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Quantum threshold reflection of He-atom beams from rough surfaces
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Quantum reflection of thermal He atoms from various surfaces (glass slide, GaAs wafer, flat, and structured Cr)
at grazing conditions is studied within the elastic close-coupling formalism. Comparison with the experimental
results of Zhao et al. [Phys. Rev. Lett. 105, 133203 (2010)] is quite reasonable but the conclusions of the present
theoretical analysis are different from those discussed in the experimental work. The universal linear behavior
observed in the dependence of the reflection probability on the incident wave-vector component perpendicular to
the surface is only valid at small values of the component whereas, at larger values, deviation from the linearity is
evident, approaching a quadratic dependence at higher values. The surface roughness seems to play no important
role in this scattering. Moreover, the claim that one observes a transition from quantum to classical reflection
seems to be imprecise.
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I. INTRODUCTION

Matter wave diffraction and interferometry are very in-
teresting topics because, unlike optical effects observed by
photons, these studies lead to a better knowledge of the
interaction between particles and surfaces. This interaction
is usually divided into two regions, short- and long-range
distances. The short distances are dominated by the Pauli
and Coulomb repulsion between electrons of the incoming
particle and the surface and the long distances are governed
mainly by the van der Waals–Casimir attraction. We talk
about classical reflection when particles reach the inner region
(turning points) corresponding to the repulsive part of the
interaction potential. On the other hand, when the reflection
comes from the long-range attractive part, one talks about
quantum threshold reflection to be distinguished from above
barrier quantum reflection. Lennard-Jones and Devonshire [1]
first recognized this behavior in atom-surface scattering and
Kohn [2] showed later on that quantum reflection leads to a
zero sticking probability at threshold. He pointed out that this
reflection is a quantum interference process between the in-
coming and reflected waves. Senn [3] showed that, for general
one-dimensional forces which vanish as the coordinate goes
to ±∞, the reflection probability goes to unity at threshold
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energies except when the potential supports a zero-energy
resonance state. The reflection coefficient decreases from
unity according to |R| ∼ 1 − 2kb ∼ exp(−2kb), where k is
the incident wave vector and b is a characteristic length which
depends on the specifics of the particle surface interaction.
This universal behavior is a direct result of boundary condi-
tions and continuity of the wave function and its derivative.
When considering scattering from surfaces which occurs in
three-dimensional space, k should be replaced by its compo-
nent perpendicular to the surface.

This quantum threshold reflection phenomenon has been
observed for the scattering of ultracold metastable He atoms
on silicon [4] and for rare-gas atoms and small clusters on
gratings and surfaces [5–8] and on a periodic array of half
planes [9]. In this last case, it appears there is a transition
from quantum reflection to the regime where edge diffraction
from half planes dominates. At threshold conditions, where
the incident energy is very small, the maximum of the scat-
tered wave function is located far away from the grating or
surface due to the very long de Broglie wavelength of the
incident particle. This led mistakenly to the idea that quantum
reflection takes place far away from the grating or surface,
at distances of typically tens or hundreds of nanometers.
Quantum threshold reflection was claimed to be governed by
the long-range attractive van der Waals–Casimir potential tail,
which falls off faster than r−2 [10,11]. It was claimed that
the fact that the very weakly bound He2 molecule which is
reflected without dissociating is further proof that only the
long-range weak forces are at play and these are too weak
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to dissociate even such a fragile bond [8]. This would not be
the case if the dimer reaches the classical turning point of the
interaction potential.

In the semiclassical framework, and within the k linear
dependence regime, the semiclassical description of the scat-
tering dynamics breaks down. Far away from the grating
or surface, the long-range attractive potential exhibits a re-
gion in which the local de Broglie wavelength is not slowly
varying, invalidating a semiclassical description. This occurs
in the so-called badlands region of the interaction potential.
Quantum reflection was thus associated with this badlands
region through a function called “quantality” the absolute
value of which displays large deviations from unity in a
confined region of the potential, implying that in this region
quantum effects are important [11,12]. In a series of papers,
we have recently demonstrated theoretically and numerically
[13–15] that quantum threshold reflection is determined by
the whole range of the interaction potential. We have observed
that the short-range region is also critical for obtaining theo-
retical reflection probabilities and diffraction patterns which
are in fairly good agreement with the experimental results
of Refs. [5–8]. These calculations were carried out by using
the elastic close-coupling (CC) formalism [16], which is nu-
merically exact when convergence is reached. To distinguish
between quantum and classical reflection in this type of theo-
retical calculations, complex absorbing boundary conditions
which prevent the classical reflection from occurring have
been employed [17,18]. In Ref. [14] we have also shown that
the badlands region of the interaction potential is irrelevant
in quantum threshold reflection since the wavelength of the
scattering particles at threshold is much longer than the rather
small spatial extent of this region.

In the work presented in this paper, we have extended our
previous studies to analyze and discuss previously reported
coherent reflection of He-atom beams from rough surfaces at
grazing incidence [6]. When the component of the incident
wave vector of the incoming atom perpendicular to the surface
is very small, experimental and theoretical reflection probabil-
ities seem to be only dependent on this normal component and
approach unity when it vanishes, confirming the correspond-
ing universal behavior. Deviations from linearity are found
only at larger values of this normal component. Moreover, we
do not find a transition from quantum to classical reflection
when increasing the normal component of the wave vector,
as previously reported [6]. Finally, the surface roughness at
threshold conditions and grazing angles appears to play no
important role in this scattering.

In Sec. II we review some of the experimental consid-
erations. The elastic CC formalism is only briefly outlined
in Sec. III since it has already been described elsewhere
[13,15,16]. Theoretical results are presented and compared
with the experimental ones in Sec. IV; this is followed by a
discussion justifying our different interpretations and conclu-
sions.

II. EXPERIMENTAL CONSIDERATIONS

The experiments we want to analyze have been described
in detail in Refs. [5,6]. Experimental results have been ob-
tained from a supersonic beam expansion of He atoms at
different stagnation temperatures T0 = 300, 50, and 8.7 K

corresponding to incidence wave vectors k of 112, 46, and
18 nm−1, respectively. In order to maintain a high atomic
flux and narrow velocity distribution of the incident beam
and avoid cluster formation, different stagnation pressures
P0 = 31, 26, and 0.5 bar have been used. In the cryogenic
free jet expansion of incident particles, the incident kinetic en-
ergy is given by Ei = (5/2)kBT0 (kB is Boltzmann’s constant)
[19]. Four types of surfaces have been considered in these
experiments [6]: (i) a glass slide which is a simple standard
microscope slide (ISO Norm 8037/I), 1 mm thick and with
a surface area of 76 × 26 mm2; (ii) the commercial GaAs
wafer which is cut along the (100) direction and is 50 mm
in diameter; (iii) a flat chromium surface of 100 × 30 mm2

area used for comparison with the grating surface; and (iv) a
20-μm-period chromium grating previously used in Ref. [5]
(a 56-mm-long microstructured array of 110-nm-thick, 10-
μm-wide, and 5-mm-long parallel chromium strips on a flat
quartz substrate). Surfaces are expected to be oxidized or
oxygen covered but, in spite of this contamination, at grazing
angles intense specular reflection peaks are still observable.
Since no information about the roughness of the surfaces
employed in the experiments is provided, they are going to
be assumed flat (except for type iv) and well described by one
dimension in the x direction. The incident angle θi is usually
varied below 0.1 mrad and up to 25 mrad and measured with
respect to the surface plane.

Angular distributions or diffraction patterns of in-saggital-
plane (x, z-plane) scattering are recorded by rotating the
detector and measuring the He signal at each angle. The
diffraction angles θn are given by the conservation of
the momentum or Bragg’s law:

cosθi − cosθn = nλ

d
= 2πn

d k
, (1)

where λ is the de Broglie wavelength of the incident particle
and the diffraction order is given by n. Negative diffraction
orders correspond to diffraction angles close to the surface
grating, that is, energy in the perpendicular direction is trans-
ferred to the parallel direction. The specular reflection and
nonspecular diffraction probabilities are obtained from the in-
tegrated intensity of the reflected peak normalized to the peak
area of the incident beam and the total reflection probability is
the sum of all of them. Final results are plotted as a function
of the corresponding perpendicular wave vector, that is, along
the z direction:

kperp �
√

5mkBT0

h̄
sinθi (2)

with m being the He-atomic mass.
The main conclusions of the authors of this experimental

paper are that at low kperp values the reflection probability is
dominated by quantum threshold reflection, which is mani-
fested by a steep linear decrease of the reflection probability
with increasing kperp. At larger kperp, the corresponding results
start to fan out and are rationalized in terms of classical
reflection from the inner region of the repulsive interaction
potential. The dividing line between both regimes is claimed
to be around kperp = 0.3 nm−1 and independent of the type
of surface studied. Only the fanning out effect is explained in
terms of the surface roughness.
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III. THEORY

The theory employed here has been outlined elsewhere
[13,15] so we will emphasize only the key points:

(i) We assume an interaction model with very few free
parameters.

(ii) The CC equations are solved numerically. The diffrac-
tion probabilities to be compared with the experimental ones
are obtained after a fitting procedure of the fundamental
potential parameters.

(iii) The final results are verified to be independent of the
absorbing boundary conditions used. This assures that the
internal turning point plays no role in the quantum reflection
phenomenon.

A two-dimensional model potential between the incoming
particles and the surface is assumed and written as

U (x, z) = V (z)h(x) (3)

where V (z) describes the interaction along the coordinate z
perpendicular to the surface and h(x) is the periodic surface
along the horizontal coordinate x. For the z direction, the
combination of a Morse potential, VM (z), at short distances,
and an attractive van der Waals–Casimir tail VC , at large
distances, has been shown to be a good description of this
interaction:

V (z) =
{

VM (z) = D[e−2χz − 2e−χz], z < z̄

VC (z) = − C4
(l+z)z3 , z � z̄

. (4)

Here C4 = C3l , C3 being the van der Waals coefficient and l
a characteristic length which determines the transition from
the van der Waals (z � l) to the Casimir (z � l) regime.
The matching point z̄ is usually determined by imposing both
the continuity condition for the interaction potential and its
first derivative. The range of variation of the C3 parameter
is usually known and the stiffness parameter of the Morse
potential χ is considered a fitting parameter; D is determined
from the matching point z̄.

The periodic grating function h(x) is described by the so-
called unit impulse function and written as

h(x) =
+∞∑

n=−∞

∏(
x − nd

a

)
(5)

where a is the width of the strips and d is the period with a <

d . The
∏

(y) function is the so-called unit impulse function:
zero for |y| > 1/2, 1 for |y| < 1/2, and 1/2 for |y| = 1/2. In
terms of a Fourier series, h(x) is expanded as

h(x) =
+∞∑

n=−∞
cnei2πnx/d (6)

with c0 = a/d , c−n = cn and cn = (a/d )sinc(na/d ), and
sinc(x) = sin(πx)/πx. When d = 2a (as in the experimental
grating of Ref. [5]), the terms beyond the sixth order are quite
small. The periodic interaction potential can then be expressed
as

U (x, z) =
+∞∑

n=−∞
Vn(z)ei 2πnx

d (7)

where the first term (n = 0) is the interaction potential V0(z) =
V (z) [see Eq. (4)] and the coupling terms (n �= 0) are given by

Vn(z) = 2sinc

(
n

a

d

)
V (z), (8)

where d and a are the period and width of the strips.
As has been recently shown [13,15], the elastic scattering

of the incident particles with the surface is theoretically well
described by the CC formalism. The corresponding CC differ-
ential equations are written as[

h̄2

2m

d2

dz2
+ h̄2

2m
k2

n,z − V0(z)

]
ψn(z) =

∑
n �=n′

Vn−n′ (z)ψn′ (z) (9)

with h̄2

2m k2
n,z being the z component of the kinetic energy of

the scattered particles. The square z component of the wave
vector is given by

k2
n,z = k2

i −
(

ki sin θi + 2πn

d

)2

(10)

with θi measured with respect to the normal to the surface.
This theoretical angle is complementary to the experimental
incident angle. Thus, when comparing with experimental
results, theoretical positive n diffraction orders correspond to
experimental negative ones. The effective potentials labeled
by n, V0(z) + h̄2

2m (ki sin θi + 2πn/d )2 in Eq. (9) represent
diffraction channels. The asymptotic energies depend on n
and the incident energy and polar angle. As is known, open
(closed) diffraction channels have a positive (negative) normal
kinetic energy h̄2k2

n,z/(2m). The coupling between channels
Vn−n′ (z) is given by Eq. (8) since n − n′ is always an integer
number. The diffraction intensities or reflection probabilities,
obtained by solving the CC equations given by Eq. (9) with
the usual boundary conditions [16], are expressed as

In = |Sn0|2 (11)

where Snn′ are the elements of the unitary scattering matrix.
Their square absolute values give the diffraction intensity
or probability for an incident wave at the specular channel
(n′ = 0) and exiting by any of the open diffraction channels
labeled by n.

As mentioned above, the interaction potential given by
Eq. (4) displays classical turning points due to the repulsive
part of the Morse potential. To distinguish between quantum
threshold reflection and classical reflection from the inner
repulsive part of the Morse potential, absorbing boundary
conditions have to be imposed [17,18] in the inner part. A
Woods-Saxon (WS) potential is added to the imaginary part
of the diffraction channel potentials:

VWS = A

1 + eαχ (z−zi )
, (12)

which is essentially zero in the physically relevant interaction
region and turns on sufficiently rapidly but smoothly at the
left edge of the numerical grid for the integration to absorb the
flux. The fitting parameters of this WS potential are A and α.
The resulting scattering matrix S̄ is then no longer unitary. The
diffraction intensities are given by Īn = |S̄n0|2 and the total
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FIG. 1. The interaction potentials for the glass slide, flat, and
structured Cr surfaces (solid curve) and wafer (dashed curve) are
plotted. The WS potentials are also plotted for all the surfaces used
in each case (gray curves).

quantum reflection probability is calculated as

PQR =
∑

n

|S̄n0|2 < 1 (13)

for each initial condition. Due to the absorbing potential the
theoretical diffraction efficiencies are defined as the ratio of
the diffraction intensity Īn to the total quantum reflection
probability PQR rather than to the total incident flux in order to
compare to the experimental results. In Fig. 1, the potentials
for the glass slide, flat, and structured Cr surfaces are plotted
together with the WS potentials used in each case. For flat
surfaces, h(x) = 1 and no diffraction channels are present;
only specular reflection is present. The WS potential is then
added to the specular channel.

IV. RESULTS AND DISCUSSION

The parameters used in the elastic CC calculations for the
perpendicular potential are displayed in Table I. As previously
noted, the only real fitting parameter is χ since the values of
C3 have been taken from Ref. [6] and only slightly modified.
The values obtained from fitting to the experimental results
when solving numerically the one-dimensional Schrödinger
equation only for the attractive potential were 3.5, 5.5, 3.5,

3.5 × 10−50 J m3 for the glass slide, wafer, flat, and structured

TABLE I. Parameters of the interaction potential V (z) for the
four surfaces. The stiffness parameter of the Morse potential, χ , is
a free parameter fitted to reproduce the corresponding experimental
results and D is the well depth. The characteristic lengths l and
parameters C3 are based on values reported in previous works [6].

Parameters Glass slide GaAs wafer Flat Cr Structured Cr

χ (Å−1) 0.5 0.5 0.5 0.5
D (meV) 9.8 15.3 9.8 9.8
l (Å) 93 93 93 93
C3 (10−50 J m3) 3.5 5.5 3.5 3.5

Cr, respectively. The well depth is related to χ according to
our procedure to evaluate the matching point z̄. A characteris-
tic length l of 9.3 nm for He for the transition from the Casimir
to the van der Waals regimes in the long-range attractive
potential is a well-accepted value in the literature [6]. For the
numerical integration, the range of distances in the vertical
z axis was taken to be −13 to 2000 Å. In this way the
wave function was forced to vanish at z = −13 Å (z = 0
corresponds to the location of the minimum of the attractive
Morse potential).

The parameters of the WS potential were varied with the
incident wave vector. The detailed procedure for using these
complex absorbing boundary conditions for the diffraction
channels has been described elsewhere [13,15]. Due to the
fact that no information is available on the structure of the ex-
perimental surfaces used, we have assumed that they are flat,
except for the structured Cr surface. Thus, h(x) = 1 is chosen
for the glass slide, GaAs wafer, and flat Cr surfaces leading
to only specular reflection or reflectivity. The characteristics
of the grating Cr surface are the same as reported in Ref. [5]
with h(x) given by Eq. (6).

A measure of the quality of the reflection probability fits
for each surface can be given by the square root of the relative
deviation σ , which is defined as

σ =
√√√√ 1

N (N − 1)

N∑
j=1

∣∣∣∣∣Pexp
j − Ptheo

j

Pexp
j

∣∣∣∣∣
2

. (14)

Here, N is the total number of initial conditions given by the
kperp points for each surface and j = 1, . . . , N . The smaller
the sigma coefficient, the better the quality of the fit.

Reflection probabilities for He atoms scattering from a
glass slide at three different source temperatures of 8.7 K
(black labels), 50 K (red labels, light gray), and 300 K (blue
labels, dark gray) are plotted in Fig. 2 as a function of kperp in
nm−1 (top panel) and versus the incident angle in rad (bottom
panel). Points are the experimental results and solid curves
are our elastic CC results. The overall agreement is fairly
good. The universal linear behavior of the quantum reflection
probability in the top panel is observed for kperp values below
0.2 nm−1, depending on the stagnation temperature. After this
small region of kperp, one finds that the value of kperp causes
this probability to fan out. The same is observed in the bottom
panel where the incident angle also contributes to this effect.
The quantum threshold reflection clearly decreases with k and
θi. The σ coefficient is 0.063 for 8.7 K, 0.143 for 50 K, and
0.114 for 300 K.

Whereas the same observations are extracted from analyz-
ing the experimental and theoretical results, our interpretation
is different. We attribute our results to only quantum threshold
reflection, not to classical reflection from the inner region
of the potential even at higher kperp. Our theoretical calcula-
tions are preventing classical reflection due to the use of the
complex absorbing boundary conditions. The classical turning
points of the perpendicular potential are not reached. The uni-
versal linear behavior is gradually lost with increasing kperp.
The transition from quantum to classical reflection cannot
be observed by varying the incident wave vector. Moreover,
from our calculations, it becomes clear that the fanning out
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FIG. 2. Reflection probabilities for He atoms scattering from a
glass slide at three different source temperatures 8.7 K (black labels),
50 K (red labels, light gray), and 300 K (blue labels, dark gray). In
the top panel, probabilities are plotted as a function of kperp in nm−1

whereas in the bottom panel they are plotted vs the incident angle
in rad. Points are the experimental results and solid lines show the
results of the present elastic CC computations.

effect observed for this surface should not be attributed to the
surface roughness as mentioned in Ref. [6] since we used a
flat surface.

The same arguments and conclusions are valid also for the
GaAs wafer surface, the results of which are plotted in Fig. 3.
The degree of this fanning out is the smallest for the wafer as
compared to the three other surfaces studied. The hierarchy of
surface roughness determined by qualitative atomic force mi-
croscope measurement [6] indicates that the root-mean-square
surface roughness is smallest for the chromium surface. In

FIG. 3. The same as in Fig. 2 but for the GaAs wafer.

FIG. 4. The same as in Fig. 2 but for a flat Cr surface.

particular, the glass slide is larger than for the wafer. It is
thus suggestive that the extent of surface roughness affects
the extent of fanning out at higher kperp. However, from our
computations we conclude that this roughness has at most
a minor effect on the quantum threshold reflection. The σ

coefficient is 0.044 for 8.7 K, 0.049 for 50 K, and 0.215 for
300 K.

The next two surfaces are interesting to study to see what
is the real effect of the roughness. In Figs. 4 and 5, we present
the quantum reflection probabilities for a flat and structured
chromium surface, respectively. The linear behavior seems to
take place for perpendicular wave vectors less than 0.2 nm−1

in both cases. The fanning out effect is also more pronounced
in the structured surface. However, the conclusions are the
same as previously mentioned for the other two surfaces. The
σ coefficient is 0.09 for 8.7 K and 0.24 for 50 K for the flat

FIG. 5. The same as in Fig. 2 but for the structured Cr surface.
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surface, whereas for the structured surface we have 0.04 for
8.7 K, 0.063 for 50 K, and 0.058 for 300 K.

V. CONCLUDING REMARKS

In this paper, we presented a theoretical study, based
on the close-coupled equations method, of the scattering of
He-atom beams at grazing angles and threshold conditions
on four surfaces: a glass slide, a GaAs wafer, and a flat
and structured chromium surface. The reasonable agreement
between our results and the experimental ones indicates the
reflection observed in the experiment should be attributed
solely to quantum threshold reflection and not to classical
reflection from the repulsive inner region of the potential.
For all the surfaces studied we also observe the fanning out
effect of the reflection probability with increasing incident
energy but attribute this to the quantum threshold reflection
rather than the classical reflection from the inner turning point.
The universal linear dependence of the reflection probability

on the perpendicular component of the incident wave vec-
tor is gradually lost. Finally, the decrease of the quantum
threshold reflection probability with the incident wave vector
and incident angle is found to be less pronounced for the
wafer and much more for the structured Cr surface due to its
roughness. The present computational result again indicates
that the whole interaction potential is needed to correctly
describe the quantum threshold reflection phenomenon, not
only qualitatively but also quantitatively.
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