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QED calculation of the dipole polarizability of helium atom
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The QED contribution to the dipole polarizability of the 4He atom was computed, including the effect of finite
nuclear mass. The computationally most challenging contribution of the second electric-field derivative of the
Bethe logarithm was obtained using two different methods: the integral representation method of Schwartz and
the sum-over-states approach of Goldman and Drake. The results of both calculations are consistent, although
the former method turned out to be much more accurate. The obtained value of the electric-field derivative of the
Bethe logarithm, equal to 0.048 557 2(14) in atomic units, confirms the small magnitude of this quantity found in
the only previous calculation [G. Łach, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 92, 233001 (2004)], but
differs from it by about 5%. The origin of this difference is explained. The total QED correction of the order of α3

in the fine-structure constant α amounts to 30.6671(1) × 10−6, including the 0.1822 × 10−6 contribution from
the electric-field derivative of the Bethe logarithm and the 0.011 12(1) × 10−6 correction for the finite nuclear
mass, with all values in atomic units. The resulting theoretical value of the molar polarizability of helium-4
is 0.517 254 08(5) cm3/mol with the error estimate dominated by the uncertainty of the QED corrections of
order α4 and higher. Our value is in agreement with but an order of magnitude more accurate than the result
0.517 254 4(10) cm3/mol of the most recent experimental determination [C. Gaiser and B. Fellmuth, Phys. Rev.
Lett. 120, 123203 (2018)].

DOI: 10.1103/PhysRevA.101.022505

I. INTRODUCTION

Accurate knowledge of the electric dipole polarizability
αd of helium is critical for the development of new primary
standards of temperature [1–3] (which is of importance due to
the new definition of kelvin [4,5]), and for novel realizations
of pressure employing electrical [6,7], microwave [8], or
optical methods [9,10]. This significance of the polarizability
is a consequence of the direct linear relation (εr − 1)kBT =
4παd p connecting at low density the relative electric per-
mittivity εr (and consequently the refractive index n) with
the gas pressure p and the thermodynamic temperature T .
The Boltzmann constant kB, appearing here, is now fixed at
1.380 649 × 10−23 J/K. Corrections to this linear relation,
depending the second and higher powers of density ρ, are
small for helium [9,11] and can be determined with much
lower relative accuracy than the targeted accuracy of p or T .
Information about an accurate value of αd is also essen-
tial in experimental determinations of density and dielectric
virial coefficients of rare gases using dielectric-constant gas
thermometry [12,13]. One may note that knowledge of the
accurate value of the dipole polarizability of helium was
employed in the experimental determinations of the value of
the Boltzmann constant [14,15], before this constant was fixed
by the new SI definition of kelvin [16,17].

For microwave [8] and optical [9,10] methods, the de-
pendence of αd on frequency ω is relevant, but for helium
the frequency dependent part of αd(ω) is small [18] for
experimentally useful frequencies [19], and does not have to
be known with high relative accuracy. One may also note
that the index of refraction depends not only on αd(ω) but
also on the static magnetic susceptibility χ and, at the 10−7

level, on other frequency dependent magnetic and quadrupole
contributions [20]. In this paper we consider only the static
dipole polarizability αd.

Since the helium atom is a very small system bound by
electromagnetic forces, its properties, including the polariz-
ability, can be computed with very high accuracy using the
quantum electrodynamics (QED) theory. The strong nuclear
forces can be accounted for by the empirical values of the
nuclear mass and nuclear charge radius. The nuclear polar-
izability and effects of the weak interactions give a com-
pletely negligible contribution to the atomic polarizability.
The current status of the QED theory in the description of
the helium atom has been recently examined in Ref. [21]. No
relative discrepancies higher than 10−8 have been found [21]
between the best theoretical calculations of transition energies
and their most reliable experimental determinations. In some
cases the agreement between theory and experiment reaches
even the 10−9 level [22]. Since in thermal metrology the

2469-9926/2020/101(2)/022505(13) 022505-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1065-6313
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.022505&domain=pdf&date_stamp=2020-02-18
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevA.101.022505


MARIUSZ PUCHALSKI et al. PHYSICAL REVIEW A 101, 022505 (2020)

required relative accuracy is at most at the 10−7 level, one
can be confident that the theory tested in Ref. [21] is sufficient
for a metrology-useful prediction of the static polarizability of
helium.

The nonrelativistic polarizability of helium α
(0)
d , defined

by the standard Schrödinger-Coulomb equation, can be com-
puted with accuracy limited only by the accuracy of the
experimental value of the electron-to-nucleus mass ratio. The
most accurate value of α

(0)
d for 4He reported in the literature,

1.383 809 986 408(1) a3
0, where a0 = h̄2/(mee2) is the atomic

unit of length, has a relative error of 10−12 (see Table I in
Ref. [23]). The leading relativistic correction to α

(0)
d , being of

the second order in the fine-structure constant α and denoted
by α

(2)
d , can be computed using the Breit-Pauli Hamilto-

nian [24] and is also known with more than sufficient accu-
racy. Its value for 4He is −80.4534(1) × 10−6 a3

0 [18]; the
reported uncertainty of 10−10 a3

0 accounts for neglected terms
of the order of α2(me/mα )2, where mα is the nuclear mass.

Calculation of the next correction, α
(3)
d , of the order of

α3, requires a field-theoretic, QED treatment of the electron-
electron and electron-nucleus interaction that takes into ac-
count the effects of the electron self-energy and the vacuum
polarization. The first calculation of α

(3)
d was reported by

Pachucki and Sapirstein [25] in 2001. These authors assumed
the infinite nuclear mass, i.e., considered the nuclear-mass-
independent part α

(3,0)
d of α

(3)
d , and neglected the computation-

ally demanding second electric-field derivative ∂2
E ln k0 of the

so-called Bethe logarithm ln k0. To estimate the uncertainty
of their calculation they assumed that ∂2

E ln k0 expressed in
the atomic units represents at most 10% of the known field-
independent value of ln k0, which translated into about 10%
error in α

(3,0)
d . The complete calculation of α

(3,0)
d , including

the effect of ∂2
E ln k0, was reported in Ref. [26]. The obtained

value of ∂2
E ln k0, equal to 0.0512(4) in atomic units, turned out

to be about an order of magnitude smaller than the estimate
made by Pachucki and Sapirstein [25] and about two orders of
magnitude smaller than the atomic value of ln k0. The ∂2

E ln k0

independent part of α
(3,0)
d obtained by Łach et al. [26] agreed

well with the calculations of Pachucki and Sapirstein [25].
The calculation of ∂2

E ln k0 is computationally complex and
error prone since it involves numerical treatment of divergent
integrals, and since the final, unexpectedly small value of
∂2
E ln k0 results from cancellations of terms much larger than

∂2
E ln k0. Therefore, it is clear that an independent confirmation

of the results of Ref. [26] is needed. The main purpose of
the present paper is to perform a substantially more accurate
calculation of ∂2

E ln k0 to verify the accuracy of the value
obtained in Ref. [26] and to obtain an improved value of α

(3,0)
d .

To achieve this goal we employed two different methods to
compute Bethe logarithms: the modification of the integral
representation method of Schwartz [27] proposed recently by
Pachucki and Komasa [28] and the sum-over-states method
of Goldman and Drake [29–31] modified by us to compute
the second derivative of ln k0. Another objective of this paper
is to include the nuclear-mass-dependent part α

(3,1)
d of α

(3)
d ,

referred to as the QED recoil correction. By adding the
computed values of α

(3,0)
d and α

(3,1)
d , a definitive value of the

α3 QED correction to the polarizability of helium will become
available for metrological and other applications.

The plan of this paper is as follows. In Secs. II and III we
present calculations of ∂2

E ln k0 performed using the integral
representation and the sum-over-states methods, respectively.
Section IV contains the description of the calculation of the
QED recoil correction to the polarizability of helium. Finally,
in Sec. V a summary of the obtained results is presented
and the conclusion of this paper is formulated. The Appendix
contains a derivation of a constant defining the the asymptotic
behavior of the integrand used in Sec. II to compute ∂2

E ln k0.
Unless otherwise stated, atomic units are used through-

out this paper. We assume that α = 1/137.035 999 1, a0 =
0.052 917 721 nm, and that the mass of the 4He nucleus
equals 7294.299 953 6 me. For the Avogadro number, we take
the new SI value of 6.022 140 76 × 1023.

II. INTEGRAL REPRESENTATION APPROACH TO THE
ELECTRIC-FIELD DERIVATIVE OF THE BETHE

LOGARITHM

The formula for α
(3,0)
d can be obtained by the electric-field

differentiation of the general expression for the α3 QED cor-
rection E (3,0) to the energy of two electrons in a nondegenerate
singlet state, derived by Araki [32] and Sucher [33] in the
1950s. In the compact, present-day notation this formula can
be written in the form (see, e.g., Ref. [21])

E (3,0) = α3

[
8

3

(
19

30
− 2 ln α − ln k0

)
D1

+
(

164

15
+ 14

3
ln α

)
D2 − 7

6π
A2

]
, (1)

where

D1 = 〈ψ |δ3(r1) + δ3(r2)|ψ〉, (2)

D2 = 〈ψ |δ3(r12)|ψ〉, (3)

A2 = 〈
ψ |P(

r−3
12

)
ψ )

〉 ≡ lim
a→0

〈ψ |θ (r12 − a) r−3
12

+ 4π (γ + ln a) δ3(r12)|ψ〉, (4)

with δ3(r) being the three-dimensional Dirac distribution,
γ the Euler-Mascheroni constant, θ (x) the Heaviside step
function, and ψ the ground-state eigenfunction of the nonrel-
ativistic electronic Hamiltonian H of the considered system.
The quantity ln k0, appearing also in Eq. (1), is the Bethe
logarithm defined as the quotient

ln k0 = 〈ψ | p (H − E ) ln [2(H − E )] p |ψ〉
〈ψ | p (H − E ) p |ψ〉 , (5)

where E is the ground-state eigenvalue of H , i.e., (H −
E )ψ = 0, and p = p1 + p2 is the total momentum opera-
tor for the electrons. The numerator and the denominator
in Eq. (5) will be denoted by N and D, respectively. One
can show that D = 4πD1. In our case, H = H0 + E (z1 + z2),
where H0 is the nonrelativistic electronic Hamiltonian for
the helium atom and E (z1 + z2) is the perturbation due to
a uniform static electric field E directed along the z axis.
Thus, all quantities in Eqs. (1)–(5) depend on the electric-field
strength E . In this and in the next section, we assume that the
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TABLE I. Mean values and their second electric-field derivatives obtained with the basis sets optimized in this paper. The values of σ are
conservative error estimates of the values computed for K = 512. They were obtained by observing the pattern of convergence with increasing
K and by performing additional calculations with other basis sets.

K D1 ∂2
ED1 D2 ∂2

ED2 A2 ∂2
EA2

128 3.620 860 71 −5.168 613 9 0.106 345 341 −0.394 937 6 0.989 274 6 −2.573 745
256 3.620 858 67 −5.168 624 4 0.106 345 364 −0.394 937 4 0.989 273 9 −2.573 764
512 3.620 858 63 −5.168 624 1 0.106 345 370 −0.394 937 4 0.989 273 6 −2.573 766
σ 0.000 000 01 0.000 000 1 0.000 000 001 0.000 000 1 0.000 000 2 0.000 002

nuclear mass is infinite and that H0 contains only electronic
kinetic energy.

Differentiating Eq. (1) twice with respect to E and revers-
ing the sign, one obtains [25,26]

α
(3,0)
d = α3

[
−8

3

(
19

30
− 2 ln α − ln k0

)
∂2
ED1 + 8

3
D1 ∂2

E lnk0

−
(

164

15
+ 14

3
ln α

)
∂2
ED2 + 7

6π
∂2
EA2

]
, (6)

where all electric-field derivatives and the quantities ln k0 and
D1 which are not differentiated are taken at E = 0.

The evaluation of the derivatives ∂2
ED1, ∂2

ED2, and ∂2
EA2 is

relatively easy and can be done using the double-perturbation
theory formula

∂2
EX = 4 〈ψ0|zR0zR0X̂ψ0〉 + 2 〈ψ0|zR0(X̂

−〈ψ0|X̂ψ0〉)R0zψ0〉, (7)

where X = D1, D2, or A2; X̂ stands for the operators appearing
in Eqs. (2)–(4); z = z1 + z2; ψ0 is the ground-state eigen-
function of H0, i.e., H0ψ0 = E0ψ0; and R0 = (1 − P0)(H0 −
E0 + P0)−1 is the reduced resolvent of H0, with P0 being the
projection on ψ0.

To evaluate ∂2
ED1, ∂2

ED2, and ∂2
EA2 via Eq. (7), we need two

auxiliary functions: The first-order function R0zψ0 of natural
P symmetry and the S-wave part of the second-order function
R0zR0zψ0. These auxiliary functions were represented using
the basis set of exponentially correlated Slater functions of
the form

ψ̃ (r1, r2) = (1 + P12)
K∑

i=1

ci Y (r1, r2) e−ξir1−ηir2−νir12 , (8)

where P12 exchanges vectors r1 and r2 and Y (r1, r2) is the
angular factor equal to z1 or 1 in the present case. The linear
and nonlinear parameters in Eq. (8) were obtained by mini-
mizing the static form (ω = 0) of the Hylleraas functional:

F[ψ̃] = 〈ψ̃ |H0 − E0 + ω|ψ̃〉 + 2〈ψ̃ |h〉 (9)

where the function h is equal to zψ0 or zR0zψ0. The ground-
state wave function ψ0 was also represented by Eq. (8). All
nonlinear parameters ξi, ηi, and νi were fully optimized for
bases with K equal to 128, 256, and 512. The results are shown
in Table I.

Inspecting the values collected in Table I, we see that our
calculations of D, ∂2

ED, ∂2
ED2, and ∂2

EA2 are accurate to better
than 1-ppm level. Using the values obtained with the largest
basis set and the best literature value [34] of the atomic Bethe
logarithm ln k0 = 4.370 160 223 070 3(3), we find that the

neglect of ∂2
E ln k0, i.e., the approximation used by Pachucki

and Sapirstein [25], leads to the value of 30.4738(1) × 10−6

as an approximation to α
(3,0)
d . This value agrees very well with

the result of 30.474(1) × 10−6 published in Ref. [25].
The computation of the electric-field derivative of ln k0

is substantially more complicated than the computation of
expectation values D1, D2, and A2 and their electric-field
derivatives. In this section we present the calculation of ln k0

using the integral representation method of Schwartz [27]
in a computationally convenient formulation proposed by
Pachucki and Komasa [28]. In this formulation, the electric-
field-dependent Bethe logarithm ln k0 is computed as the
integral

ln k0 =
∫ 1

0

f (t ) − f0 − f2t2

D t3
dt, (10)

where f0 = 〈ψ |p2ψ〉, f2 = −2D, and the function f (t ) is
defined by

f (t ) = ωJ (ω) = ω 〈ψ |p (H − E + ω)−1 pψ〉 (11)

with ω = (1 − t2)/(2t2). The denominator D as well as the
expectation values in the definitions of J (ω), f0, and f2 are
assumed here to be obtained with the electric-field-dependent
ground-state eigenfunction ψ of H . Schwartz [27] and Forrey
and Hill [35] developed the asymptotic, large-ω expansion of
J (ω) that can be transformed into the expansion of f (t ) at
small t which, up to the t4 term, takes the form [28]

f (t ) ∼ fexp(t ) = f0 + f2 t2 + f3 t3 + f4l t4 ln t + f4 t4,

(12)

where f3 = 16D, f4l = 64D, and f4 = 2D (8C3 + 16 ln 2 −
1). The constant C3 determines the ω−3 term (equal to
4DC3 ω−3) in the asymptotic expansion of J (ω). The compu-
tation of C3 and its electric-field derivative ∂2

EC3 is discussed
in the Appendix.

Performing the electric-field differentiation of Eq. (10) and
setting E = 0, one obtains

∂2
E ln k0 =

∫ 1

0

∂2
E f (t ) − ∂2

E f0 − ∂2
E f2 t2

D t3
dt − ∂2

ED

D
ln k0,

(13)

where ∂2
E f0 = ∂2

E 〈ψ0 |p2ψ0〉 and ∂2
E f2 = −2∂2

ED, whereas D
and ln k0 on the right-hand side of Eq. (13) represent the
atomic, field-independent values of these quantities. Equa-
tion (12) shows that the integrand in Eq. (13) is finite at t = 0
so the integral is convergent. However, at small values of the
argument t , the function ∂2

E f (t ) is very difficult to compute
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TABLE II. Parameters defining the behavior of f (t ) at small t . See caption to Table I for the definition of σ .

K 〈ψ0|p2ψ0〉 ∂2
E 〈ψ0|p2ψ0〉 C3 ∂2

EC3

128 6.125 587 703 817 09 −9.012 082 333 63 5.000 826 −0.049 28
256 6.125 587 704 239 64 −9.012 082 339 72 5.000 634 −0.052 49
512 6.125 587 704 239 93 −9.012 082 339 74 5.000 624 a −0.052 30
σ 0.000 000 000 000 02 0.000 000 000 01 0.000 002 0.000 02

aIn Eq. (29) of Ref. [36], Korobov uses the value 5.000 624 87 without giving an uncertainty estimate.

accurately using finite basis set expansions. Actually, when
∂2
E f (t ), ∂2

E f0, and ∂2
E f2 are computed using a finite basis of

the form of Eq. (8), the singularity of the integrand at t = 0
is not canceled and the integral diverges. To circumvent this
difficulty, the integral over t was separated into two parts:
part 1 from zero to ε � 1 and part 2 from ε to 1, with
only part 2 computed using numerical values of ∂2

E f (t ). Part
1 was obtained by approximating ∂2

E f (t ) using Eq. (12) and
its generalization involving higher powers of t . To reduce the
contribution from part 1, it is convenient to subtract ∂2

E f3 t3 +
∂2
E f4l t4 ln t + ∂2

E f4 t4 from the numerator in the integrand
of Eq. (13) and integrate the counterterms analytically. The
resulting expression for ∂2

E ln k0 takes then the form

∂2
E ln k0 =

∫ 1

0

∂2
E f (t ) − ∂2

E fexp(t )

D t3
dt + ∂2

E f4

2D
− ∂2

ED

D
ln k0,

(14)

where

∂2
E f4 = 16 D ∂2

EC3 + 2 ∂2
ED (8C3 + 16 ln 2 − 1). (15)

To derive Eq. (14), use has been made of the fact that the
integral over f3 + f4l t ln t accidentally vanishes for helium.
The integrand I (t ) in Eq. (14) behaves at small t as f5l t2 ln t +
f5 t2 and for small ε gives a very small contribution to ∂2

E ln k0.
Accurate computation of f5l and f5 would be very difficult and
was not attempted. Approximate values of these parameters
were obtained by interpolating I (t ) for 0< t <ε using a few
t � ε values of I (t ), see Eq. (17).

From Eq. (14) we see that to obtain ∂2
E ln k0 we need (in

addition to D and ∂2
ED) accurate values of ∂2

E 〈ψ0|p2ψ0〉, C3,
∂2
EC3, and ∂2

E f (t ) for t � ε. The computation of ∂2
E 〈ψ0|p2ψ0〉

and ∂2
EC3 was performed using Eq. (7) and the basis set

of Eq. (8). The computation of ∂2
EC3 and C3 is somewhat

intricate since matrix elements that have to be evaluated are
more complex than the matrix elements of p or δ3(r) (see the
Appendix for details). The results of these computations are
displayed in Table II.

In view of the very strong cancellation between ∂2
E f (t ) and

∂2
E 〈ψ0|p2ψ0〉 at small t , it is important that the accuracy of

∂2
E 〈ψ0|p2ψ0〉 is very high. As shown in Table II this quantity

was computed with a relative error of 10−12.
The calculation ∂2

E f (t ) was done via the computation of
ω ∂2

EJ (ω) for ω = (1 − t2)/(2t2). The appropriate expression
for ∂2

EJ (ω) is obtained by double electric-field differentiation
of Eq. (11). The result of this differentiation can be written in

the form [26]

∂2
EJ (ω) = 4 〈ψ0|z R0 z R0 pR(ω) pψ0〉

+ 4 〈ψ0|z R0 pR(ω) zR(ω) pψ0〉
+ 2 〈ψ0|z R0 pR(ω) pR0 zψ0〉
+ 2 〈ψ0|pR(ω) zR(ω) zR(ω) pψ0〉
− 2

〈
ψ0|z R2

0 zψ0
〉 〈ψ0|pR(ω) pψ0〉

− 2 〈ψ0|z R0 zψ0〉 〈ψ0|pR2(ω) pψ0〉, (16)

where R(ω) = (H0 − E0 + ω)−1 is the frequency dependent
resolvent of the field-free Hamiltonian H0. Some terms in
Eq. (16) are singular at ω = 0, but these singularities as well
as the ω independent parts cancel so that ∂2

EJ (0) = 0 and, as
a consequence, both ∂2

E f (t ) and the derivative of ∂2
E f (t ) with

respect to t vanish at t = 1.
To evaluate ∂2

E f (t ) via Eq. (16), we can employ the
functions R0zψ0 and R0zR0zψ0 used to obtain ∂2

ED but we
also have to compute, for each value of ω, several auxiliary
functions: the first-order function R(ω)pψ0 as well as the
scalar, pseudovector, and tensor components of the second-
order functions R(ω)pR0zψ0 and R(ω)zR(ω)pψ0. All these
functions were computed variationally for each required value
of ω using appropriate versions of the functional (9). The trial
functions ψ̃ were expanded using the basis set of Eq. (8)
with the angular factors corresponding to the symmetry of
the considered auxiliary function. For the vector and pseu-
dovector functions we set Y (r1, r2) = x1 or z1 and x1z2 −
z1x2, respectively. For the functions of D symmetry the basis
consists of two parts each containing K terms: The first part
with the angular factor x1z1 or r2

1 − 3z2
1 and the second part

with the factor x1z2 + z1x2 or r1r2 − 3z1z2. For each value
of t on a grid of 100 points between 0.01 and 1.0 (and a
few additional points below 0.01), full optimizations of all
nonlinear parameters were performed for three successively
increasing basis sets labeled by the integers K = 128, 256,
and 512 which specify also the size of the basis used to
expand ψ0.

In Table III we show the basis set convergence of the
integrand I (t ) in Eq. (14) for small values of t . It is seen that
the convergence, very good at t > 0.005, deteriorates dramat-
ically for small values of t . At t = 0.002, the value of I (t ) is
not accurate enough to be used in numerical integration. This
is shown in Table IV where we list the values of the integral of
I (t ) from ε to 1 computed with our two largest basis sets. The
integral from 0.005 to 1 turns out to be sufficiently accurate
and we have chosen ε = 0.005 to separate the integration
range in Eq. (14) into the “small t” and “large t” parts. Using
ε larger than 0.005 gives more accurate values of the large t
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TABLE III. Basis set convergence of the integrand I (t ) in Eq. (14) for small values of t . K denotes the basis set size used to represent
ψ0 and the auxiliary functions. Extrapolated results were obtained assuming exponential decay of error. The uncertainty σ is defined as the
difference of the two preceding rows.

K I(0.002) I(0.005) I(0.01) I(0.02) I(0.03)

128 −21.91782900 0.14613471 2.22617850 9.34234812 20.52412502
256 −2.78361795 0.49908734 2.30166902 9.34931045 20.52630907
512 0.03568909 0.50676476 2.30195231 9.34932498 20.52631193
Extrp. 0.52288119 0.50693547 2.30195337 9.34932501 20.52631194
σ 4.9 × 10−1 1.7 × 10−4 1.1 × 10−6 3.0 × 10−8 3.8 × 10−9

integral (cf. Table IV), but is not advantageous since, as shown
in Table V, the error of the whole calculation is determined
by the interpolation error in the range t <ε (performing the
integration using every second point we verified that the error
of our numerical integration procedure is smaller than 10−8

and therefore negligible compared to other error sources).
The integral from zero to ε was obtained analytically by

interpolating I (t ) with the function

Ĩ (t ) =
n∑

k=2

(ak tk ln t + bk tk ) (17)

using our best (extrapolated) values of I (t ) for t = ε and for
2n − 3 next higher values of t . The results of this integration
are shown in Table V as a function of n together with the
corresponding values of ∂2

E ln k0 obtained from Eq. (14) using
our best values of D and ∂2

ED (from Table I), of C3 and ∂2
EC3

(from Table II), and of the large t integral (from Table IV).
One should note that the obtained values of ∂2

E ln k0 are more
than three orders of magnitude smaller than the individual
terms in Eq. (14).

Table V shows that the integral from zero to ε is very
small but its relative accuracy is not high. From the ob-
served convergence pattern we can infer that the value of
this integral amounts to 0.000 016 0(14) with the uncertainty
conservatively estimated by the total spread of values shown
in Table V. Taking into account the error estimations for both
integration regions, we find that the value of ∂2

E ln k0 obtained
using the integral representation method is 0.048 557 2(14).
This value differs by about 5% from the value 0.0512(4)
reported in Ref. [26]. The origin of this difference is discussed
in Sec. III.

III. SUM-OVER-STATES APPROACH TO THE
ELECTRIC-FIELD DERIVATIVE OF

THE BETHE LOGARITHM

To resolve the discrepancy between the values of
∂2
E ln k0 obtained in Sec. II and in Ref. [26], we performed

computations using the sum-over-states approach [29–31]. In
this approach, the numerator N in Eq. (5) is represented by
the spectral expansion in terms of the eigenfunctions ψn of
the excited states of the Hamiltonian H :

N =
∑

n

ωn ln(2ωn) |〈ψ0|pψn〉|2, (18)

where ωn are the excitation energies. In practice, an expansion
in terms of pseudostates diagonalizing H in an appropriately
chosen basis set is used [29]. Although the pseudostate ex-
pansion is converging extremely slowly (it is on the verge
of divergence [37]), it has been successfully applied [38–41],
also in the acceleration gauge [42,43], to accurately compute
electric-field-free values of ln k0. In this section we present the
application of this method to compute ∂2

E lnk0 for the ground
state of the helium atom in a static electric field E .

To cope with the extremely slow convergence of the pseu-
dostate expansion, we use a parameter L > 0 which attenuates
the importance of highly excited states and enables us to
control the convergence rate. Using the integral representation
of ln ωn,

ln ωn = ln(1 + L) − ln

(
1 + L

ωn

)

+ (ωn − 1)
∫ ∞

L

dω

(ω + ωn)(ω + 1)
, (19)

one can show that N can be written in the form

N = NL + D ln(2L + 2) +
∫ ∞

L
g(ω)dω, (20)

where

NL = −
∑

n

ωn ln

(
1 + L

ωn

)
|〈ψ0|pψn〉|2 (21)

and

g(ω) = ωJ (ω) − 〈ψ0|p2 ψ0〉 + D

ω + 1
. (22)

TABLE IV. Integral of I (t ) from ε to 1 computed with our two largest basis sets. The uncertainty σ is defined as the difference of the two
preceding rows.

K ε = 0.002 ε = 0.005 ε = 0.01 ε = 0.015 ε = 0.02

256 65.32851048 65.32854759 65.32840496 65.32799881 65.32720487
512 65.32856319 65.32854787 65.32840479 65.32799878 65.32720488
σ 5.3 × 10−5 2.8 × 10−7 1.7 × 10−7 3.4 × 10−8 2.3 × 10−9
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TABLE V. Dependence of the integral of I (t ) from zero to ε =
0.005 and of the value of ∂2

E ln k0 on the length n of the fit function of
Eq. (17). For the t � ε integral we took 65.32854787 (cf. Table IV).

n
∫ ε

0 I (t )dt ∂2
E ln k0

2 0.00001736 0.04855859
3 0.00001636 0.04855759
4 0.00001608 0.04855731
5 0.00001599 0.04855722

One may note that the modification of the original approach
of Goldman-Drake, as defined by Eqs. (20)–(22), bears close
resemblance to the approach used by Korobov [34,36] (see
also Ref. [44]).

When the energies ωn of the excited states are large (much
larger than L) the successive contributions in the summation
in Eq. (21) decrease with n as L|〈ψ0|pψn〉|2. This should be
compared with the ωn ln ωn |〈ψ0|pψn〉|2 decrease of terms in
Eq. (18). One can thus expect that the convergence of the
summation in the expression for NL will be faster than the
convergence of the series in Eq. (18). When L is sufficiently
large, the last term in Eq. (20) is small and can be easily
computed using the large-ω asymptotic expansion of g(ω):

g(ω) = g3 ω−3/2 + g4l ω
−2 ln ω + g4 ω−2 + g5 ω−5/2 + · · ·,

(23)

where the coefficients g3 = 4
√

2 D, g4l = −8 D, and g4 =
(4C3 − 1) D can be obtained by changing the variable in
the expansion of Eq. (12), or directly from the work of
Schwartz [27]. Forrey and Hill [35] derived an expression for
g5 but this expression is too complex to evaluate in practice.

Carrying out the ω integration in Eq. (20) using the first
three terms in the asymptotic expansion of g(ω) and adding
the result to the first two terms in this equation, one obtains
the following expression for ln k0:

ln k0 = ln k0(L) + RL, (24)

where

ln k0(L) = NL

D
+ ln(2L + 2) + 8

√
2L−1/2 − 8L−1 ln L

+ (4C3 − 9)L−1 (25)

and RL is the error resulting from truncating the asymptotic
series of Eq. (23). We know from the work of Forrey and
Hill [35] that RL vanishes with increasing L as

RL = C4 L−3/2 + C5 L−2 ln L + C6 L−2 + O(L−5/2). (26)

Knowing this error formula, one can perform the extrapolation
of ln k0(L) and obtain an improved value of ln k0 by solving a
small system of linear equations.

In view of Eq. (25), the second electric-field derivative of
ln k0(L) is given by the expression

∂2
E lnk0(L) = 1

D

[
∂2
ENL − NL

D
∂2
ED

]
+ 4

L
∂2
EC3. (27)

The derivative of the error ∂2
ERL has the same large-L behav-

ior as RL so that ∂2
E lnk0(L) can be extrapolated in the same

way as lnk0(L) using Eq. (26).
Since the intermediate wave functions ψn of the pseu-

dostates and the excitation energies ωn in Eq. (21) depend
on the electric field E , the differentiation of NL with respect
to E is much more difficult than the differentiation of D or
〈ψ |p2ψ〉. A suitable sum-over-states expression for ∂2

ENL can
be obtained from the formula

∂2
ENL =

∫ L

0
ω ∂2

EJ (ω)dω − L ∂2
E 〈ψ0|p2ψ0〉 (28)

resulting from Eqs. (20) and (22). Using Eq. (16) and noting
that terms diverging linearly with L are eliminated with the
help of Eq. (7), one finds that ∂2

ENL can be written as the sum
of six contributions

∂2
ENL = IA + IB + IC + ID + IE + IF , (29)

defined by

IA = −4
∑

n

λ(ωn)〈ψ0|zR0zR0 pψn〉〈ψn|pψ0〉, (30)

IB = −2
∑

n

λ(ωn)|〈ψ0|z R0 pψn〉|2, (31)

IC = 2
〈
ψ0

∣∣z R2
0 zψ0

〉∑
n

λ(ωn)|〈ψ0|pψn〉|2, (32)

ID = −2 〈ψ0|z R0 zψ0〉
∑

n

κ (ωn)|〈ψ0|pψn〉|2, (33)

IE = 4
∑

k

∑
n

γ (ωk, ωn) 〈ψ0|z R0 pψk〉〈ψk|zψn〉〈ψn|pψ0〉,

(34)

IF = 2
∑

l

∑
k

∑
n

φ(ωl , ωk, ωn) 〈ψ0|pψl〉〈ψl |zψk〉〈ψk|zψn〉

× 〈ψn|pψ0〉, (35)

where

λ(t ) = t ln

(
1 + L

t

)
, (36)

κ (t ) = ln

(
1 + L

t

)
− L

L + t
, (37)

γ (s, t ) = λ(s) − λ(t )

s − t
, (38)

φ(r, s, t ) = − λ(r)

(r − s)(r − t )
− λ(s)

(s − t )(s − r)

− λ(t )

(t − r)(t − s)
. (39)

Equations (38) and (39) are valid when all arguments r, s,
and t are different. If t = s then γ (s, s) = κ (s). This case is
very unlikely, however, since the states ψk and ψn in Eq. (34)
are of different parity. The function φ(r, s, t ) is symmetric in
its arguments. This may be used to simplify somewhat the
summations in Eq. (35). When only two arguments are equal,
for instance, r and t (ψl and ψn are of the same parity), one
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obtains

φ(r, s, r) = r

(r − s)2

[
ln

(
1 + L

r

)
− ln

(
1 + L

s

)]

+ L

(L + r)(r − s)
. (40)

In an unlikely case when all arguments are equal (ψk must be
of different parity than that of ψl and ψn), one finds

φ(r, r, r) = L2

2r(L + r)2
. (41)

To obtain the final formula for the analytic second deriva-
tive of the Drake and Goldman expression for ln k0, we have to
eliminate the logarithmic divergencies in the square brackets
of Eq. (27) by taking the limit L → ∞. This is not entirely
straightforward since the logarithmic divergencies in the indi-
vidual components of ∂2

ENL, given by Eqs. (30)–(35), must be
isolated and shown to cancel against appropriate counterterms
resulting from (NL/D) ∂2

ED.
To identify these counterterms, we replace NL in Eq. (27)

by the large-L estimate

NL = N − D ln(2L) + O(L−1/2), (42)

resulting from Eqs. (20) and (23), and write the difference in
the square brackets in Eq. (27) as

∂2
ENL − NL

D
∂2
ED = ∂2

ENL + ∂2
ED ln L − (ln k0 − ln 2) ∂2

ED

+ O(L−1/2). (43)

The derivative ∂2
ED is calculated in practice using the re-

lation D = 4πD1 with D1 given by the right-hand side of
Eq. (2), but to obtain the counterterms needed to cancel
the logarithmic divergence of the individual contributions to
∂2
ENL [cf. Eqs. (30)–(35)] we differentiate the expression 〈ψ0 |

p(H − E0) pψ0〉 also defining D. The second derivative of this
expression at E = 0 is

∂2
ED = 2

〈
∂2
Eψ0

∣∣p(H − E0) pψ0
〉 − 〈ψ0 | p2ψ0〉∂2

EE0

+ 2〈∂Eψ0 | p(H − E0) p∂Eψ0〉 + 4〈∂Eψ0 | pz pψ0〉,
(44)

where ∂Eψ0 = −R0zψ0, ∂2
Eψ0 = 2R0zR0zψ0 − 〈ψ0 |

zR2
0zψ0〉ψ0, and ∂2

EE0 = −2〈ψ0 |zR0zψ0〉 are the appropriate
derivatives of the wave function and the energy. Inserting
these derivatives into Eq. (44), one finds that ∂2

ED can be
written as a sum of the following five terms:

∂2
ED = DA + DB + DC + DD + DE , (45)

where

DA = 4
∑

n

ωn〈ψ0|zR0zR0 pψn〉〈ψn|pψ0〉, (46)

DB = 2
∑

n

ωn|〈ψ0|zR0 pψn〉|2, (47)

DC = −2
〈
ψ0|z R2

0 zψ0
〉∑

n

ωn|〈ψ0|pψn〉|2, (48)

DD = 2〈ψ0|z R0 zψ0〉 〈ψ0|p2ψ0〉, (49)

DE = −4〈ψ0|zR0 p z pψ0〉. (50)

Let us now consider the logarithmically divergent terms in
Eqs. (30)–(34). To isolate them we need the following large-L
estimates:

λ(t ) = t ln L − t ln t + O(L−1), (51)

κ (t ) = ln L − ln t − 1 + O(L−1). (52)

Inserting Eqs. (51) and (52) into Eqs. (30)–(34), it is easy to
see that all terms proportional to ln L cancel exactly against
the second term on the right-hand side of Eq. (43). More
specifically, the ln L component of IX cancels against DX ln L,
where X = A, B,C, D, E [cf. Eqs. (46)–(49)]. What remains
after these cancellations is the sum of contributions given by
Eqs. (30)–(34) in which the factors λ(t ) and κ (t ) are replaced
by −t ln t and − ln t − 1, respectively, and the γ (s, t ) factor is
replaced by

γ∞(s, t ) = − s ln s − t ln t

s − t
(53)

for s 
= t and by γ∞(t, t ) = − ln t − 1, when s = t .
To finish the discussion of the L → ∞ limit, we still have

to consider the contribution from the IF term of Eq. (35),
which is finite at large L. One can easily show that the L → ∞
limit of the factor φ(r, s, t ), denoted by φ∞(r, s, t ), is given by

φ∞(r, s, t ) = r ln r

(r − s)(r − t )
+ s ln s

(s − t )(s − r)

+ t ln t

(t − r)(t − s)
, (54)

when all arguments r, s, and t are different, and by

φ∞(r, r, t ) = t (ln t − ln r)

(r − t )2
+ 1

r − t
, (55)

φ∞(r, r, r) = 1

2r
, (56)

when two of them or all three are equal.
Summarizing, the final formula for the second derivative of

the Goldman-Drake expression for the Bethe logarithm is

∂2
E ln k0 = 1

D
(GA + GB + GC + GD + GE + GF )

− (ln k0 − ln 2)
∂2
ED

D
, (57)

where

GA = 4
∑

n

ωn ln ωn 〈ψ0|zR0zR0 pψn〉〈ψn|pψ0〉, (58)

GB = 2
∑

n

ωn ln ωn |〈ψ0|zR0 pψn〉|2, (59)

GC = −2
〈
ψ |z R2

0 zψ0
〉∑

n

ωn ln(ωn) |〈ψ0|pψn〉|2, (60)

GD = 2 〈ψ0|z R0 zψ0〉
∑

n

(1 + ln ωn)|〈ψ0|pψn〉|2, (61)

GE = 4
∑

k

∑
n

γ∞(ωk, ωn)〈ψ0|z R0 pψk〉〈ψk|zψn〉〈ψn|pψ0〉,

(62)

GF = 2
∑

l

∑
k

∑
n

φ∞(ωl , ωk, ωn) 〈ψ0|pψl〉〈ψl |zψk〉

× 〈ψk|zψn〉〈ψn|pψ0〉. (63)
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All components in the expression for ∂2
E ln k0 are finite, but

substantial cancellations of individual terms can occur and the
final value of ∂2

E ln k0 is expected to be at least two orders
of magnitude smaller than the individual contributions in
Eq. (57).

Since NL = 0 when L = 0, one can think of deriving
Eq. (57) by differentiation of Eq. (20) setting L = 0. The indi-
vidual integrals resulting then from the application of Eq. (16)
are divergent at infinity and require regularization that in prac-
tice is the same as the one used by us to derive Eqs. (57)–(63).
Thus, L can be viewed as a regularization parameter needed to
derive the second derivative of the Goldman-Drake expression
for the Bethe logarithm.

The problem of finding a basis to represent pseudostates
needed to accurately compute the quantities defined by
Eqs. (58)–(63) presents a serious challenge. Unless L is very
small, the same problem appears in calculating the quantities
defined by Eqs. (30)–(35). The difficulty stems from the fact
that pseudostates with extremely high energies are required
to converge the logarithmic sums of the form of Eq. (18)
or Eq. (21) and, also, from the additional flexibility needed
to describe the polarization by the external electric field. To
obtain a suitable basis, we followed the procedure employed
by Korobov [42,45] in highly accurate calculations of Bethe
logarithms for the ground and excited states of the helium
atom. In his method, the parameters ξi, ηi, and νi defining the
basis functions of Eq. (8) are distributed stochastically within
one or several three-dimensional boxes while the positions
and sizes of these boxes are determined by minimizing the
Hylleraas functional of Eq. (9) setting ω = 0 and replacing the
inhomogeneity function h by h1 = (z1r−3

1 + z2r−3
2 )ψ0. The

singular behavior of h1 at ri → 0 increases the flexibility of
the basis at small ri which is needed to represent pseudostates
with very high energies. The inhomogeneity function h1 was
used by us to optimize bases of natural P symmetry. To
optimize bases of S and D symmetry, we used the same
Hylleraas functional but with the inhomogeneity h replaced
by the S and D part, respectively, of the function h2 =
(z1r−3

1 + z2r−3
2 )R0zψ0. To optimize bases of Pe symmetry, the

inhomogeneity h3 = (x1r−3
1 R0z2 − z2r−3

2 R0x1)ψ0 was used.
The basis set for pseudostates of natural P symmetry

needed to evaluate NL via Eq. (21) was constructed as follows.
We start with the primary box [A1, A2] × [B1, B2] × [C1,C2]
with a uniform stochastic distribution of K0 triples
of real exponents ξi, ηi, and νi. This box defines K0

basis functions. Then, following the ideas presented
in Refs. [42,45], we build a set of secondary boxes
[τ kA′

1, τ
kA′

2] × [B′
1, B′

2] × [C′
1,C′

2], k = 0, . . . , 14, where
τ = A2/A1 and where A′

1, A′
2, B′

1, B′
2,C′

1, and C′
2 are

parameters subject to nonlinear optimization together with the
primary box parameters A1, A2, B1, B2,C1, and C2. In each
secondary box, we distribute stochastically nkK0/25 basis
functions, where nk = 10, 8, 6, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1
for k = 0, . . . , 14, respectively. The parameters ξi, ηi, and νi

were always constrained by the conditions ξi + ηi >
√

2I ,
ηi + νi >

√
2I , and νi + ξi >

√
2I , where I is the ionization

potential of helium. This ensures that the basis functions
fall off sufficiently rapidly when r1, r2 → ∞ to represent
a bound state. If a randomly generated basis function fails

TABLE VI. L dependence of the approximate Bethe logarithm
ln k0(L) for helium.

K0/L 100 200 500 1000

100 4.410 654 707 4.385 346 797 4.374 273 575 4.371 701 275
200 4.410 629 878 4.385 315 192 4.374 232 108 4.371 652 027
400 4.410 629 718 4.385 314 986 4.374 231 829 4.371 651 683

to fulfill these conditions, it is rejected and another one is
generated.

To represent pseudostates of P symmetry, we used 3K0

basis functions defined by 12 nonlinear parameters. The bases
with K0 = 100, 200, and 400 were optimized. To represent
ψ0, we used a single box with K0 basis functions and box pa-
rameters determined by minimizing the ground-state energy.
The helium atom energies obtained using bases with K0 =
100, 200, and 400 terms were only 9 × 10−10, 11 × 10−12,
and 5 × 10−14 above the accurate ground-state energy of the
helium atom [46–48].

Using the pseudostates obtained with the basis sets opti-
mized as described above, we evaluated NL via Eq. (21) for
L = 100, 200, 500, 1000. The resulting values of ln k0(L) [cf.
Eq. (25)] are shown in Table VI. It is seen that the convergence
with increasing L is very slow, as expected from the error
estimate of Eq. (26), and that the basis set convergence is
also slow, deteriorating appreciably with the increase of L.
The extrapolation to L = ∞ based on the error estimate of
Eq. (26) is, however, quite effective, reducing the error of
ln k0 by three orders of magnitude compared to the L = 1000
value given in Table VI. Specifically, applying Eq. (26) for
L = 100, 200, 500, 1000, neglecting the O(L−5/2) terms, and
solving for the unknown variables ln k0, C4, C5, and C6 we
obtain ln k0 = 4.370 162 1 when K0 = 400. This value has
the relative error of 5 × 10−7 comparing to the best available
value [34] and is significantly more accurate than the results
of the first two applications of the Schwartz method [27,49].

To calculate the second electric-field derivative of the
Bethe logarithm, we need also bases of scalar S, pseudovector
Pe, and natural D symmetry. The specific composition of
these bases was as follows. For the S symmetry, we used
seven boxes. The first box, containing K0/2 functions, was the
same as optimized earlier in the calculations of the ground-
state wave function ψ0. The second box was optimized using
the modified Hylleraas functional and also contains K0/2
functions. The remaining five boxes had exponentially grow-
ing sides [τ nA′

1, τ
nA′

2], k = 0, . . . , 4 with τ = A2/A1 defined
by the parameters A1 and A2 optimized for the second box.
These boxes contain nkK0/25 basis functions, where nk =
7, 6, 5, 4, 3 for k = 0, . . . , 4. In this way, by optimizing 12
nonlinear parameters, we have generated the total of 2K0

scalar functions.
For pseudostates of Pe and D symmetry, we used six boxes.

The primary boxes contained K0 and 3/2K0 basis functions
in the case of the Pe and D symmetry, respectively. The
remaining five boxes had exponentially increasing sides as for
the S symmetry. These five boxes contained K0 and 5/2K0

basis functions for the Pe and D symmetry, respectively,
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TABLE VII. L dependence of ∂2
E log k0(L) [see Eq. (27)]. For ∂2

EC3 we assumed the value −0.05230 (see Table II and the Appendix).

K0/L 50 100 200 500

100 0.041 523 0.044 121 0.049 995 0.050 930
200 0.044 327 0.046 739 0.048 492 0.049 303
400 0.044 476 0.046 882 0.048 075 0.048 617

distributed proportionally in the same way as in the case of
the last five, exponentially growing boxes of S symmetry. In
total, we stochastically generated 2K0 basis functions of Pe

symmetry and 4K0 functions of D symmetry. In each case 12
nonlinear parameters were optimized. Bases for the first-order
functions R0zψ0 and R0 pzψ0 and for the second-order func-
tion R0zR0zψ0 (S symmetry only) contained K0 elements and
were obtained from a single box, optimized using appropriate
Hylleraas functionals.

Using the bases optimized for K0 = 100, 200, and 400, we
evaluated the L dependence of ∂2

E lnk0(L) [see Eq. (27)] for
L = 50, 100, 200, 500. The results are shown in Table VII.
It is seen that the convergence both in K0 and in L is much
slower than in the case of ln k0(L). This is due to the loss
of at least two digits in the subtraction in Eq. (28) and to
the much increased basis set sensitivity of the components of
Eq. (29) compared to the already hard to converge summation
in Eq. (21). The slowest convergence occurs in computing
the IB contribution of Eq. (31), which determines the final
accuracy of ∂2

E lnk0(L). In fact, the results for L = 1000 were
not accurate enough to perform a reliable extrapolation and
are not shown in Table VII. Also the values of the limit
L = ∞ obtained from Eq. (57) were very inaccurate and are
not reported.

Employing the values of ∂2
E ln k0(L) obtained with L =

50, 100, 200, 500, and the error formula of Eq. (26), we
find that the extrapolated values of ∂2

E ln k0 are 0.049 24 and
0.048 75 when bases with K0 = 200 and 400, respectively, are
used. From these values one can infer that the accurate value
of ∂2

E ln k0 is smaller than 0.004 87, in disagreement with the
result of Ref. [26]. Based on the convergence pattern observed
by us, it is very difficult to assign a reliable uncertainty
to the value of ∂2

E ln k0 resulting from our sum-over-states
calculation. We estimate that this uncertainty is no worse
than about 0.005 (i.e., about 1%) and that our sum-over-states
value of ∂2

E ln k0 amounts to 0.0487(5). This value differs by
5% from the value published in Ref. [26], but is in perfect
agreement with the value obtained by us in Sec. II using the
Schwartz method. It is clear that in the case of polarizability
calculation the Schwartz method is much more accurate (since
the nonlinear optimizations are performed for each value of
the frequency ω) but the Goldman-Drake approach can be
used as an independent check of the result obtained using the
Schwartz method.

We made some effort to explain the difference (of about
5%) between the results of our calculations (obtained using
two different methods) and the result of Ref. [26] obtained
by an application of the original version of the Schwartz
method. We found that the observed disagreement has three
sources: (i) the omission of the singular ψ0 contribution to
the resolvent R(ω) in Eq. (16) for ∂2

EJ (ω) used in Ref. [26]
[the singularity ω−1 and the ω-independent terms cancel out in

the final expression for ∂2
EJ (ω), so this contribution is small],

(ii) the insufficiently accurate value of ∂2
E〈ψ0|p2ψ0〉 used in

Ref. [26] to evaluate the integral defining ∂2
E ln k0, and (iii) the

fact that the value of ∂2
EC3 employed in Ref. [26] was incorrect

since it was computed from an incomplete formula, missing
the explicit electric-field contribution ∂2

EC(2)
3 derived in the

Appendix of the present paper.

IV. QED RECOIL CORRECTION

The theory of the nuclear mass dependence of the α3

QED correction for two-electron systems has been given
by Pachucki in Ref. [50]. The expressions derived in this
reference have been applied for the first time in Ref. [51] for
the lowest S states of the helium atom and subsequently for
other excited states of helium [21] and heliumlike ions [52], as
well as for the low-lying states of lithium [53], beryllium [54],
and boron [55] atoms. The leading correction E (3,1), of the
order of 1/M ≡ me/mα , can be written as the sum of three
contributions E (3,1)

R1 , E (3,1)
R2 , and E (3,1)

R3 . The first two represent
the change linear in 1/M of the ingredients in Eq. (1) that
results from adding to H the nuclear kinetic-energy oper-
ator P2/(2mα ) corresponding to the recoil momentum P =
−(p1 + p2). The first contribution, E (3,1)

R1 , accounts for the
effect of p2

1/(2mα ) + p2
2/(2mα ). It can be obtained by scaling

Eq. (1) with the reduced mass μ/me ≈ 1 − 1/M, resulting in

E (3,1)
R1 = 1

M

(
−3E (3,0)+ 2E ∂

∂E E (3,0)+ α3 8

3
D1− α3 14

3
D2

)
,

(64)

where the second term in the parentheses is a consequence
of the electric-field dependence of the scaled wave function
μ6ψ (μr1, μr2, μ

−2E ), while the last two terms originate from
the ln μ dependence of the Bethe logarithm ln k0 [51] and
from the μ3ln μ−1 scaling of the Araki-Sucher term A2 [52].
The second contribution, E (3,1)

R2 , is due to the mass polarization
term HMP = p1 p2/mα and requires new calculations. It has the
form

E (3,1)
R2 = α3 1

M

[
8

3

(
19

30
− 2 ln α − ln k0

)
∂MD1− 8

3
D1 ∂M lnk0

+
(

164

15
+ 14

3
ln α

)
∂MD2 − 7

6π
∂MA2

]
, (65)

where ∂M denotes the derivative with respect to 1/mα when
only the mass polarization term HMP is added to H . The
third contribution is a generalization of the Salpeter correction
known for the hydrogen atom [56]. It has the form [50]

E (3,1)
R3 = α3 4

M

[(
−2

3
ln α + 62

9
− 8

3
lnk0

)
D1 − 7

6π
A1

]
,

(66)
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where

A1 = 〈ψ |P(
r−3

1

) + P
(
r−3

2

)|ψ〉 (67)

with the distribution P(r−3) defined by Eq. (4).
When E = 0, the evaluation of E (3,1)

R1 and E (3,1)
R3 is no more

difficult than the evaluation of E (3,0). To evaluate E (3,1)
R2 , we

need also the derivatives ∂MD1, ∂MD2, ∂MA2, and ∂M lnk0.
The first three of them can be easily obtained from the dou-
ble perturbation theory expression ∂MX = −2〈ψ |X̂ R0HMPψ〉,
where X̂ stands for the operators appearing in Eqs. (2)–(4).
Since 1/M is very small, these derivatives can also be ob-
tained with sufficient accuracy using the finite difference
method. Analytic evaluation of the derivative ∂M lnk0 is non-
trivial. It has been performed for the first time by Pachucki
and Sapirstein [51]. Currently the most accurate value of
∂M lnk0 = 0.094 389 4(1) has been reported by Yerokhin and
Pachucki [52]. A somewhat less accurate value of ∂M lnk0 =
0.094 38(1) has been obtained by Drake and Goldman [39]
using the finite difference method. Using the result from the
former reference and the finite difference calculation of the
remaining derivatives, we found that E (3,1) = −5.129 93 ×
10−9, in agreement with the value −5.129 925 × 10−9

reported in Ref. [52].
Performing electric-field differentiation of Eqs. (64)–(66),

setting E=0, and reversing the sign, we find

α
(3,1)
d = α

(3,1)
R1 + α

(3,1)
R2 + α

(3,1)
R3 , (68)

where

α
(3,1)
R1 = 1

M

(
α

(3,0)
d − α3 8

3
∂2
ED1 + α3 14

3
∂2
ED2

)
, (69)

α
(3,1)
R2 = α3 1

M

[
−8

3

(
19

30
− 2 ln α − ln k0

)
∂M∂2

ED1

−
(

164

15
+ 14

3
ln α

)
∂M∂2

ED2 + 7

6π
∂M∂2

EA2

+ 8

3
∂2
ED1 ∂M lnk0+ 8

3
∂MD1 ∂2

E lnk0+ 8

3
D1 ∂M∂2

E lnk0

]
,

(70)

α
(3,1)
R3 = α3 4

M

[(
2

3
ln α − 62

9
+ 8

3
lnk0

)
∂2
ED1

+ 8

3
D1 ∂2

E lnk0 + 7

6π
∂2
EA1

]
. (71)

Equation (69) can also be obtained by performing the
reduced mass scaling of Eq. (64) and observing that ∂2

E lnk0

scales as μ−4 with the reduced mass μ. The first four terms in
the square brackets of Eq. (70) can be obtained by performing
the ∂M differentiation of the approximate expression for α

(3,0)
d

used by Pachucki and Sapirstein [25]. Since, as found in
Ref. [26] and confirmed in the present paper, the derivative
∂2
E lnk0 neglected by Pachucki and Sapirstein is very small, we

employed the same approximation and neglected the last two
terms in the square brackets in Eq. (70). Actually, we know the
contribution of the penultimate term, containing the product
∂MD1 ∂2

E lnk0. This contribution equals to −1.3 × 10−12 and is
completely negligible. The contribution of the last term can be

estimated assuming that the ∂M derivative of ∂2
E ln k0 is of the

same order of magnitude as ∂2
E ln k0 [the ∂M derivatives appear

to be always smaller than or of the same order of magnitude
as the differentiated quantities (see Table 1 of Ref. [51]); the
same holds for the ∂M derivatives of ∂2

ED1, ∂2
ED2, and ∂2

EA2].
Making this assumption, we find that the neglected contribu-
tion of ∂M∂2

E ln k0 is of the order of 10−11 and is negligible
compared to other contributions to the recoil correction. This
justifies the Pachucki-Sapirstein approximation in evaluating
α

(3,1)
d . To compute the ∂M derivatives of the expectation values,

we used the finite difference method and our largest basis set,
N = 512, developed to obtain the derivatives shown in Ta-
ble I. We have found that α

(3,1)
R1 = 0.004 84, α

(3,1)
R2 = 0.00087,

α
(3,1)
R3 = 0.005 41, and that the whole QED recoil correction

α
(3,1)
d is equal to 0.011 12(1), with all values in the units of

10−6a3
0. The assumed uncertainty results from a conservative

estimate of the neglected electric-field derivatives of lnk0

V. SUMMARY OF THE RESULTS AND CONCLUSIONS

We performed calculations of the main, α3 QED con-
tribution to the static polarizability of helium including the
hard-to-compute electric-field dependence of the Bethe loga-
rithm and the finite nuclear mass (recoil) effects. This work
complements earlier studies of the leading relativistic cor-
rection [51,57], relativistic recoil effects [18], and the QED
correction in the infinite nuclear mass approximation [26,51].
Our calculations of the second electric-field derivative of the
Bethe logarithm ∂2

E lnk0, performed using the integral repre-
sentation method of Schwartz [27] (see Sec. II), confirm the
very small value of this quantity found in Ref. [26]. However,
the value of ∂2

E lnk0 obtained by us, equal to 0.048 557 2(14),
is smaller than the value of Ref. [26], equal to 0.0512(4),
by about six times the error estimate given in Ref. [26].
To resolve this discrepancy, we performed (see Sec. III)
calculations of ∂2

E lnk0 using a different method based on the
direct summation of the spectral representation of ∂2

E lnk0 in
terms of pseudostates, along the lines suggested by Goldman
and Drake [29] and Korobov [36]. The result of this second
calculation, equal to 0.0487(5), is consistent with the result
of the calculation using the integral representation method of
Schwartz but is inconsistent with the result of Ref. [26].

After including the contribution of ∂2
E ln k0, the total

value of the α3 QED correction to the polarizability of he-
lium in the infinite nuclear mass approximation amounts to
30.6560(1)×10−6 a3

0. We derived a formula for the correc-
tion to this value due to the finite nuclear mass (the QED
recoil correction). In evaluating this formula we neglected
∂2
E ln k0 and the mass-polarization effect on ∂2

E ln k0, given by
the mixed derivative ∂M∂2

E ln k0. This approximation is well
justified (see Sec. IV), in view of the smallness of ∂2

E ln k0,
compared to other ingredients of Eqs. (69)–(71). The value
of the α3 QED recoil correction α

(3,1)
d obtained by us equals

to 0.011 12(1) × 10−6a3
0 and is only about nine times smaller

than the α2 relativistic recoil correction α
(2,1)
d . It may be of

interest to note that the relative magnitude of the finite mass
contributions to the nonrelativistic α

(0)
d , relativistic α

(2)
d , and

QED α
(3)
d components of the static polarizability of helium-4
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TABLE VIII. Static polarizability of helium-4 (in a3
0 unless

otherwise noted) including relativistic and QED corrections. The
reported uncertainties are estimated based on the convergence in
basis sets, except as marked. When no error bar is given, the last
digit is certain.

Contribution Value

Nonrelativistic 1.383 809 986 4a

α2 relativistic −0.000 080 359 9a

α2/M relativistic recoil −0.000 000 093 5(1)b

α3 QED −∂2
E ln k0 term 0.000 030 473 8

∂2
E ln k0 term 0.000 000 182 2

α3/M QED recoil 0.000 000 011 12(1)c

α4 QED 0.000 000 56(14)d

Finite nuclear size 0.000 000 021 7(1)e

Total 1.383 760 78(14)
Molar polarizability 4π

3 αdNA 0.517 254 08(5)f,g

Experiment, Ref. [58] 0.517 254 4(10)f

aRef. [23].
bThe uncertainty accounts for the included terms of the order of 1/M2

and of higher order [18].
cThe uncertainty due to the neglect of the mixed derivative ∂M∂2

E lnk0

in Eq. (70).
dThe uncertainty accounts for an incomplete calculation of the α4

QED correction to polarizability (see Ref. [18]).
eRef. [18].
fIn cm3/mol.
gUsing the nonrelativistic polarizability of the 3He atom, equal to
1.384 012 18(1) [23], and scaling the recoil corrections with the mass
ratio of 1.32711 one finds that the molar polarizability of helium-3 is
0.517 329 65(5) cm3/mol.

are quite different. Specifically, we found that α
(0,1)
d /α

(0)
d ≈

3.2/M, α
(2,1)
d /α

(2)
d ≈ 8.5/M, and α

(3,1)
d /α

(3,0)
d ≈ 2.7/M.

In Table VIII, the results of our calculations are added
to the data obtained in earlier work [18,23] and compared
with the most recent experimental determination [58] of αd,
given in terms of the molar polarizability Aε = 4παdNA/3.
The agreement between theory and experiment is very good,
although the uncertainty of the experimental value is an order
of magnitude larger than that of the theoretical determina-
tion. This high theoretical accuracy appears to be presently
sufficient for metrological purposes [9–11]. As shown in
Table VIII, this accuracy is currently limited by the incom-
plete calculation of the α4 QED correction. Complete calcu-
lations of this correction for the energy levels of helium have
been very challenging [52,59,60] and have not been attempted
when the effect of the interaction with external electric field is
included in the Hamiltonian. The recent successful calculation
of the α4 QED correction for the hydrogen molecule [61]
shows that a similar calculation for the helium atom in the uni-
form electric field, a system of the same symmetry as H2, may
be possible if accuracy higher than achieved in the present
paper is required for metrological or other applications.
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APPENDIX

In this Appendix we present derivation of the second
electric-field derivative of the C3 coefficient that determines
the ω−3 term (equal to 4DC3 ω−3) in the large-ω asymptotic
expansion of J (ω). To obtain this expansion, we consider an
auxiliary function ϕ defined by

(H − E + ω)ϕ = pψ, (A1)

where ψ is the real ground-state eigenfunction of the Hamil-
tonian H = H0 + Ez. For the sake of brevity, in Eq. (A1)
and below we suppress the dependence of ϕ on E and on ω.
Obviously J (ω) = 〈pψ |ϕ〉, but it is advantageous to compute
J (ω) from the expression

J (ω) = 〈ϕ|pψ〉 + 〈ψ |pϕ〉 − 〈ϕ|H − E + ω|ϕ〉, (A2)

which for an approximate ϕ gives J (ω) with an error quadratic
in the error of ϕ [and provides a lower bound to J (ω)].
Following Schwartz [27], we write ϕ in the form

ϕ = 1

ω
pψ + i U , (A3)

where the real function U collects terms that vanish faster than
ω−1. Inserting Eq. (A3) into Eq. (A1) we find that U obeys the
relation

(H − E + ω)U = − 2

ω
a ψ − 2

ω
Ek ψ (A4)

and that J (ω) can be represented in the form

J (ω) = 1

ω
〈ψ |p2ψ〉 − D

ω2
− 4

ω
〈 a ψ |U〉 − 4

ω
E 〈ψ |U〉 k

−〈U |H − E0 + ω|U〉, (A5)

where k is the unit vector on the z axis and a = r1r−3
1 + r2r−3

2 ,
so that [H, p] = 2i(a − Ek).

It is obvious that the solution of Eq. (A4) can be written as
U = U1 + U2, where

U2 = − 2

ω2
Ek ψ (A6)

and U1 is the solution of Eq. (A4) with the last term neglected.
Schwartz [27] has found an approximate solution for U1

which, when inserted in Eq. (A5), correctly recovers the
ω−5/2, ω−3 ln ω, and ω−3 terms in the large-ω asymptotic
expansion of J (ω). His result is [27]

U1 = − 2

ω2

∑
i

ri

r3
i

[1 − e−μri (1 + μri )]ψ, (A7)

where μ = (2ω)1/2. In deriving Eq. (A7), Schwartz neglected
the potential-energy terms in the Hamiltonian on the left-hand
side of Eq. (A4) (see Ref. [62] for an alternative derivation
based on this assumption). Thus, Eq. (A7) is valid also for an
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atom in the electric field that enters U1 only through the field
dependence of ψ .

Combining Eqs. (A5)–(A7), we find after some cancella-
tions that

J (ω) = 1

ω
〈ψ |p2ψ〉 − D

ω2
+ J1(ω) + J2(ω) + O(ω−7/2),

(A8)

where

J1(ω) = − 4

ω
〈 a ψ |U1〉 − 〈U1|H − E0 + ω|U1〉 (A9)

and

J2(ω) = − 4

ω
〈aψ |U2〉− 4

ω
E〈ψ |U2〉 k− 〈U2|H − E0+ ω|U2〉

= 4

ω3
E2 + 8

ω3
〈ψ |azψ〉 E, (A10)

with az = ak. Derivation of the large-ω expansion of J1(ω)
is complicated. It has been performed through the ω−3

term by Schwartz [27]. His result, confirmed by Forrey and
Hill [35], is

J1(ω) = 4
√

2D

ω5/2
− 8D

ω3
ln ω + 4D

ω3
C(1)

3 + O(ω−7/2), (A11)

where the coefficient C(1)
3 , depending on E via ψ , is given by

the expression [27,35]

C(1)
3 = 4

(
1

2
ln 2 − 1

2
− γ

)
− 1

D

∫ ∞

0
ln r

d2ρ̄(r)

dr2
dr

+ 2

D

〈
ψ |r1r2r−3

1 r−3
2 ψ

〉
, (A12)

with ρ̄(r) denoting the angular average of the electron density
ρ(r) = 〈ψ |δ(r − r1)+δ(r − r2)|ψ〉.

From Eqs. (A8), (A10), and (A11), it is clear that C3 =
C(1)

3 + C(2)
3 , where C(2)

3 is the contributions from J2(ω)
given by

C(2)
3 = 1

D
E2 + 2

D
〈ψ |azψ〉E . (A13)

Calculating the second electric-field derivative at E = 0 we
arrive at

∂2
EC(2)

3 = 2

D
− 8

D
〈ψ0|zR0azψ0〉. (A14)

Since 〈ψ0|zR0azψ0〉 = 1/2, we finally obtain (cf. Table I)

∂2
EC(2)

3 = − 2

D
= −0.043 955 03(1). (A15)

Numerical evaluation of ∂EC(1)
3 is much more difficult.

Performing electric-field differentiation of Eq. (A12), one
finds

∂EC(1)
3 = − 1

D

(
∂2
E I1 − I1

D
∂2
ED

)
+ 2

D

(
∂2
E I2 − I2

D
∂2
ED

)
,

(A16)

where I1 and I2 are the integrals

I1 =
∫ ∞

0
ln r

d2ρ̄(r)

dr2
dr (A17)

and

I2 = 〈
ψ

∣∣r1r2r−3
1 r−3

2

∣∣ψ 〉
. (A18)

The electric-field derivatives ∂2
E I2 and ∂2

Eρ(r), needed for the
evaluation of ∂2

EC(1)
3 via Eqs. (A16) and (A17), were computed

using Eq. (7) and basis sets with K0 = 128, 256, and 512 opti-
mized as described in Sec. II. The convergence of calculations
was rather slow and we found that ∂2

EC(1)
3 = −0.008 34(2).

The same value was obtained using an alternative formula for
C(1)

3 in which the last two terms in Eq. (A12) are replaced by
the finite part of (ψ |a2ψ )/D [cf. Eq. (19) in Ref. [27]]. One
may note that the contribution ∂2

EC(2)
3 , derived in the present

paper, is about five times larger in absolute value than the
second electric-field derivative of the formula for C3 given in
Ref. [27].

Adding up ∂2
EC(1)

3 and ∂2
EC(2)

3 , we finally find that ∂2
EC3 =

−0.052 30(2). This value compares reasonably well with
the value −0.053(1) obtained from fitting the derivative of
t−3∂2

E f (t ) at t = 0 [cf. Eqs. (12) and (15)].

[1] M. R. Moldover, W. L. Tew, and H. W. Yoon, Nat. Phys. 12, 7
(2016).

[2] C. Gaiser, B. Fellmuth, and N. Haft, Metrologia 54, 141 (2017).
[3] P. M. C. Rourke, C. Gaiser, B. Gao, D. M. Ripa, M. R.

Moldover, L. Pitre, and R. J. Underwood, Metrologia 56,
032001 (2019).

[4] J. Fischer, Ann. Phys. (Berlin) 531, 1800304 (2019).
[5] G. Machin, IEEE Instrum. Meas. Mag. 22, 17 (2019).
[6] D. Gugan and G. W. Michel, Metrologia 16, 149 (1980).
[7] C. Gaiser, B. Fellmuth, and W. Sabuga, Nat. Phys. 16, 177

(2019).
[8] J. W. Schmidt, R. M. Gavioso, E. F. May, and M. R. Moldover,

Phys. Rev. Lett. 98, 254504 (2007).
[9] K. Jousten, J. Hendricks, D. Barker, K. Douglas, S. Eckel, P.

Egan, J. Fedchak, J. Fluegge, C. Gaiser, D. Olson, J. Ricker,
T. Rubin, W. Sabuga, J. Scherschligt, R. Schoedel, U. Sterr, J.
Stone, and G. Strouse, Metrologia 54, S146 (2017).

[10] J. Hendricks, Nat. Phys. 14, 100 (2018).

[11] R. M. Gavioso, D. M. Ripa, P. P. M. Steur, C. Gaiser, T. Zandt,
B. Fellmuth, M. de Podesta, R. Underwood, G. Sutton, L. Pitre,
F. Sparasci, L. Risegari, L. Gianfrani, A. Castrillo, and G.
Machin, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374,
20150046 (2016).

[12] C. Gaiser and B. Fellmuth, J. Chem. Phys. 150, 134303 (2019).
[13] C. Guenz, C. Gaiser, and M. Richter, Meas. Sci. Technol. 28,

027002 (2017).
[14] P. F. Egan, J. A. Stone, J. E. Ricker, J. H. Hendricks, and G. F.

Strouse, Opt. Lett. 42, 2944 (2017).
[15] C. Gaiser, B. Fellmuth, N. Haft, A. Kuhn, B. Thiele-Krivoi, T.

Zandt, J. Fischer, O. Jusko, and W. Sabuga, Metrologia 54, 280
(2017).

[16] J. Fischer, B. Fellmuth, C. Gaiser, T. Zandt, L. Pitre, F. Sparasci,
M. D. Plimmer, M. de Podesta, R. Underwood, G. Sutton, G.
Machin, R. M. Gavioso, D. M. Ripa, P. P. M. Steur, J. Qu, X. J.
Feng, J. Zhang, M. R. Moldover, S. P. Benz, D. R. White et al.,
Metrologia 55, R1 (2018).

022505-12

https://doi.org/10.1038/nphys3618
https://doi.org/10.1038/nphys3618
https://doi.org/10.1038/nphys3618
https://doi.org/10.1038/nphys3618
https://doi.org/10.1088/1681-7575/aa5389
https://doi.org/10.1088/1681-7575/aa5389
https://doi.org/10.1088/1681-7575/aa5389
https://doi.org/10.1088/1681-7575/aa5389
https://doi.org/10.1088/1681-7575/ab0dbe
https://doi.org/10.1088/1681-7575/ab0dbe
https://doi.org/10.1088/1681-7575/ab0dbe
https://doi.org/10.1088/1681-7575/ab0dbe
https://doi.org/10.1002/andp.201800304
https://doi.org/10.1002/andp.201800304
https://doi.org/10.1002/andp.201800304
https://doi.org/10.1002/andp.201800304
https://doi.org/10.1109/MIM.2019.8716270
https://doi.org/10.1109/MIM.2019.8716270
https://doi.org/10.1109/MIM.2019.8716270
https://doi.org/10.1109/MIM.2019.8716270
https://doi.org/10.1088/0026-1394/16/4/002
https://doi.org/10.1088/0026-1394/16/4/002
https://doi.org/10.1088/0026-1394/16/4/002
https://doi.org/10.1088/0026-1394/16/4/002
https://doi.org/10.1038/s41567-019-0722-2
https://doi.org/10.1038/s41567-019-0722-2
https://doi.org/10.1038/s41567-019-0722-2
https://doi.org/10.1038/s41567-019-0722-2
https://doi.org/10.1103/PhysRevLett.98.254504
https://doi.org/10.1103/PhysRevLett.98.254504
https://doi.org/10.1103/PhysRevLett.98.254504
https://doi.org/10.1103/PhysRevLett.98.254504
https://doi.org/10.1088/1681-7575/aa8a4d
https://doi.org/10.1088/1681-7575/aa8a4d
https://doi.org/10.1088/1681-7575/aa8a4d
https://doi.org/10.1088/1681-7575/aa8a4d
https://doi.org/10.1038/nphys4338
https://doi.org/10.1038/nphys4338
https://doi.org/10.1038/nphys4338
https://doi.org/10.1038/nphys4338
https://doi.org/10.1098/rsta.2015.0046
https://doi.org/10.1098/rsta.2015.0046
https://doi.org/10.1098/rsta.2015.0046
https://doi.org/10.1098/rsta.2015.0046
https://doi.org/10.1063/1.5090224
https://doi.org/10.1063/1.5090224
https://doi.org/10.1063/1.5090224
https://doi.org/10.1063/1.5090224
https://doi.org/10.1088/1361-6501/aa53a4
https://doi.org/10.1088/1361-6501/aa53a4
https://doi.org/10.1088/1361-6501/aa53a4
https://doi.org/10.1088/1361-6501/aa53a4
https://doi.org/10.1364/OL.42.002944
https://doi.org/10.1364/OL.42.002944
https://doi.org/10.1364/OL.42.002944
https://doi.org/10.1364/OL.42.002944
https://doi.org/10.1088/1681-7575/aa62e3
https://doi.org/10.1088/1681-7575/aa62e3
https://doi.org/10.1088/1681-7575/aa62e3
https://doi.org/10.1088/1681-7575/aa62e3
https://doi.org/10.1088/1681-7575/aaa790
https://doi.org/10.1088/1681-7575/aaa790
https://doi.org/10.1088/1681-7575/aaa790
https://doi.org/10.1088/1681-7575/aaa790


QED CALCULATION OF THE DIPOLE POLARIZABILITY … PHYSICAL REVIEW A 101, 022505 (2020)

[17] L. Pitre, M. D. Plimmer, F. Sparasci, and M. E. Himbert, C. R.
Physique 20, 129 (2019).

[18] K. Piszczatowski, M. Puchalski, J. Komasa, B. Jeziorski, and
K. Szalewicz, Phys. Rev. Lett. 114, 173004 (2015).

[19] J. A. Stone and A. Stejskal, Metrologia 41, 189 (2004).
[20] K. Pachucki and M. Puchalski, Phys. Rev. A 99, 041803(R)

(2019).
[21] K. Pachucki, V. Patkos, and V. A. Yerokhin, Phys. Rev. A 95,

062510 (2017).
[22] X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and

S. M. Hu, Phys. Rev. Lett. 119, 263002 (2017).
[23] M. Puchalski, K. Piszczatowski, J. Komasa, B. Jeziorski, and

K. Szalewicz, Phys. Rev. A 93, 032515 (2016).
[24] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-

and Two-Electron Systems (Springer-Verlag, Berlin, 1975).
[25] K. Pachucki and J. Sapirstein, Phys. Rev. A 63, 012504 (2000).
[26] G. Łach, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 92,

233001 (2004).
[27] C. Schwartz, Phys. Rev. 123, 1700 (1961).
[28] K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001 (2004).
[29] P. Goldman and G. W. F. Drake, J. Phys. B 17, L197 (1983).
[30] S. P. Goldman, Phys. Rev. A 30, 1219 (1984).
[31] S. P. Goldman, Phys. Rev. A 50, 3039 (1994).
[32] H. Araki, Prog. Theor. Phys. 17, 619 (1957).
[33] J. Sucher, Phys. Rev. 109, 1010 (1958).
[34] V. I. Korobov, Phys. Rev. A 100, 012517 (2019).
[35] R. C. Forrey and R. N. Hill, Ann. Phys. (NY) 226, 88 (1993).
[36] V. I. Korobov, Phys. Rev. A 85, 042514 (2012).
[37] S. P. Goldman and G. W. F. Drake, Phys. Rev. A 61, 052513

(2000).
[38] A. K. Bhatia and R. J. Drachman, Phys. Rev. A 57, 4301

(1998).
[39] G. W. F. Drake and P. Goldman, Can J. Phys. 77, 835 (1999).
[40] Z. C. Yan and G. W. F. Drake, Phys. Rev. Lett. 91, 113004

(2003).

[41] Z. C. Yan, W. Nörtershäuser, and G. W. F. Drake, Phys. Rev.
Lett. 100, 243002 (2008).

[42] V. I. Korobov, Phys. Rev. A 69, 054501 (2004).
[43] Z. X. Zhong, Z. C. Yan, and T. Y. Shi, Phys. Rev. A 88, 052520

(2013).
[44] V. I. Korobov and Z. X. Zhong, Phys. Rev. A 86, 044501 (2012).
[45] V. I. Korobov, Phys. Rev. A 61, 064503 (2000).
[46] C. Schwartz, Int. J. Mod. Phys. E 15, 877 (2006).
[47] H. Nakashima and H. Nakatsuji, J. Chem. Phys. 127, 224104

(2007).
[48] D. T. Aznabaev, A. K. Bekbaev, and V. I. Korobov, Phys. Rev.

A 98, 012510 (2018).
[49] J. D. Baker, R. C. Forrey, J. D. Morgan, R. N. Hill, M. Jeziorska,

and J. Schertzer, Bull. Am. Phys. Soc. 38, 1127 (1993).
[50] K. Pachucki, J. Phys. B 31, 5123 (1998).
[51] K. Pachucki and J. Sapirstein, J. Phys. B 33, 455 (2000).
[52] V. A. Yerokhin and K. Pachucki, Phys. Rev. A 81, 022507

(2010).
[53] M. Puchalski and K. Pachucki, Phys. Rev. A 78, 052511 (2008).
[54] M. Puchalski, K. Pachucki, and J. Komasa, Phys. Rev. A 89,

012506 (2014).
[55] B. Maass, T. Huther, K. Konig, J. Kramer, J. Krause, A. Lovato,

P. Muller, K. Pachucki, M. Puchalski, R. Roth, R. Sanchez, F.
Sommer, R. B. Wiringa, and W. Nortershauser, Phys. Rev. Lett.
122, 182501 (2019).

[56] E. E. Salpeter, Phys. Rev. 87, 328 (1952).
[57] W. Cencek, K. Szalewicz, and B. Jeziorski, Phys. Rev. Lett. 86,

5675 (2001).
[58] C. Gaiser and B. Fellmuth, Phys. Rev. Lett. 120, 123203 (2018).
[59] K. Pachucki, Phys. Rev. A 74, 022512 (2006).
[60] K. Pachucki, Phys. Rev. A 74, 062510 (2006).
[61] M. Puchalski, J. Komasa, P. Czachorowski, and K. Pachucki,

Phys. Rev. Lett. 117, 263002 (2016).
[62] R. Bukowski, B. Jeziorski, R. Moszynski, and W. Kolos, Int. J.

Quantum Chem. 42, 287 (1992).

022505-13

https://doi.org/10.1016/j.crhy.2018.11.007
https://doi.org/10.1016/j.crhy.2018.11.007
https://doi.org/10.1016/j.crhy.2018.11.007
https://doi.org/10.1016/j.crhy.2018.11.007
https://doi.org/10.1103/PhysRevLett.114.173004
https://doi.org/10.1103/PhysRevLett.114.173004
https://doi.org/10.1103/PhysRevLett.114.173004
https://doi.org/10.1103/PhysRevLett.114.173004
https://doi.org/10.1088/0026-1394/41/3/012
https://doi.org/10.1088/0026-1394/41/3/012
https://doi.org/10.1088/0026-1394/41/3/012
https://doi.org/10.1088/0026-1394/41/3/012
https://doi.org/10.1103/PhysRevA.99.041803
https://doi.org/10.1103/PhysRevA.99.041803
https://doi.org/10.1103/PhysRevA.99.041803
https://doi.org/10.1103/PhysRevA.99.041803
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1103/PhysRevLett.119.263002
https://doi.org/10.1103/PhysRevLett.119.263002
https://doi.org/10.1103/PhysRevLett.119.263002
https://doi.org/10.1103/PhysRevLett.119.263002
https://doi.org/10.1103/PhysRevA.93.032515
https://doi.org/10.1103/PhysRevA.93.032515
https://doi.org/10.1103/PhysRevA.93.032515
https://doi.org/10.1103/PhysRevA.93.032515
https://doi.org/10.1103/PhysRevA.63.012504
https://doi.org/10.1103/PhysRevA.63.012504
https://doi.org/10.1103/PhysRevA.63.012504
https://doi.org/10.1103/PhysRevA.63.012504
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRevLett.92.233001
https://doi.org/10.1103/PhysRev.123.1700
https://doi.org/10.1103/PhysRev.123.1700
https://doi.org/10.1103/PhysRev.123.1700
https://doi.org/10.1103/PhysRev.123.1700
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1103/PhysRevLett.92.213001
https://doi.org/10.1088/0022-3700/17/7/001
https://doi.org/10.1088/0022-3700/17/7/001
https://doi.org/10.1088/0022-3700/17/7/001
https://doi.org/10.1088/0022-3700/17/7/001
https://doi.org/10.1103/PhysRevA.30.1219
https://doi.org/10.1103/PhysRevA.30.1219
https://doi.org/10.1103/PhysRevA.30.1219
https://doi.org/10.1103/PhysRevA.30.1219
https://doi.org/10.1103/PhysRevA.50.3039
https://doi.org/10.1103/PhysRevA.50.3039
https://doi.org/10.1103/PhysRevA.50.3039
https://doi.org/10.1103/PhysRevA.50.3039
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1143/PTP.17.619
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRev.109.1010
https://doi.org/10.1103/PhysRevA.100.012517
https://doi.org/10.1103/PhysRevA.100.012517
https://doi.org/10.1103/PhysRevA.100.012517
https://doi.org/10.1103/PhysRevA.100.012517
https://doi.org/10.1006/aphy.1993.1064
https://doi.org/10.1006/aphy.1993.1064
https://doi.org/10.1006/aphy.1993.1064
https://doi.org/10.1006/aphy.1993.1064
https://doi.org/10.1103/PhysRevA.85.042514
https://doi.org/10.1103/PhysRevA.85.042514
https://doi.org/10.1103/PhysRevA.85.042514
https://doi.org/10.1103/PhysRevA.85.042514
https://doi.org/10.1103/PhysRevA.61.052513
https://doi.org/10.1103/PhysRevA.61.052513
https://doi.org/10.1103/PhysRevA.61.052513
https://doi.org/10.1103/PhysRevA.61.052513
https://doi.org/10.1103/PhysRevA.57.4301
https://doi.org/10.1103/PhysRevA.57.4301
https://doi.org/10.1103/PhysRevA.57.4301
https://doi.org/10.1103/PhysRevA.57.4301
https://doi.org/10.1139/cjp-77-11-835
https://doi.org/10.1139/cjp-77-11-835
https://doi.org/10.1139/cjp-77-11-835
https://doi.org/10.1139/cjp-77-11-835
https://doi.org/10.1103/PhysRevLett.91.113004
https://doi.org/10.1103/PhysRevLett.91.113004
https://doi.org/10.1103/PhysRevLett.91.113004
https://doi.org/10.1103/PhysRevLett.91.113004
https://doi.org/10.1103/PhysRevLett.100.243002
https://doi.org/10.1103/PhysRevLett.100.243002
https://doi.org/10.1103/PhysRevLett.100.243002
https://doi.org/10.1103/PhysRevLett.100.243002
https://doi.org/10.1103/PhysRevA.69.054501
https://doi.org/10.1103/PhysRevA.69.054501
https://doi.org/10.1103/PhysRevA.69.054501
https://doi.org/10.1103/PhysRevA.69.054501
https://doi.org/10.1103/PhysRevA.88.052520
https://doi.org/10.1103/PhysRevA.88.052520
https://doi.org/10.1103/PhysRevA.88.052520
https://doi.org/10.1103/PhysRevA.88.052520
https://doi.org/10.1103/PhysRevA.86.044501
https://doi.org/10.1103/PhysRevA.86.044501
https://doi.org/10.1103/PhysRevA.86.044501
https://doi.org/10.1103/PhysRevA.86.044501
https://doi.org/10.1103/PhysRevA.61.064503
https://doi.org/10.1103/PhysRevA.61.064503
https://doi.org/10.1103/PhysRevA.61.064503
https://doi.org/10.1103/PhysRevA.61.064503
https://doi.org/10.1142/S0218301306004648
https://doi.org/10.1142/S0218301306004648
https://doi.org/10.1142/S0218301306004648
https://doi.org/10.1142/S0218301306004648
https://doi.org/10.1063/1.2801981
https://doi.org/10.1063/1.2801981
https://doi.org/10.1063/1.2801981
https://doi.org/10.1063/1.2801981
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1103/PhysRevA.98.012510
https://doi.org/10.1088/0953-4075/31/23/010
https://doi.org/10.1088/0953-4075/31/23/010
https://doi.org/10.1088/0953-4075/31/23/010
https://doi.org/10.1088/0953-4075/31/23/010
https://doi.org/10.1088/0953-4075/33/3/314
https://doi.org/10.1088/0953-4075/33/3/314
https://doi.org/10.1088/0953-4075/33/3/314
https://doi.org/10.1088/0953-4075/33/3/314
https://doi.org/10.1103/PhysRevA.81.022507
https://doi.org/10.1103/PhysRevA.81.022507
https://doi.org/10.1103/PhysRevA.81.022507
https://doi.org/10.1103/PhysRevA.81.022507
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.78.052511
https://doi.org/10.1103/PhysRevA.89.012506
https://doi.org/10.1103/PhysRevA.89.012506
https://doi.org/10.1103/PhysRevA.89.012506
https://doi.org/10.1103/PhysRevA.89.012506
https://doi.org/10.1103/PhysRevLett.122.182501
https://doi.org/10.1103/PhysRevLett.122.182501
https://doi.org/10.1103/PhysRevLett.122.182501
https://doi.org/10.1103/PhysRevLett.122.182501
https://doi.org/10.1103/PhysRev.87.328
https://doi.org/10.1103/PhysRev.87.328
https://doi.org/10.1103/PhysRev.87.328
https://doi.org/10.1103/PhysRev.87.328
https://doi.org/10.1103/PhysRevLett.86.5675
https://doi.org/10.1103/PhysRevLett.86.5675
https://doi.org/10.1103/PhysRevLett.86.5675
https://doi.org/10.1103/PhysRevLett.86.5675
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevLett.120.123203
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.022512
https://doi.org/10.1103/PhysRevA.74.062510
https://doi.org/10.1103/PhysRevA.74.062510
https://doi.org/10.1103/PhysRevA.74.062510
https://doi.org/10.1103/PhysRevA.74.062510
https://doi.org/10.1103/PhysRevLett.117.263002
https://doi.org/10.1103/PhysRevLett.117.263002
https://doi.org/10.1103/PhysRevLett.117.263002
https://doi.org/10.1103/PhysRevLett.117.263002
https://doi.org/10.1002/qua.560420205
https://doi.org/10.1002/qua.560420205
https://doi.org/10.1002/qua.560420205
https://doi.org/10.1002/qua.560420205

