining the fitting parameters.
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TABLE V. Fitting parameters for Zeff for Be, Mg, He, and Ar, as
calculated using the 19s positron basis set and the analytical estimate
for the normalization of the positron wave function.

Atom κ F B

Be 0.0853 0.910 1.99
Mg 0.167 1.06 1.88
He −0.456 0.493 1.61
Ar (ρAr = 1.710) −0.134 0.830 4.32
Ar (ρAr = 1.88) −0.149 0.682 3.73

As expected, the atom with the largest threshold value of
Zeff is Be (Zeff ≈ 127 for the 19s calculation), which has the
largest absolute value of the scattering length, i.e., the smallest
κ . The He atom has the smallest threshold value of Zeff and,
overall, the weakest dependence of Zeff on k.

For all atoms, there is broadly good agreement with the
model-potential calculations of Mitroy and Ivanov [43] for
low momenta. (For Ar, we only compare the results of
Ref. [43] with the present calculations for ρAr = 1.710 a.u.)
Note that the results of Ref. [43] are for the total Zeff, not
just the s-wave component: at higher momenta, the results of
Ref. [43] become significantly larger than the present results
due to the contribution of higher partial waves. This is par-
ticularly conspicuous for Mg, where the total Zeff is strongly
peaked at k ≈ 0.2 a.u. due to a p-wave shape resonance [43].
We note that at k = 0, all of the present values of Zeff, except
for the 12s calculation with the radial-fit normalization, are
10%–20% larger than those predicted by Ref. [43]. This is at
least partly due to the enhancement factors used in the present
work being larger than those used by Mitroy and Ivanov [43].

For He, we observe excellent agreement at low mo-
menta with the polarized-orbital calculation of total Zeff of
McEachran et al. [97] and with the many-body-theory calcu-
lation of s-wave Zeff [44]. For Ar, the agreement with Ref. [97]
is better for ρAr = 1.88 a.u. than for ρAr = 1.710 a.u. For
ρAr = 1.88 a.u. we also have good agreement with the many-
body-theory calculation of s-wave Zeff [44], though the present
results are slightly larger. For Mg, our 12s calculation with
normalization determined using the radial fit is in excellent
agreement with the model-potential calculation of s-wave Zeff

of Mitroy et al. [95], but once more, our other calculations
give somewhat larger values.

Overall, our calculations show that positive-energy square-
integrable pseudostates can be used to determine the s-wave
scattering phase shifts and the normalized rates Zeff for
positron in-flight annihilation at low energies.

B. Molecules: H2, N2, Cl2, and CH4

We now turn our attention to positron interactions with
small molecules. We first consider H2, for which there has
already been a significant amount of theoretical and experi-
mental investigation of scattering and annihilation. We will
examine the dependence of the s-wave scattering phase shift
and Zeff on the choice of the positron basis, and the sensi-
tivity of Zeff to the method used to normalize the positron
pseudostates.
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FIG. 6. Calculations of the s-wave phase shift for elastic scat-
tering of a positron by H2. Black circles, 12s positron basis; red
squares, 12s 8p positron basis; blue diamonds, 12s 8p 8d positron
basis. Solid black line, Kohn-variational calculation of Cooper et al.
[109]; green dashed line, modified-effective-range-theory fit of the
measured cross section by Fedus et al. [110].

Figure 6 shows the s-wave phase shift for H2, obtained
from Eq. (18) using the 12s, 12s 8p, and 12s 8p 8d positron
basis sets. These data correspond to the internuclear distance
of R = 1.39 a.u. Overall, there is little difference between
the three sets of results. However, at k ≈ 0.2 a.u., the 12s 8p
calculation gives a smaller phase shift than the others. We note
that this occurs for the fifth data point, which is where the
p-type Gaussians start to contribute. The figure also shows
the Kohn-variational calculation of Cooper et al. [109], using
the trial scattering wave function that is referred to as �

(1,A)
t

in Ref. [109]. The present calculations are in near-perfect
agreement with those of Cooper et al. [109] at small momenta.
This is clear evidence of the ability of the present method
to accurately describe low-energy scattering of positrons by
small molecules. Finally, the figure shows the phase shift
of Fedus et al. [110], which was determined empirically by
performing a fit based on modified effective-range theory to
experimental data of Machacek et al. [111] on the e+-H2

elastic scattering cross section. The result of this fit is very
close to the present calculation for positron momenta k �
0.1 a.u. but lies slightly higher at larger k.

For the e+-H2 scattering length, the 12s, 12s 8p, and
12s 8p 8d calculations give values of a = −2.38, −2.48, and
−2.39 a.u., respectively. As was the case for the atomic
targets that did not support a bound state for the positron,
we have calculated these values using the second and third
positive-energy pseudostates. While the 12s and 12s 8p 8d
basis sets give almost exactly the same value for the scattering
length, the 12s 8p gives a value 4% larger in magnitude.
The 12s 8p 8d value of a = −2.39 a.u. should be considered
the most reliable. It is close to the stochastic-variational
calculations, which gave a = −2.6 (R = 1.40 a.u.) [112],
a = −2.71 (R = 1.45 a.u.) [104], and a = −2.79 a.u. (R =
1.45 a.u.) [113] and is in good agreement with the convergent-
close-coupling calculation of Zammit et al., which gave a =
−2.49 a.u. (R = 1.40 a.u.) [114]. We also note the existence
of an R-matrix calculation of Zhang et al., which gave a =
−2.06 a.u. (R = 1.40 a.u.) [115].
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FIG. 7. Positron s-wave scattering phase shift for N2, Cl2, and
CH4, calculated using the 12s 8p 8d positron basis for N2 and Cl2 and
the 12s 8p 8d / 8s positron basis for CH4. For Cl2, blue diamonds are
for ρCl = 1.88 a.u., while magenta triangles are for ρCl = 2.20 a.u.

Figure 7 shows the s-wave phase shift for N2, Cl2, and
CH4, obtained using the 12s 8p 8d basis for N2 and Cl2 and
the 12s 8p 8d / 8s basis for CH4. These molecules are more
polarizable and more attractive for the positron than H2. The
scattering calculations for these targets indicate the presence

of virtual states (N2, CH4, and Cl2 with ρCl = 2.20 a.u.), or
possibly even a weakly bound state (Cl2, ρCl = 1.88 a.u.).

For N2, we obtain the scattering length by extrapolating
tan δ0/k towards k = 0 and find a = −4.6 ± 0.1 a.u. (The
error bars reflect the uncertainty of an effective-range-type ex-
trapolation procedure.) Positron scattering from N2 is similar
to that from Ar. This could be expected, since the dipole po-
larizability of N2 is α = 12.9 a.u., which is close to 11.1 a.u.
for Ar.

For Cl2, our calculations with the smaller cutoff radius
ρCl = 1.88 a.u., predict a weakly bound state with εb =
4.004 × 10−4 a.u. and δep = 5.391 × 10−3 a.u. We can then
estimate the scattering length as a ≈ 1/

√
2εb = 35.5 a.u. Ex-

amining the behavior of k cot δ0 suggests a noticeable uncer-
tainty in the value of the lowest-energy phase shift δ0 (that is
hard to discern on the scale of Fig. 7). We thus use the second
and third pseudostates for extrapolation and find the scattering
length a = 26 a.u. The discrepancy with the above value is
related to the fact that for large scattering lengths, the validity
of the effective-range expansion, Eq. (19), is restricted to a
narrow range of momenta, k � 1/|a|. This suggests that the
scattering length estimated from the binding energy is more
reliable.

For Cl2 with ρCl = 2.20 a.u., the positron-molecule po-
tential is not attractive enough to support a bound state.
However, the very rapid growth of the s-wave phase shift at
small momenta indicates the presence of a low-lying virtual
s level. Using linear extrapolation of tan δ0/k towards k = 0
gives a = −65 ± 5 a.u, where the errors bars again reflect the
uncertainty of the extrapolation procedure. This large negative
scattering lengths indicates a virtual level with the energy
ε ≈ 1/2a2 ∼ 10−4 a.u.

For CH4, we estimate that the scattering length to be a =
−17 ± 1 a.u. This indicates the presence of a low-lying vir-
tual level, with energy ε ≈ 1/2a2 = 1.5 × 10−3 a.u. A recent
Schwinger multichannel calculation of the e+-CH4 scattering
length by Zecca et al. gave a = −7.4 a.u. [116]. This is no-
ticeably smaller in magnitude than the present estimate, indi-
cating weaker positron-target attraction (possibly as a result of
an incomplete account of the difficult virtual Ps contribution).
An older semiempirical calculation by Frongillo et al. gave
a = −13.0 a.u. [117], which is closer to our estimate.

Figure 8 shows Zeff as a function of the positron momentum
for H2. As was the case for the atomic targets, the results are
largely independent of the choice of positron basis set and the
method of determining the normalization of the positron wave
function. However, for all three basis sets, the lowest positive-
energy pseudostate appears to give values of Zeff that are
too large when the analytical estimate for the normalization,
Eq. (38), is used. The figure also shows a fit of the form (39)
to the 12s 8p 8d calculation using the analytical estimate for
the normalization, with the first pseudostate excluded from the
fit; the fitting parameters are given in Table VI. Finally, the
figure shows the Kohn-variational calculation of Armour and
Baker [118], with which we obtain very good agreement.
Our predicted zero-energy value of Zeff is 11.1. This is lower
than the results of existing stochastic variational calculations,
which gave Zeff = 15.7 [104,112] and 15.8 [113] and should
be regarded as more accurate. At thermal (room-temperature)
energies, corresponding to the momentum k = 0.053 a.u., we
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FIG. 8. Calculated s-wave Zeff for H2. Black circles, 12s basis;
red squares, 12s 8p basis; blue diamonds, 12s 8p 8d basis (all using
radial fit for normalization). Green up triangles, 12s basis; magenta
left triangles, 12s 8p basis; orange down triangles; 12s 8p 8d basis
(all using analytical estimate, Eq. (38), for normalization). The solid
orange line is a fit of the form (39) to the 12s 8p 8d calculation using
analytical estimate for normalization. The dashed purple line is the
Kohn-variational calculation of Armour and Baker [118].

obtain Zeff = 10.6. This is close to the R-matrix value of
10.4 [115], but smaller than the recommended experimental
room-temperature value of Zeff = 16.0 ± 0.2 [119].

The momentum dependence of Zeff for N2, Cl2, and CH4 is
shown in Fig. 9. Again, fits of the form (39) were carried out,
with the first pseudostate excluded from the fit. The fitting
parameters are given in Table VI. The values of κ obtained
from the fit can be used to verify the scattering lengths for
Cl2 and CH4. In the presence of a weakly bound or low-lying
virtual level, the value of κ in the momentum dependence of
Zeff, Eq. (39), is related to the scattering length by a ≈ 1/κ .
Using κ from Table VI, we find a = 28.7 a.u. or −53.5 a.u.
for Cl2 with ρCl = 1.88 or 2.20 a.u., respectively, and a =
−18.3 a.u. for CH4. The values for Cl2 are close to the
estimates obtained from the binding energy (for ρCl = 1.88)
and extrapolation of the phase shifts. The value for CH4 is
almost within the error bars of the scattering length obtained
from the phase shift.

The calculated values of Zeff at thermal momentum
k = 0.053 a.u., are 29.3, 351, 254, and 145 for N2, Cl2

TABLE VI. Fitting parameters for Zeff for H2, N2, Cl2, and
CH4, as calculated using the 12s 8p 8d positron basis set for H2,
N2, and Cl2, and the 12s 8p 8d / 8s positron basis set for CH4, and
the analytical estimate for the normalization of the positron wave
function.

Molecule κ F B

H2 −0.221 0.429 2.28
N2 −0.115 0.406 3.96
Cl2 (ρCl = 1.88 a.u.) +0.0349 1.39 6.28
Cl2 (ρCl = 2.20 a.u.) −0.0187 0.778 7.36
CH4 −0.0545 0.805 5.24
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FIG. 9. Zeff for N2, Cl2, and CH4. Orange down triangles,
12s 8p 8d calculation for N2 and Cl2 (ρCl = 1.88 a.u.) and
12s 8p 8d / 8s calculation for CH4; green squares, 12s 8p 8d cal-
culation for Cl2 (ρCl = 2.20 a.u.) (all using analytical estimate
for normalization); solid lines, fits of the form (39); black dia-
mond, experimental room-temperature values, shown at thermal k =
0.053 a.u. [119,120].

(ρCl = 1.88 a.u.), Cl2 (ρCl = 2.20 a.u.), and CH4, respec-
tively. The experimental values, which are also shown in
Fig. 9, are 30.8 ± 0.2 for N2 [119], 1600 for Cl2 [120], and
140.0 ± 0.8 for CH4 [119]. The agreement with experiment
is excellent for both N2 and CH4. For CH4 we also compare
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FIG. 10. Zeff for CH4. Orange down triangles, 12s 8p 8d calcula-
tion using analytical estimate for normalization (same as in Fig. 9);
solid orange line, fit of the form (39); black circles, experimental
data [18,121]; black diamond, experimental room-temperature value
shown at thermal energy (0.0379 eV) [119].

the calculated Zeff with energy-resolved annihilation measure-
ments [18,121]; see Fig. 10. The present calculation indicates
a slightly stronger energy dependence for Zeff than seen in the
experiment, but the overall agreement is very satisfactory.

For Cl2, the calculated Zeff values are much smaller than the
measured room-temperature value of Zeff = 1600 [120]. Un-
fortunately, this early measurement has never been repeated
by other experimental groups, so one may query the accuracy
of this large value. On the side of theory, the calculated values
represent only the contribution of direct, in-flight annihilation
to Zeff. There is not much difference between the Zeff obtained
using ρCl = 1.88 and 2.20 a.u. However, the calculation with
the smaller cutoff radius predicts that the positron has a
bound state with Cl2. In this case, the resonant annihilation
mechanism operates alongside direct annihilation [28,30]. For
a molecule with one vibrational mode, the thermally averaged
contribution of resonant annihilation to Zeff can be estimated
as [29]

Z̄ (res)
eff (T ) = 8π3δep

(2πkBT )3/2

eεb/kBT

eω/kBT − 1
, (40)

where T is the temperature, kB is the Boltzmann constant,
δep is the electron-positron contact density in the bound state,
ω is the frequency of the vibrational mode of the positron-
molecule complex, and ω > εb is assumed. Using the values
of εb and δep found earlier for the e+Cl2 bound state, and
the vibrational frequency of Cl2, ω = 560 cm−1 = 2.55 ×
10−3 a.u. [91], we find at room temperature T = 293 K,
Z̄ (res)

eff (T ) = 316. Adding this to the corresponding direct con-
tribution gives the total value of Zeff = 667, which is still
significantly smaller than the measured value. In principle,
the resonant annihilation contribution can be made bigger by
allowing for a larger binding energy εb. This will increase
both the contact density δep and the Boltzmann-type factor
in Eq. (40). However, increasing the binding energy requires
a smaller value of ρCl, which is hard to justify physically.
In all of the present calculations of Zeff, we have neglected
the rotational motion of the molecule. Of course, in room-

temperature measurements of Zeff, the molecule can be in
a variety of rotationally excited states. However, for s-wave
positron attachment, the rotational state of the molecule does
not change, and the Zeff is not expected to be noticeably
affected by molecular rotations.

IV. CONCLUSIONS

A model-potential approach has been used to study low-
energy positron interactions with a range of atoms and small
nonpolar molecules. The positron-target correlation potential
that we use accounts for long-range polarization of the target.
Short-range correlations are parametrized by a cutoff radius
whose values can be specific for each type of atom within
the target. These values can be chosen to reproduce existing
accurate calculations of positron binding or scattering from
atomic targets, or other data, e.g., measured positron-molecule
binding energies. Positron binding energies and bound-state
annihilation rates (where bound states exist), scattering phase
shifts, scattering lengths, and the annihilation parameter Zeff

have been calculated. The results compare very favorably with
existing calculations and experimental data. In particular, we
have obtained Zeff values for N2 and CH4 in excellent agree-
ment with well-established room-temperature values. For
CH4, our calculations confirmed the role played by the low-
lying virtual state in producing enhanced Zeff at low positron
energies, which was conjectured a long time ago [108]. One
exception is Cl2, where the present Zeff strongly underesti-
mates the early experimental data. This discrepancy remains
an open question, as it is not clear that even the presence of a
weakly bound positron state and associated resonant annihila-
tion can bridge the gap between theory and experiment.

On the technical side, the calculations for atoms con-
firmed the applicability of Gaussian bases to the problem of
positron binding. More importantly, we have shown how to
use positive-energy pseudostates to study positron scattering
and direct annihilation. Our calculations also proved the valid-
ity of enhancement factors for the calculation of annihilation
rates, i.e., the contact density δep for the positron bound states
and Zeff for positron scattering.

Although the theoretical description of the positron-
molecule interaction is not ab initio, it appears to capture the
essential physics of the positron-molecule problem correctly.
The advantage of the present technique over ab initio meth-
ods (which have so far failed to accurately predict positron-
molecule binding energies) is that it can easily be used for
large molecules, with very little computational expense. The
main source of uncertainty in the binding energies and contact
densities, and in the phase shifts and Zeff at low energies, is
the choice of cutoff radii for the model correlation potential.
However, if the cutoff radius for each type of atom can be
chosen by reference to an accurate ab initio calculation of
the positron binding energy or s-wave phase shift, then using
these cutoff radii in molecular systems is expected to give reli-
able results, as we have have demonstrated, e.g., in calculating
the phase shift for H2. An additional source of uncertainty
of the present approach is that for larger, non–spherical-top
molecules, the molecular polarizability tensor can be signif-
icantly anisotropic, which our correlation potential does not
account for. In any case, we expect that the uncertainty in our
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results for positron binding or low-energy scattering should
not exceed 10%–20%. The use of a parametrized formula for
the annihilation enhancement factors also introduces some
uncertainty in the contact densities and Zeff, although the
agreement of our calculated s-wave Zeff for H2 with the Kohn-
variational calculations, and of our thermal Zeff for N2 and
CH4 with the experimental data, indicates that the formula
describes the enhancement very well.

We intend to use the method to investigate positron binding
to other larger molecules, in particular, large species for which
there are no existing ab initio calculations. (Our earlier use of
the method to investigate positron binding to alkane molecules
was very successful in reproducing the experimental trends
[2].) In addition to having values of the cutoff radii for C and H
atoms [1,2], this work has provided values for N and Cl atoms
that can be used to investigate positron binding to nitriles
and chlorinated hydrocarbons (although the value for Cl is
more tentative), for which some experimental measurements
of the binding energy already exist [20,25]. Determining an
appropriate value of the cutoff radius for an O atom would
enable calculations for alcohol, aldehydes, ketones, formates,
and acetates. It should also be possible to use the method to
calculate Zeff for polar molecules.

In addition to computing binding energies and bound-
state annihilation rates, scattering phase shifts, and Zeff, for
molecules that bind the positron we will calculate the annihi-
lation γ -ray spectra, for which much of the experimental data
[122] remained unexplained for a long time [123] and are only
starting to be investigated now [124].
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APPENDIX A: EXPECTATION VALUES OF L2 OPERATOR
IN A GAUSSIAN BASIS

The expectation value of the squared-angular-momentum
operator L2 for a positron in a state with wave function
ψ (r), which has been expressed using a Gaussian basis [see
Eqs. (10) and (11)], is given by

〈L2〉 =
Na∑

B=1

N p
B∑

k=1

Na∑
A=1

N p
A∑

j=1

[
C(p)

Bk

]∗
C(p)

A j 〈Bk|L2|A j〉, (A1)

where

〈Bk|L2|A j〉 =
∫

gBk (r)L2gA j (r) dτ. (A2)

For brevity, we will combine the indices A and B that enu-
merate the nuclei with the corresponding indices j and k
that enumerate the basis functions centered on each nucleus
into single indices that enumerate all of the basis functions
across all centers. We also drop the superscript (p) from the
expansion coefficients of the positron wave function. Equation
(A1) becomes

〈L2〉 =
∑

k

∑
j

C∗
k Cj〈k|L2| j〉, (A3)

where

〈k|L2| j〉 =
∫

gk (r)L2g j (r) dτ =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − xk )nx

k (y − yk )ny
k (z − zk )nz

k exp{−ζk[(x − xk )2 + (y − yk )2 + (z − zk )2]}

× L2
(
(x − x j )

nx
j (y − y j )

ny
j (z − z j )

nz
j exp{−ζ j[(x − x j )

2 + (y − y j )
2 + (z − z j )

2]})dx dy dz. (A4)

The standard expression for the L2 operator in Cartesian coordinates is

L2 = 2x
∂

∂x
+ 2y

∂

∂y
+ 2z

∂

∂z
+ 2xy

∂2

∂x ∂y
+ 2xz

∂2

∂x ∂z
+ 2yz

∂2

∂y ∂z
− x2 ∂2

∂y2
− x2 ∂2

∂z2
− y2 ∂2

∂x2
− y2 ∂2

∂z2
− z2 ∂2

∂x2
− z2 ∂2

∂y2
,

(A5)

so we require expressions for the integrals 〈k|2x ∂/∂x| j〉, 〈k|2y ∂/∂y| j〉, etc. We define the overlap integral 〈k| j〉 between two
Gaussian basis functions, and for later convenience, we explicitly show the powers nx

j , ny
j , and nz

j [1]:

〈k| j〉 ≡ 〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 =
∫

gk (r)g j (r) dτ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − xk )nx

k (y − yk )ny
k (z − zk )nz

k exp{−ζk[(x − xk )2 + (y − yk )2 + (z − zk )2]}

× (x − x j )
nx

j (y − y j )
ny

j (z − z j )
nz

j exp{−ζ j[(x − x j )
2 + (y − y j )

2 + (z − z j )
2]} dx dy dz

= e−λ jk |r j−rk |2
∏

μ=x,y,z

nμ
j∑

sμ
j =0

nμ

k∑
sμ

k =0

(
nμ

j

sμ
j

)(
nμ

k

sμ

k

)
1

2

[
1 + (−1)sμ

j +sμ

k
]
(μ jk − μ j )

nμ
j −sμ

j (μ jk − μk )nμ

k −sμ

k

× (ζ j + ζk )−(1+sμ
j +sμ

k )/2�

(
1 + sμ

j + sμ

k

2

)
, (A6)
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where

λ jk = ζ jζk

ζ j + ζk
, (A7)

μ jk = ζ jμ j + ζkμk

ζ j + ζk
(μ = x, y, z). (A8)

After lengthy computation, we obtain

〈k|2x
∂

∂x
| j〉 = 2nx

j

〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 − 4ζ j
〈
k
∣∣ j, nx

j + 2, ny
j, nz

j

〉 + 2nx
jx j

〈
k
∣∣ j, nx

j − 1, ny
j, nz

j

〉 − 4ζ jx j
〈
k
∣∣ j, nx

j + 1, ny
j, nz

j

〉
, (A9)

〈k|2y
∂
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| j〉 = 2ny

j

〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 − 4ζ j
〈
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j, ny
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j
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〈
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j − 1, nz

j

〉 − 4ζ jy j
〈
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〉
, (A10)
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j

〈
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x
jx j

〈
k
∣∣ j, nx

j − 1, ny
j + 2, nz

j

〉 − 4ζ jn
y
jx j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j

〉
+ 8ζ 2

j x j
〈
k
∣∣ j, nx

j + 1, ny
j + 2, nz

j

〉 + 2nx
jn

y
jy j

〈
k
∣∣ j, nx

j, ny
j − 1, nz

j

〉 − 4ζ jn
x
jy j

〈
k
∣∣ j, nx

j, ny
j + 1, nz

j

〉
− 4ζ jn

y
jy j

〈
k
∣∣ j, nx

j + 2, ny
j − 1, nz

j

〉 + 8ζ 2
j y j

〈
k
∣∣ j, nx

j + 2, ny
j + 1, nz

j

〉 + 2nx
jn

y
jx jy j

〈
k
∣∣ j, nx

j − 1, ny
j − 1, nz

j

〉
− 4ζ jn

x
jx jy j

〈
k
∣∣ j, nx

j − 1, ny
j + 1, nz

j

〉 − 4ζ jn
y
jx jy j

〈
k
∣∣ j, nx

j + 1, ny
j − 1, nz

j

〉 + 8ζ 2
j x jy j

〈
k
∣∣ j, nx

j + 1, ny
j + 1, nz

j

〉
,

(A12)

〈k|2xz
∂2

∂x ∂z
| j〉 = 2nx

jn
z
j

〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 − 4ζ jn
x
j

〈
k
∣∣ j, nx

j, ny
j, nz

j + 2
〉 − 4ζ jn

z
j

〈
k
∣∣ j, nx

j + 2, ny
j, nz

j

〉 + 8ζ 2
j

〈
k
∣∣ j, nx

j + 2, ny
j, nz

j + 2
〉

+ 2nx
jn

z
jx j

〈
k
∣∣ j, nx

j − 1, ny
j, nz

j

〉 − 4ζ jn
x
jx j

〈
k
∣∣ j, nx

j − 1, ny
j, nz

j + 2
〉 − 4ζ jn

z
jx j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j

〉
+ 8ζ 2

j x j
〈
k
∣∣ j, nx

j + 1, ny
j, nz

j + 2
〉 + 2nx

jn
z
jz j

〈
k
∣∣ j, nx

j, ny
j, nz

j − 1
〉 − 4ζ jn

x
jz j

〈
k
∣∣ j, nx

j, ny
j, nz

j + 1
〉

− 4ζ jn
z
jz j

〈
k
∣∣ j, nx

j + 2, ny
j, nz

j − 1
〉 + 8ζ 2

j z j
〈
k
∣∣ j, nx

j + 2, ny
j, nz

j + 1
〉 + 2nx

jn
z
jx jz j

〈
k
∣∣ j, nx

j − 1, ny
j, nz

j − 1
〉

− 4ζ jn
x
jx jz j

〈
k
∣∣ j, nx

j − 1, ny
j, nz

j + 1
〉 − 4ζ jn

z
jx jz j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j − 1
〉 + 8ζ 2

j x jz j
〈
k
∣∣ j, nx

j + 1, ny
j, nz

j + 1
〉
,

(A13)

〈k|2yz
∂2

∂y ∂z
| j〉 = 2ny

jn
z
j

〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 − 4ζ jn
y
j

〈
k
∣∣ j, nx

j, ny
j, nz

j + 2
〉 − 4ζ jn

z
j

〈
k
∣∣ j, nx

j, ny
j + 2, nz

j

〉 + 8ζ 2
j

〈
k
∣∣ j, nx

j, ny
j + 2, nz

j + 2
〉

+ 2ny
jn

z
jy j

〈
k
∣∣ j, nx

j, ny
j − 1, nz

j

〉 − 4ζ jn
y
jy j

〈
k
∣∣ j, nx

j, ny
j − 1, nz

j + 2
〉 − 4ζ jn

z
jy j

〈
k
∣∣ j, nx

j, ny
j + 1, nz

j

〉
+ 8ζ 2

j y j
〈
k
∣∣ j, nx

j, ny
j + 1, nz

j + 2
〉 + 2ny

jn
z
jz j

〈
k
∣∣ j, nx

j, ny
j, nz

j − 1
〉 − 4ζ jn

y
jz j

〈
k
∣∣ j, nx

j, ny
j, nz

j + 1
〉

− 4ζ jn
z
jz j

〈
k
∣∣ j, nx

j, ny
j + 2, nz

j − 1
〉 + 8ζ 2

j z j
〈
k
∣∣ j, nx

j, ny
j + 2, nz

j + 1
〉 + 2ny

jn
z
jy jz j

〈
k
∣∣ j, nx

j, ny
j − 1, nz

j − 1
〉

− 4ζ jn
y
jy jz j

〈
k
∣∣ j, nx

j, ny
j − 1, nz

j + 1
〉 − 4ζ jn

z
jy jz j

〈
k
∣∣ j, nx

j, ny
j + 1, nz

j − 1
〉 + 8ζ 2

j y jz j
〈
k
∣∣ j, nx

j, ny
j + 1, nz

j + 1
〉
,

(A14)

〈k| − x2 ∂2

∂y2
| j〉 = − ny

j

(
ny

j − 1
)〈

k
∣∣ j, nx

j + 2, ny
j − 2, nz

j

〉 + 2ζ j
(
2ny

j + 1
)〈

k
∣∣ j, nx

j + 2, ny
j, nz

j

〉 − 4ζ 2
j

〈
k
∣∣ j, nx

j + 2, ny
j + 2, nz

j

〉
− 2ny

j

(
ny

j − 1
)
x j

〈
k
∣∣ j, nx

j + 1, ny
j − 2, nz

j

〉 + 4ζ j
(
2ny

j + 1
)
x j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j

〉 − 8ζ 2
j x j

〈
k
∣∣ j, nx

j+1, ny
j+2, nz

j

〉
− ny

j

(
ny

j − 1
)
x2

j

〈
k
∣∣ j, nx

j, ny
j − 2, nz

j

〉 + 2ζ j
(
2ny

j + 1
)
x2

j

〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 − 4ζ 2
j x2

j

〈
k
∣∣ j, nx

j, ny
j + 2, nz

j

〉
, (A15)

〈k| − x2 ∂2

∂z2
| j〉 = − nz

j

(
nz

j − 1
)〈

k
∣∣ j, nx

j + 2, ny
j, nz

j − 2
〉 + 2ζ j

(
2nz

j + 1
)〈

k
∣∣ j, nx

j + 2, ny
j, nz

j

〉 − 4ζ 2
j

〈
k
∣∣ j, nx

j + 2, ny
j, nz

j + 2
〉

− 2nz
j

(
nz

j − 1
)
x j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j − 2
〉 + 4ζ j

(
2nz

j + 1
)
x j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j

〉 − 8ζ 2
j x j

〈
k
∣∣ j, nx

j + 1, ny
j, nz

j+2
〉

− nz
j

(
nz

j − 1
)
x2

j

〈
k
∣∣ j, nx

j, ny
j, nz

j − 2
〉 + 2ζ j

(
2nz

j + 1
)
x2

j

〈
k
∣∣ j, nx

j, ny
j, nz

j

〉 − 4ζ 2
j x2

j

〈
k
∣∣ j, nx

j, ny
j, nz

j + 2
〉
, (A16)
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〈k| − y2 ∂2

∂x2
| j〉 = − nx

j

(
nx

j − 1
)〈

k
∣∣ j, nx

j − 2, ny
j + 2, nz

j

〉 + 2ζ j
(
2nx

j + 1
)〈

k
∣∣ j, nx

j, ny
j + 2, nz

j

〉 − 4ζ 2
j

〈
k
∣∣ j, nx

j + 2, ny
j + 2, nz

j

〉
− 2nx

j

(
nx

j − 1
)
y j

〈
k
∣∣ j, nx

j − 2, ny
j + 1, nz

j

〉 + 4ζ j
(
2nx
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)
y j

〈
k
∣∣ j, nx

j, ny
j + 1, nz

j
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j y j

〈
k
∣∣ j, nx

j + 2, ny
j+1, nz

j

〉
− nx

j

(
nx
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j

〈
k
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j, nz

j

〉 + 2ζ j
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2nx
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j

〈
k
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j
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j y2

j

〈
k
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j + 2, ny
j, nz

j

〉
, (A17)

〈k| − y2 ∂2

∂z2
| j〉 = − nz

j

(
nz

j − 1
)〈
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〉 + 2ζ j

(
2nz
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)〈
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j
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〉
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〈
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)
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〈
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j, ny
j, nz

j + 2
〉
, (A18)

〈k| − z2 ∂2

∂x2
| j〉 = − nx

j

(
nx

j − 1
)〈

k
∣∣ j, nx

j − 2, ny
j, nz

j + 2
〉 + 2ζ j

(
2nx

j + 1
)〈

k
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j, nz
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〈
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)
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(
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)
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〈
k
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(
2nx
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〈
k
∣∣ j, nx

j, ny
j, nz

j
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〈
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〉
, (A19)

〈k| − z2 ∂2

∂y2
| j〉 = − ny

j

(
ny

j − 1
)〈

k
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j, ny
j − 2, nz

j + 2
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(
2ny

j + 1
)〈

k
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〈
k
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(
ny
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)
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〈
k
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〉 + 4ζ j

(
2ny

j + 1
)
z j

〈
k
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j z j
〈
k
∣∣ j, nx

j, ny
j + 2, nz

j + 1
〉
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j

(
ny

j − 1
)
z2
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〈
k
∣∣ j, nx

j, ny
j − 2, nz

j

〉 + 2ζ j
(
2ny

j + 1
)
z2

j

〈
k
∣∣ j, nx
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〉 − 4ζ 2
j z2
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〈
k
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j, ny
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〉
. (A20)

APPENDIX B: SPHERICAL AVERAGING OF POSITRON
WAVE FUNCTION IN A GAUSSIAN BASIS

The spherically averaged positron wave function is given
by [see Eqs. (10) and (11)]

ψ (r) =
∫

ψ (r)
d�

4π
= 1

4π

∑
j

CjI j (r), (B1)

where, as in Appendix A, we have combined the index A that
enumerates the nuclei with the index j that enumerates the
basis functions centered on each nucleus into a single index
that enumerates all of the basis functions across all centers,
and we have dropped the superscript (p) from the expansion
coefficients of the positron wave function. The origin of
coordinates is chosen to be at the position of the molecule’s
center of mass. The function I j is simply the integral of basis
function j over the solid angle:

I j (r) =
∫

g j (r) d�. (B2)

To find an expression for I j , we use spherical polar coordinates
(r, θ, φ), which gives

I j (r) =
∫ 2π

0

∫ π

0
(r sin θ cos φ − x j )

nx
j (r sin θ sin φ − y j )

ny
j

× (r cos θ − z j )
nz

j exp{−ζ j[(r sin θ cos φ − x j )
2

+(r sin θ sin φ − y j )
2 + (r cos θ − z j )

2]} sin θ dθ dφ.

(B3)

We consider two cases: first, where only s-type basis func-
tions are used, and, second, where basis functions of general
angular momenta are used.

1. s-type functions only

If only s-type basis functions are used, then nx
j = ny

j =
nz

j = 0 for all j. Since an s-type basis function is a function

only of the distance from its center and not on the direction

from its center (i.e., g j (r) ∝ e−ζ j|r−r j|2

), we are free to rotate
the coordinate axes so that the center is on the z axis, whence
x j and y j become 0 and z j becomes r j . Assuming r j > 0,
Eq. (B3) becomes

I j (r) = e−ζ j (r2+r2
j )

∫ 2π

0

∫ π

0
e2ζ j r j r cos θ sin θ dθ dφ

= 2πe−ζ j (r2+r2
j ) sinh(2ζ jr jr)

ζ j r jr
. (B4)

If, in fact, r j = 0 (i.e., the basis function is centered on the
origin), then Eq. (B3) becomes

I j (r) = e−ζ j r2
∫ 2π

0

∫ π

0
sin θ dθ dφ

= 4πe−ζ j r2
. (B5)

2. Functions with general angular momenta

For basis functions of general angular momenta, assuming
r j > 0, we use the binomial theorem on the algebraic factors
in Eq. (B3) to obtain

I j (r) = e−ζ j (r2+r2
j )

nx
j∑

sx
j=0

ny
j∑

sy
j=0

nz
j∑

sz
j=0

(
nx

j

sx
j

)(
ny

j

sy
j

)(
nz

j

sz
j

)

× (−x j )
nx

j−sx
j (−y j )

ny
j−sy

j (−z j )
nz

j−sz
j rsx

j+sy
j+sz

j

×
∫ 2π

0

∫ π

0
cossz

j θ sinsx
j+sy

j+1 θ cossx
j φ sinsy

j φ

× exp[2ζ jr(x j sin θ cos φ + y j sin θ sin φ + z j cos θ )]

× dθ dφ. (B6)
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TABLE VII. Coefficients Aj and Bj for the polar integral
I (pol)

j (sz
j, r), with ρ j = 2ζ j z jr.

nx
j + ny

j sz
j A j B j

0 0 2/ρ j 0
1 −2/ρ2

j 2/ρ j

2 2(2 + ρ2
j )/ρ3

j −4/ρ2
j

2 0 −4/ρ3
j 4/ρ2

j

1 4(3 + ρ2
j )/ρ4

j −12/ρ3
j

2 −4(12 + 5ρ2
j )/ρ5

j 4(12 + ρ2
j )/ρ4

j

4 0 16(3 + ρ2
j )/ρ5

j −48/ρ4
j

1 −48(5 + 2ρ2
j )/ρ6

j 16(15 + ρ2
j )/ρ5

j

2 16(90 + 39ρ2
j + ρ4

j )/ρ7
j −144(10 + ρ2

j )/ρ6
j

The integration can be carried out analytically if we restrict
our interest to linear molecules. Doing this, and assuming that
all nuclei (i.e., basis function centers) are positioned on the
z axis (so that x j = y j = 0 and r j = |z j | for all j), Eq. (B6)
simplifies to

I j (r) = e−ζ j (r2+r2
j )

∫ 2π

0
cosnx

j φ sinny
j φ dφ

×
nz

j∑
sz

j=0

(
nz

j

sz
j

)
(−z j )

nz
j−sz

j rnx
j+ny

j+sz
j

×
∫ π

0
cossz

j θ sinnx
j+ny

j+1 θ e2ζ j z j r cos θ dθ. (B7)

The values of the azimuthal and polar integrals depend on the
parity of nx

j , ny
j , and sz

j .
The azimuthal integral is

I (az)
j ≡

∫ 2π

0
cosnx

j φ sinny
j φ dφ. (B8)

By splitting the domain of integration into two subintervals,
0 � φ � π and π � φ � 2π , and subsequently making the
substitution u = cos φ on each subinterval, we obtain

I (az)
j = [

1 + (−1)ny
j
] ∫ 1

−1
unx

j (1 − u2)(ny
j−1)/2 du. (B9)

Then, splitting the new domain of integration into two subin-
tervals, −1 � u � 0 and 0 � u � 1, making the substitutions
u = −√

t on −1 � u � 0 and u = √
t on 0 � u � 1, and

using the definition of the beta function,

B(α, β ) = B(β, α) =
∫ 1

0
tα−1(1 − t )β−1 dt (B10)

(where Re α > 0, Re β > 0), we obtain

I (az)
j = 1

2

[
1 + (−1)nx

j + (−1)ny
j + (−1)nx

j+ny
j
]

× B

(
1 + nx

j

2
,

1 + ny
j

2

)
, (B11)

which gives

I (az)
j = 2B

(
1 + nx

j

2
,

1 + ny
j

2

)
(B12)

if nx
j and ny

j are both even, and I (az)
j = 0 otherwise.

The polar integral is solved by making the substitution ξ =
cos θ :

I (pol)
j

(
sz

j, r
) ≡

∫ π

0
cossz

j θ sinnx
j+ny

j+1 θ e2ζ j z j r cos θ dθ,

=
∫ 1

−1
ξ sz

j (1 − ξ 2)(nx
j+ny

j )/2e2ζ j z j rξ dξ . (B13)

Splitting the domain of integration into two subintervals,
−1 � ξ � 0 and 0 � ξ � 1, and using the identity [125]

∫ u

0
ξ 2ν−1(u2 − ξ 2)ρ−1eμξ dξ = 1

2
B(ν, ρ)u2ν+2ρ−2

1F2

(
ν;

1

2
, ν + ρ;

μ2u2

4

)

+ μ

2
B

(
ν + 1

2
, ρ

)
u2ν+2ρ−1

1F2

(
ν + 1

2
;

3

2
, ν + ρ + 1

2
;
μ2u2

4

)
(B14)

(which is valid for Re ρ > 0, Re ν > 0), we obtain

I (pol)
j

(
sz

j, r
) = B

(
2 + nx

j + ny
j

2
,

1 + sz
j

2

)
1F2

(
1 + sz

j

2
;

1

2
,

3 + nx
j + ny

j + sz
j

2
; ζ 2

j z2
j r

2

)
(B15)

if sz
j is even, or

I (pol)
j

(
sz

j, r
) = 2ζ j z jrB

(
2 + nx

j + ny
j

2
,

2 + sz
j

2

)
1F2

(
2 + sz

j

2
;

3

2
,

4 + nx
j + ny

j + sz
j

2
; ζ 2

j z2
j r

2

)
(B16)

if sz
j is odd. Here 1F2(α; β, γ ; δ) is a generalized hypergeometric function. The generalized hypergeometric functions that appear

in Eqs. (B15) and (B16) can, in fact, be written as combinations of hyperbolic sines and cosines of 2ζ j z jr, i.e., we can write

I (pol)
j

(
sz

j, r
) = Aj sinh ρ j + Bj cosh ρ j, (B17)

where ρ j = 2ζ j z jr. In this work, we have used only s-, p-, and d-type basis functions; therefore, nx
j , ny

j , and sz
j are all integers

between 0 and 2. Table VII shows the coefficients Aj and Bj for nx
j + ny

j = 0, 2, 4 and sz
j = 0, 1, 2 (we need to consider only

even values of nx
j + ny

j since this is a requirement for the azimuthal integral to be nonzero).
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If, in fact, z j = r j = 0 (i.e., the basis function is centered on the origin), then Eq. (B3) becomes

I j (r) = rnx
j+ny

j+nz
j e−ζ j r2

∫ π

0
cosnx

j φ sinny
j φ dφ

∫ 2π

0
cosnz

j θ sinnx
j+ny

j+1 θ dθ. (B18)

This gives

I j (r) = 2rnx
j+ny

j+nz
j e−ζ j r2

B

(
1 + nx

j

2
,

1 + ny
j

2

)
B

(
2 + nx

j + ny
j

2
,

1 + nz
j

2

)
(B19)

if nx
j , ny

j , and nz
j are all even, and I j (r) = 0 otherwise.
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