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The nonrelativistic QED (NRQED) approach is applied to the calculation of relativistic corrections to the
fine and hyperfine structure of hydrogenlike atoms at orders mα6 and mα6(m/M ). Results are found to be in
agreement with those of the relativistic theory. This confirms that the derived NRQED effective potentials are
correct, providing a reliable basis for studies in more complex atoms or molecules. Furthermore, we verify the
equivalence between different forms of the NRQED Lagrangian used in the literature. It is found that the gauge-
invariant form derived according to the initial formulation of NRQED by Caswell and Lepage [Phys. Lett. B
167, 437 (1986)] yields a different set of effective potentials, which are simpler for numerical computations.
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I. INTRODUCTION

Precision spectroscopy of simple atoms and molecules
is a fruitful approach for testing fundamental physics at a
low-energy scale. Since the discovery of the Lamb shift in
hydrogen, comparisons between experiments and predictions
of the bound-state QED theory have been performed at
ever increased levels of accuracy, as experimental progress
stimulated development of theoretical methods to compute
high-order QED corrections. Among these, the nonrelativistic
quantum electrodynamics (NRQED) approach [1,2] is a pow-
erful tool to study QED corrections in weakly bound (low-Z)
few-body systems. It has been applied to hydrogenlike (two-
body) systems: muonium [2,3], positronium [4–6], and the
hydrogen atom [7], but also to three-body systems such as the
helium atom [8,9] and hydrogen molecular ions [10,11], and
to four-body systems like Li, Be+ [12,13], or the hydrogen
molecule [14], to cite only a few examples.

Here, we use NRQED to calculate relativistic corrections at
the mα6 and mα6(m/M ) orders, more specifically, those con-
tributing to the fine and hyperfine splitting. This is motivated
by recent experimental advances in the HD+ molecular ion,
where the comparison with theory is currently limited by the
hyperfine structure calculations [15,16]. In particular, a pure
rotational transition has been measured with a 0.5-kHz un-
certainty (or 3.8 × 10−10 relative to the transition frequency),
while the corresponding theoretical uncertainty of 1.0 kHz is
dominated by the hyperfine structure [15]. To improve this,
the calculation of higher-order corrections to the hyperfine
structure, which so far has been done only for the leading
term, i.e., the electron-nucleus spin-spin Fermi interaction
[17,18], should be extended to the next largest terms, i.e., the
electron spin-orbit interaction and electron-nucleus spin-spin
tensor interactions [19].

The NRQED approach consists in constructing from QED
a nonrelativistic Lagrangian describing the interaction of an
electron (or a spin-1/2 nucleus) with the electromagnetic
field, and then using it to calculate the QED corrections by
applying the nonrelativistic perturbation theory. The NRQED
Lagrangian may be constructed ab initio by writing all pos-
sible interactions satisfying the required symmetries; its co-
efficient are then fixed by imposing that the NRQED and
QED scattering amplitudes coincide up to the desired order
[2,20]. This procedure leads to a gauge-invariant expression
of the Lagrangian. Alternatively, one can obtain the NRQED
Hamiltonian directly from the Dirac Hamiltonian through
Foldy-Wouthuysen (FW) transformations [21]. In this case,
the expression of the effective Hamiltonian is not uniquely de-
fined, and the form used, e.g., in recent works on mα6(m/M )-
order corrections to the energy levels in helium [9], differs
from the gauge-invariant form.

The hydrogen atom, where the exact fine and hyperfine
splitting in the nonrecoil limit is known from the relativistic
theory (see, e.g., Ref. [22] for a summary of results on the
hyperfine structure), plays an essential role to cross-check
the derivation of the NRQED effective Hamiltonian. In the
present work, we derive the effective Hamiltonian at the mα6

and mα6(m/M ) orders describing spin-dependent interactions
in a hydrogen atom, using both forms of the NRQED Hamil-
tonian discussed above, i.e., the gauge-invariant form [2,20]
and that obtained by FW transformation [9,21]. The effective
Hamiltonian is then used to calculate the complete fine- and
hyperfine-structure corrections for the 2P state, which are
found to coincide with the (Zα) expansion of relativistic re-
sults [22]. This shows the equivalence between the two forms
of the NRQED Hamiltonian, while the operators appear-
ing in the effective Hamiltonian are different. Furthermore,
we find that the effective potentials obtained by using the
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gauge-invariant form of the Lagrangian are significantly sim-
pler, making them a favored choice for future applications to
more complex systems.

Natural relativistic units are used in Secs. II–V. For appli-
cation to the 2P state (Sec. VI) we switch to atomic units.

II. NOTATIONS

In the NRQED framework, the general expression of the
correction to the energy levels at order mα6 is

�E (6) = 〈ψ |H (4)Q(E0 − H0)−1QH (4)|ψ〉 + 〈ψ |H (6)|ψ〉,
(1)

where H0, E0, and ψ are respectively the nonrelativistic
(Schrödinger) Hamiltonian, energy, and wave function. One
takes into account the finite nuclear mass M:

H0 = P2

2M
+ p2

e

2m
+ V = p2

2mr
+ V, (2)

where p = pe = −P, V = − Zα
r , and mr = mM/(m + M ). Q

is a projection operator on a subspace orthogonal to ψ and
H (4) is the Breit-Pauli Hamiltonian yielding the leading-order
(mα4) relativistic correction. Since our goal is to calculate the
mα6 and mα6(m/M ) orders, we select the terms of orders mα4

and mα4(m/M ):

H (4) = HB + Hrec + Hso + Hso-M + H (0)
ss + H (2)

ss + Hso-N ,

(3)

HB = − p4

8m3
+ πZα

2m2
δ(r),

Hrec = Zα

2

pi

m

(
δi j

r
+ rir j

r3

)
P j

M
,

Hso = Zα

2m2

[r × p]

r3
se,

Hso-M = − Zα

mM

[r × P]

r3
se,

H (0)
ss = −8π

3
μeμM δ(r),

H (2)
ss = μeμM

r3
− 3

(μer)(μMr)

r5
,

Hso-N = α

m

[r × p]

r3

μM

|e| . (4)

Here, μe and μM are respectively the electronic and nuclear
magnetic moments, which may be expressed in terms of the
electronic and nuclear spins:

μe = −|e|
m

se, μM = μM
|e|

2mp

I
I
.

For a 1H atom, I = 1/2 and μM = μp = 2.79 . . .. Through-
out the paper, e denotes the electron’s charge (and is thus
negative); the elementary charge is then |e|. Note that the elec-
tron’s anomalous magnetic moment is not taken into account
here. The derivation of the mα6-order effective Hamiltonian
H (6) appearing in the second term of Eq. (1) is the object of
Secs. III and IV.

It should be noted that �E (6) as written in Eq. (1) contains
contributions at all orders mα6(m/M )n, n = 0, 1, 2 . . . not
only because of the recoil terms present in H (4) and H (6),
but also because H0, E0, and ψ , which depend on the reduced
mass mr , may be expanded in powers of (m/M ).

III. NRQED LAGRANGIAN

As discussed in the Introduction, we have used two differ-
ent expressions of the NRQED Lagrangian in order to derive
the effective Hamiltonian at orders mα6 and mα6(m/M ).
The general form of the NRQED Lagrangian for an elec-
tron is

L = ψ∗(i∂t − H )ψ + Lcontact, (5)

where ψ is the two-component Pauli spinor field for an
electron and Lcontact represents the contact type interactions.
Since the latter do not contribute to the quantities of interest
here (note that contact terms vanish for a state of angular
momentum l �= 0), they will not be considered further.

A. Foldy-Wouthuysen-Pachucki Hamiltonian

One way of deriving the NRQED Hamiltonian is to
use successive FW transformations of the Dirac Hamilto-
nian as done in several papers by Pachucki and co-workers
[9,21,23]. We will use as our starting point Eq. (23) of
Ref. [9]:

HFWP = eA0 + π2

2m
− e

2m
σ · B − e

8m2
(∇ · E‖) + e2

2m2
σ · (E‖ × A) − e

8m2
σ · (E‖ × p − p × E‖)

− π4

8m3
+ e2

8m3
E2

‖ + e

8m3
{p2, σ · B} − ie

16m3
[σ · (p × A − A × p), p2] + 5e

128m4
[p2, [p2, A0]]

− 3e

64m4
{p2, (∇2A0)} + 3e

32m4
{p2, σ · (E‖ × p)} + p6

16m5
, (6)

where π = p − eA, E = −∂t A − ∇A0, B = ∇ × A, and E‖ = −∇A0. The ∇ and ∇2 operators only act inside the parentheses
that surround them.

B. Gauge-invariant Hamiltonian

Alternatively, one can build the NRQED Lagrangian following an ab initio approach as initially proposed by Caswell and
Lepage [1,2,20]. Starting from Eq. (1) of Ref. [20], and neglecting the dependence of coefficients on the anomalous magnetic
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TABLE I. NRQED “Feynman” rules for vertices. In order to facilitate the comparison with Ref. [2], the names of the vertices considered in
that work are given in the first column. The first part of the table concerns the electron and the second part deals with the nucleus. q = p′ − p
and Q = P′ − P.

Name [2] Foldy-Wouthuysen Hamiltonian Gauge-invariant Hamiltonian

1. Coulomb eA0

2. Dipole −e p′+p
2m A

3. Fermi e i[q×σ]
2m A

4. Darwin −e q2

8m2 A0

5. Seagull e2 i[q1×σ]
2m2 A0(q1)A(q2) e2 i[q1×σ]

4m2 A0(q1)A(q2)

6. Spin-orbit e i[p′×p]σ
4m2 A0

7. Time derivative Absent −e iq0 (p′+p)×σ

8m2 A

8. e (p′2+p2 )(p′+p)
8m3 A

9. −e2 qi
1qi

2
8m3 A0(q1)A0(q2)

10. Derivative Fermi −e i(p′2+p2 )(q×σ)
8m3 A

11. −e i(p′2−p2 )(p′+p)×σ

16m3 A Absent

12. e( 3q2(p′2+p2 )
64m4 + 5(p′2−p2 )2

128m4 )A0

13. −e( 3i(p′2+p2 )[q×p]σ
32m4 )A0

1M. Coulomb −Z eA0

2M. Dipole Z e P′+P
2M A

3M. Fermi i[Q × μM ]A

4M. A · A Z2e2 δi j

2M A(q1)A(q2)

moment, we obtain a gauge-invariant NRQED Hamiltonian in the following form:

HGI = eA0 − D2

2m
− e

2m
σ · B − e

8m2
(D · E − E · D) − ie

8m2
σ · (D × E − E × D) − D4

8m3
+ e2

8m3
E2 − e

8m3
{D2, σ · B}

+ 5e

128m4
[D2, (D · E + E · D)] + 3e

64m4
{D2, [∇, E]} − 3ie

16m4
{D2, σ · (D × E − E × D)} − D6

16m5
, (7)

where D = ∇ − ieA = iπ. By simple algebraic transformations, and keeping only the terms of order up to mα6, one can get an
expression that is easier to compare to the FWP Hamiltonian:

HGI = eA0 + π2

2m
− e

2m
σ · B − e

8m2
(∇ · E‖) + e2

4m2
σ · (E‖ × A) − e

8m2
σ · (E × p − p × E) − π4

8m3
+ e2

8m3
E2

‖

+ e

8m3
{p2, σ · B} + 5e

128m4
[p2, [p2, A0]] − 3e

64m4
{p2, (∇2A0)} + 3e

32m4
{p2, σ · (E‖ × p)} + p6

16m5
. (8)

This expression coincides with that obtained in the penulti-
mate step of the FW transformations leading to Eq. (6); see
Eqs. (19) and (20) of Ref. [9]. The FWP Hamiltonian (6)
may be obtained from Eq. (8) by means of the canonical
transformation eiS (H − i∂t )e−iS , where

S = e

8m2
σ · (π × A − A × π). (9)

C. Nuclear Hamiltonian

Since we are only interested in the first order in m/M,
the nucleus can be treated nonrelativistically, using the
Hamiltonian

HM = −Z eA0 + 1

2M
(P − Z|e|A)2 − μM · B. (10)

D. NRQED vertices

For the derivation of effective potentials, it is convenient to
translate NRQED Hamiltonian given by Eq. (6) or (8) in terms
of NRQED vertices and “Feynman” rules, as done in Fig. 3 of
Ref. [2]. The list of vertices which play a role in interactions
up to the mα6(m/M ) order is given in Table I.

The differences between alternative expressions of the
effective Hamiltonian are clearly apparent in this table. In the
FWP Hamiltonian, the “seagull” vertex is multiplied by two,
the “time derivative” vertex does not appear, and the vertex
numbered 11 appears in addition to the “derivative Fermi”
vertex.

IV. SPIN-DEPENDENT INTERACTIONS
AT ORDER mα6 AND mα6(m/M)

From the NRQED vertices of Table I and the pho-
ton propagator in the Coulomb gauge, effective poten-
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tials are obtained by systematic application of the nonrela-
tivistic Rayleigh-Schrödinger perturbation theory (see, e.g.,
Refs. [2,17,21,23]).

A. Coulomb photon exchange

The only spin-dependent contribution of order mα6 from
Coulomb photon exchange is obtained by having the nucleus
interact via the Coulomb vertex (1M) while the electron
interacts via the higher-order vertex (13). The corresponding
potential in momentum space is given by

U1b =
[
−e

3i(p′2 + p2)[q × p] · σ

32m4

]
[−Z e]

[
1

q2

]
. (11)

A Fourier transform yields the effective potential in coordi-
nate space,

U1b = − 3Zα

16m4

{
p2,

1

r3
[r × p] · se

}
. (12)

B. Transverse photon exchange without retardation

For illustration, let us write the potential obtained by
having the nucleus interact via the dipole vertex (2M), while

the electron interacts via the Fermi derivative vertex (10). The
potential in momentum space is

U2b =
[
−e

i(p′2 + p2)(q × σ)

8m3

][
Z e

P′ + P
2M

]

×
[
− 1

q2

(
δi j − qiq j

q2

)]

= iZα

8m3M
(p′2 + p2)

[q × σ] · P
q2

. (13)

After Fourier transform, one obtains

U2b = Zα

4m3M

{
p2,

1

r3
[r × P] · se

}
. (14)

C. Retardation in the transverse photon exchange

The last example we will consider in some detail is a retar-
dation term in the exchange of one transverse photon, where
the electron interacts via the time derivative vertex while
the nucleus interacts via the lowest-order vertices (dipole
or Fermi). The total one-photon exchange potential, which
contains contributions at orders mα5 and above, is [23]

U (5+)
3c =

∫
d4q

(2π )4i

4π

(q0)2 − q2 + iε

(
δi j − qiq j

q2

)[
− ie

8m2
q0(p′ + p) × σ

]i

×
{

eiq·re
1

E0 − H0 − q0 + iε
e−iq·R

}(
Z e

P′ + P
2M

− i[(−q) × μM]

) j

+ (H.c.). (15)

After integration over q0, one gets

U (5+)
3c = − i e

16m2

∫
d3q

(2π )3
4π

(
δi j − qiq j

q2

)[
(p′ + p) × σ

]i
{

eiq·re
1

E0 − H0 − q
e−iq·R

}(
Z e

P
M

+ i[q × μM]

) j

+ (H.c.).

(16)

We perform the expansion

1

E0 − H0 − q
= −1

q
+ H0 − E0

q2
− (H0 − E0)2

q3
+ · · · ,

(17)
where the first and second terms correspond to contributions
of order mα5 and mα6, respectively. Then,

U (6)
3c = − i e

16m2

∫
d3q

(2π )3

4π

q2

(
δi j − qiq j

q2

)
[(p′ + p) × σ]i

×{eiq·re (H0 − E0)e−iq·R}
(

Z e
P
M

+ i[q × μM]

) j

+ (H.c.). (18)

Using R = −mr/(m + M ), it is easy to show that

[H0, e−iq·R] = e−iq·RO(m/M ). (19)

As a consequence, neglecting a term of order (m/M )2 we get

U (6)
3c 	− i e

16m2

∫
d3q

(2π )3

4π

q2

(
δi j − qiq j

q2

)
[(p′ + p) × σ]ieiq·r

× (H0 − E0)

(
Z e

P
M

+ i[q × μM]

) j

+ (H.c.) (20)

and since (H0 − E0) commutes with [q × μM], the nuclear
spin-dependent part of Eq. (20) has a vanishing expectation
value in the state ψ . With the replacement P = −p one
obtains

U (6)
3c = iZα

16m2M

∫
d3q

(2π )3

4π

q2

(
δi j − qiq j

q2

)
[(p′ + p) × σ]i

× eiq·r(H0 − E0)pj + (H.c.)

= iZα

16m2M

∫
d3q

(2π )3

4π

q2

(
δi j − qiq j

q2

)
[(p′ + p) × σ]i

× eiq·r[H0, pj] + (H.c.). (21)

After Fourier transform,

U (6)
3c = iZα

8m2M
[p × σ]i 1

2r

(
δi j + rir j

r2

)
[V, pj] + (H.c.)

= − Zα2

8m2M
[p × σ]i 1

2r

(
δi j + rir j

r2

)
r j

r3
+ (H.c.)

= − Zα2

8m2M
[p × σ]i ri

r4
+ (H.c.)

= − Zα2

2m2M

1

r4
[r × p] · se = − Zα2

2m2M

1

r4
l · se. (22)
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TABLE II. Spin-dependent effective operators at order mα6(m/M ) for a hydrogenlike atom. The upper and lower parts respectively
correspond to interactions depending on the electronic spin only and to those depending on the nuclear spin.

Type of interaction Vertices Foldy-Wouthuysen Hamiltonian Gauge-invariant Hamiltonian

Transverse photon (no retard.) 10-2M U2b = − Zα

4m3M
{p2, 1

r3 l · se}
11-2M U ′

2b = 1
2U2b − (

iZα

8m3M
p2 1

r3 [r × (r · p)p] · se + (H.c.)
)

Absent

Transverse photon (retard.) 3-2M U3b = Z2α2

2m2M
1
r4 l · se

7-2M Absent U3c = − Z2α2

2m2M
1
r4 l · se

Seagull 5-1M-2M U (FWP)
5a = − Z2

2m2M
1
r4 l · se U (GI)

5a = − Z2

4m2M
1
r4 l · se

Double Coulomb photon 9-1M-1M U6b = − Z2α2

2m2M
1
r4 l · se

Transverse photon (no retard.) 8-3M U2c = − αμM
4m3mp

{p2, 1
r3 l · I}

10-3M U2d = − αμM
4m3mp

{
p2,

[
8π

3 δ(r)se · I − r2se ·I−3(rse )(rI)
r5

]}
11-3M U ′

2d = 1
2U2d − ( iαμM

4m3mp
p2 (rp)(seI)−(rse )(pI)

r3 + (H.c.)
)

Absent

Seagull 5-1M-3M U (FWP)
5b = ZαμM

m2mp

r2se ·I−(rse )(rI)
r6 U (GI)

5b = ZαμM
2m2mp

r2se ·I−(rse )(rI)
r6

D. Total effective Hamiltonian

We give in this section the complete set of spin-dependent
effective operators. At the (nonrecoil) mα6 order, there is only
one term, which is the Coulomb photon exchange considered
in Sec. IV A:

U1b = − 3Zα

16m4

{
p2,

1

r3
l · se

}
. (23)

The mα6(m/M )-order (recoil) terms are listed in Table II,
where we have separated the terms depending only on the
electronic spin and those on the nuclear spin, which respec-
tively contribute to the fine and hyperfine structure.

V. SECOND-ORDER AND FINITE-MASS CORRECTIONS

The total second-order contribution is given by the first
term of Eq. (1). Using expression (3) of H (4), we pick up
the terms contributing to the electronic spin-orbit interaction
(fine structure) and those depending on nuclear spin (hyper-
fine structure). For the fine structure, we also separate the
nonrecoil (mα6) and recoil [mα6(m/M )] terms.

A. Electronic spin-orbit interaction

(i) Nonrecoil contributions

�E (2)
B-so = 2 〈HBQ(E0 − H0)−1QHso〉, (24)

�E (2)
so-so = 〈HsoQ(E0 − H0)−1QHso〉. (25)

Note that the Darwin term in HB [Eq. (4)] vanishes because
we are considering l �= 0 states.

(ii) Recoil contributions

�E (2)
B-so-M = 2 〈HBQ(E0 − H0)−1QHso-M〉, (26)

�E (2)
rec-so = 2 〈HrecQ(E0 − H0)−1QHso〉, (27)

�E (2)
so-so-M = 2 〈HsoQ(E0 − H0)−1QHso-M〉. (28)

We also have to take into account the corrections to the
nonrecoil terms, Eqs. (23) induced by the finite nuclear mass

in H0, E0, and ψ , to first order in m/M:

δM
(
�E (6)

fs

) = δM (〈U1b〉) + δM
(
�E (2)

B-so

) + δM
(
�E (2)

so-so

)
. (29)

B. Nuclear spin-dependent contributions

The second-order terms that involve nuclear spin at the
mα6(m/M ) order are

�E (2)
B-ss = 2

〈
HBQ(E0 − H0)−1QH (2)

ss

〉
, (30)

�E (2)
B-so-N = 2 〈HBQ(E0 − H0)−1QHso-N 〉, (31)

�E (2)
so-ss = 2

〈
HsoQ(E0 − H0)−1QH (2)

ss

〉
, (32)

�E (2)
so-so-N = 2 〈HsoQ(E0 − H0)−1QHso-N 〉. (33)

Note that the scalar part of the spin-spin interaction H (0)
ss does

not appear because we are considering l �= 0 states.

VI. FINE AND HYPERFINE STRUCTURE
OF THE 2P STATE

In this section, we calculate analytically all the first-order,
second-order, and finite-mass contributions for the 2P state
of the hydrogen atom and compare with known results from
the relativistic theory. No ultraviolet divergences (at r → 0)
appear in any of the above expressions, because of the r factor
in the 2P wave function. Such divergences are found in the
case of S states, e.g., in the mα6-order correction to the spin-
averaged energy levels [24]. From here on, we switch from
the relativistic units to atomic units.

A. Zero-order and first-order wave functions

In the limit of an infinite nuclear mass, the radial wave
function and nonrelativistic energy of the 2P state are ex-
pressed as

ψ0(r) = Z3/2

2
√

6
(Zr) e− 1

2 Zr, (34)

E0 = −Z2

8
. (35)
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One may notice that all the second-order perturbation terms
[Eqs. (24)–(28) and (30)–(33)] depend either on HB or Hso

[see Eq. (4)]. In order to calculate them, we introduce the first-
order perturbation wave functions ψ

(1)
B and ψ (1)

so , defined by

(E0 − H0)ψ (1)
B = (HB − 〈HB〉)ψ0, (36)

(E0 − H0)ψ (1)
so = (Hso − 〈Hso〉)ψ0. (37)

These perturbation wave functions may be obtained analyti-
cally. For the 2P state we have

ψ
(1)
B (r) = Z2

[
1

2
− Zr

3
ln Zr − γE Zr

3

+97 Zr

144
− (Zr)2

48

]
Z3/2

2
√

6
e− 1

2 Zr, (38)

ψ (1)
so (r) = Z2

[
−1

4
+ Zr

12
ln Zr + γE Zr

12
− 31 Zr

144

+ (Zr)2

48

]
Z3/2

2
√

6
e− 1

2 Zr〈l · se〉, (39)

where γE is the Euler-Mascheroni constant. In the case of
a finite nuclear mass, the zero- and first-order wave func-
tions are obtained through the replacement Z → (mr/m)Z
in Eqs. (34), (38), and (39), and the nonrelativistic energy
through multiplication of Eq. (35) by (mr/m).

B. Nonrecoil mα6-order contributions to the fine structure

The total contribution to the fine-structure splitting is the
sum of the first-order and second-order terms, respectively
given by Eq. (23) and Eqs. (24),(25):

�E (6)
fs = 〈U1b〉 + �E (2)

B-so + �E (2)
so-so. (40)

The calculations are straightforward and require no particular
explanations. One obtains

〈U1b〉 = −2
3Z

16

∫ ∞

0
2

(
E0 + Z

r

)
|ψ0(r)|2 1

r3
r2dr 〈l · se〉

= −7Z6

256
〈 l · se〉, (41)

�E (2)
B-so = Z

∫ ∞

0
ψ0(r) ψ

(1)
B (r)

1

r3
r2dr 〈l · se〉

= 115Z6

3456
〈 l · se〉, (42)

�E (2)
so-so = Z

2

∫ ∞

0
ψ0(r)ψ (1)

so (r)
1

r3
r2dr 〈(l · se)2〉

= −49Z6

3456
〈(l · se)2〉 = 49Z6

6912
〈l · se〉 + · · ·. (43)

In the last line, we have used the fact that, in the 2p1/2 − 2p3/2

subspace, (l · se)2 = 1
2 − 1

2 l · se, and kept only the term that
contributes to the fine-structure splitting. Note that a common
factor of α4 is omitted in all expressions. Finally,

�E (6)
fs = 5Z6

384
〈l · se〉, (44)

which is in agreement with the Zα expansion of the Dirac
result [see, e.g., Eq. (3.5) of Ref. [25]].

C. Recoil mα6(m/M)-order contributions to the fine structure

Let us first use the effective Hamiltonian derived from the
gauge-invariant NRQED Hamiltonian of Eq. (8). Collecting
results from the rightmost column of Table II and from
Eqs. (26)–(29), the total mα6(m/M )-order contribution is

�E (6M )
fs = 〈U2b〉 + 〈U3b〉 + 〈U3c〉 + 〈

U (GI)
5a

〉 + 〈U6b〉 + �E (2)
B-so-M + �E (2)

rec-so + �E (2)
so-so-M + δM

(
�E (6)

fs

)
(45)

=
(

−Z

2

m

M

〈
p2 1

r3

〉
− 3Z2

4

m

M

〈
1

r4

〉)
〈l · se〉 + �E (2)

B-so-M + �E (2)
rec-so + �E (2)

so-so-M + δM
(
�E (6)

fs

)
. (46)

Like in the preceding paragraph, a common factor of α4 will be omitted in all the expressions. For the first-order terms we have〈
p2 1

r3

〉
=

∫ ∞

0
2

(
E0 + Z

r

)
|ψ0(r)|2 1

r3
r2dr = 7Z5

96
, (47)

〈
1

r4

〉
=

∫ ∞

0
|ψ0(r)|2 1

r4
r2dr = Z4

24
. (48)

The second-order terms are

�E (2)
B-so-M = 2

m

M
�E (2)

B-so = 115Z6

1728

m

M
〈l · se〉, (49)

�E (2)
rec-so = −Z

m

M

{∫ ∞

0

1

r
2

(
E0 + Z

r

)
ψ0(r)ψ (1)

so (r)r2dr +
∫ ∞

0

1

r3
r
∂ψ0

∂r
ψ (1)

so (r)r2dr −
∫ ∞

0

1

r3
r

∂

∂r

(
r
∂ψ0

∂r

)
ψ (1)

so (r)r2dr

}
〈l·se〉

(50)

= 35Z6

576

m

M
〈l · se〉, (51)

�E (2)
so-so-M = 4

m

M
�E (2)

so-so = 49Z6

1728

m

M
〈l · se〉. (52)
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To get the second line of Eq. (50) we have used r(r · p)p =
(i + r · p)r · p. The finite mass corrections are

δM (〈U1b〉) = −5
m

M
〈U1b〉 = 35Z6

256

m

M
〈l · se〉, (53)

δM
(
�E (2)

B-so

) = −6
m

M
�E (2)

B-so = −115Z6

576

m

M
〈l · se〉, (54)

δM
(
�E (2)

so-so

) = −5
m

M
�E (2)

so-so = −245Z6

6912

m

M
〈l · se〉 (55)

and the total finite-mass correction is

δM
(
�E (6)

fs

) = −85Z6

864

m

M
〈l · se〉. (56)

Finally, the total contribution of order Zα6(m/M ) is

�E (6M )
fs = −Z6

96

m

M
〈l · se〉, (57)

in agreement with the expansion in powers of Zα and m/M of
the relativistic result [Eq. (3.5) of [25]].

We should now check that by using the FWP effective
Hamiltonian of Eq. (6) we arrive at the same result. The
second-order and finite-mass terms are unchanged, and the
first-order contribution becomes

�E (6M )(FWP)
fs-first order = 〈U2b〉 + 〈U ′

2b〉 + 〈U3b〉 + 〈
U (FWP)

5a

〉 + 〈U6b〉

=
(

−3Z

4

m

M

〈
p2 1

r3

〉
− Z2

2

m

M

〈
1

r4

〉)
〈l · se〉

− iZ

4

m

M

〈
p2 1

r3
[r × (r · p)p] · se

〉

=
(

−Z

2

m

M

〈
p2 1

r3

〉
− iZ

4

m

M

〈
p2 1

r3
(r · p)

〉

− Z2

2

m

M

〈
1

r4

〉)
〈l · se〉. (58)

To get the last line, we have used the relationship r × (r ·
p)p = (i + r · p)[r × p]. Comparing Eq. (58) with the first
term of Eq. (46) one can see that both results are equivalent if
the equality

〈
ip2 1

r3
(r · p)

〉
=

〈
Z

r4

〉
(59)

is verified. Using the relationship r · p = 1
i r ∂

∂r and integration
by parts, it is straightforward to obtain this equality. This
verifies the equivalence of results obtained from the Foldy-
Wouthuysen and gauge-invariant forms of the NRQED effec-
tive Hamiltonian for an arbitrary bound state of a hydrogenlike
atom.

D. mα6(m/M)-order contributions to the hyperfine structure

1. Results from relativistic theory

We recall the relativistic expression of the hyperfine energy
for the (n, l, j, F ) level of a hydrogenlike atom in natural
relativistic units [22,26]:

Ehfs(n, l, j, F ) = α(Zα)3m(2μM )
m

mp

× κ[2κ (γ + n − |κ|) − N]

N4
(
κ2 − 1

4

)
γ (4γ 2 − 1)

〈I · j〉, (60)

where j = l + se, F = j + I, κ = (−1) j−l+ 1
2 ( j + 1

2 ) is the

Dirac angular quantum number, γ =
√

κ2 − (Zα)2, and N =√
(n − |κ|)2 + 2(n − |κ|)γ + κ2 is the effective principal

quantum number. Expansion of this formula in powers of Zα

yields the relativistic correction of order mα6(m/M ) to the
hyperfine structure [26]:

�E rel
hfs = (Zα)2

[
12κ2 − 1

2κ2(2κ − 1)(2κ + 1)
+ 3

2n

1

|κ|

+ 3 − 8κ

2n2(2κ − 1)

]
EF , (61)

where

EF = α(2μM )
m

mp

κ

|κ|
(Zα)3m

n3(2κ + 1)
(
κ2 − 1

4

) 〈I · j〉 (62)

is the Fermi energy. For the 2P state one obtains, going back
to atomic units,

�E rel
hfs(2P1/2, F ) = 47

24
(Zα)2EF (2P1/2, F ), (63)

EF (2P1/2, F ) = Z3α2μM
m

mp

1

9
〈I · j〉, (64)

�E rel
hfs(2P3/2, F ) = 7

24
(Zα)2EF (2P3/2, F ), (65)

EF (2P3/2, F ) = Z3α2μM
m

mp

1

45
〈I · j〉. (66)

2. NRQED calculation

We will now evaluate this correction from NRQED using
the gauge-invariant effective Hamiltonian (8). Collecting the
results from Table II and Eqs. (30)–(33) we have

�E (6M )
hfs = 〈U2c〉 + 〈U2d〉 + 〈

U (GI)
5b

〉 + �E (2)
B-ss + �E (2)

B−so−N

+�E (2)
so-ss + �E (2)

so-so-N . (67)

Various combinations of spin operators appear in the above
expression, and in order to make a comparison with Eqs. (63)–
(66) they should be “projected” into I · j. This is done in
Appendix A for all the relevant operators. We now evaluate
all terms and, using the results of Appendix A, express them
in terms of I · j. In order to alleviate the expressions, we have
omitted a common factor of α4μM (m/mp).

(i) First-order terms:

〈U2c〉 = −1

2

〈
p2 1

r3

〉
〈l · I〉 = −7Z5

192
〈l · I〉 = −7Z5

192

j( j + 1) + 2 − 3/4

2 j( j + 1)
〈I · j〉, (68)
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〈U2d〉 = 1

2

〈
p2 1

r3

〉(
〈se · I〉 − 3

〈
(rse)(rI)

r2

〉)
= 7Z5

192

(
〈se · I〉 − 3

〈
(rse)(rI)

r2

〉)
= 7Z5

192

j( j + 1) − 2 − 3/4

2 j( j + 1)
〈I · j〉, (69)

〈
U (GI)

5b

〉 = Z

2

〈
1

r4

〉 (
〈se · I〉 −

〈
(rse)(rI)

r2

〉)
= Z5

48

(
〈se · I〉 −

〈
(rse)(rI)

r2

〉)
= Z5

48

j( j + 1) + 1/4 − 2

2 j( j + 1)
〈I · j)〉. (70)

(ii) Second-order terms [we recall that the first-order wave functions ψ
(1)
B and ψ (1)

so are taken from Eqs. (38) and (39)]:

�E (2)
B-ss = −2

∫ ∞

0

ψ0(r)

r
ψ

(1)
B (r)dr

(
〈se · I〉 − 3

〈
(rse)(rI)

r2

〉)
= −115Z5

1728

(
〈se · I〉 − 3

〈
(rse)(rI)

r2

〉)

= −115Z5

1728

j( j + 1) − 2 − 3/4

2 j( j + 1)
〈I · j〉, (71)

�E (2)
B-so-N = 2

∫ ∞

0
ψ0(r)ψ (1)

B (r)
1

r3
r2dr 〈l · I〉 = 115Z5

1728
〈l · I〉 = 115Z5

1728

j( j + 1) + 2 − 3/4

2 j( j + 1)
〈I · j〉, (72)

�E (2)
so-ss = −Z

∫ ∞

0
ψ0(r)ψ (1)

so (r)
1

r3
r2dr

(
〈(l · se)(se · I)〉 − 3

〈
(r · se)(r · I)

r2
(l · se)

〉)

= 49Z5

864

(
〈(l · se)(se · I)〉 − 3

〈
(r · se)(r · I)

r2
(l · se)

〉)

= −49Z5

864

j( j + 1) − 4 − 3/4

4 j( j + 1)
〈I · j〉, (73)

�E (2)
so-so-N = Z

∫ ∞

0
ψ0(r)ψ (1)

so (r)
1

r3
r2dr 〈(l · se)(l · I)〉 = −49Z5

864
〈(l · se)(l · I)〉

= −49Z5

864

[
2

j( j + 1) − 2 − 1/4

2
− j( j + 1) − 2 − 3/4

4

] 〈I · j〉
j( j + 1)

. (74)

Adding up these results, we find

�E (6M )
hfs (2P1/2, F ) = 47Z5

216
〈I · j〉, (75)

�E (6M )
hfs (2P3/2, F ) = 7Z5

1080
〈I · j〉, (76)

in agreement with Eqs. (63)–(66). Finally, one can show that
the FWP effective Hamiltonian leads to the same result, not
only for the 2P state but for any bound state; see Appendix B
for details.

VII. CONCLUSION

In this work, we have used the NRQED approach to calcu-
late relativistic corrections to the fine and hyperfine structure
of hydrogenlike atoms. Our results are in agreement with
those obtained by expanding the relativistic results in powers
of Zα and m/M [22,26]. This constitutes a cross-check of
the validity of the effective Hamiltonian we have derived,
thus providing a sound basis for future applications to more
complex systems. Such a cross-check is very useful since,
in this type of calculation, the probability of mistakes is
increased by the relatively large number of terms.

We have also verified the equivalence of two alternative
forms of the NRQED Lagrangian, Eqs. (6) and (7). The choice
of one or the other is largely a matter of taste, but it is worth
noticing that the additional terms that appear when one uses
the FWP Hamiltonian (U ′

2b and U ′
2d ; see Table II) have the

most complicated expressions. This is, of course, not an issue
in the hydrogen atom case, but may give practical reasons
to choose the gauge-invariant form for application to more
complex systems, where matrix elements of the effective oper-
ators can only be calculated numerically. Application of this
work to the hyperfine structure of hydrogen molecular ions
[15] is now under consideration. Other applications include
the helium atom fine structure, where the approach of Eq. (7)
is expected to yield a simpler set of operators with respect to
those derived by Douglas and Kroll [27].
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APPENDIX A: EXPRESSION OF SPIN-DEPENDENT
OPERATORS IN TERMS OF I · j

The coupling scheme of angular momenta is j = l + se,
F = j + I. All the expressions below are valid within a given
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(n, l, j) subspace:

l · I = l · j
j( j + 1)

(I · j) = j( j + 1) + l (l + 1) − 3/4

2 j( j + 1)
(I · j), (A1)

se · I = se · j
j( j + 1)

(I · j) = j( j + 1) + 3/4 − l (l + 1)

2 j( j + 1)
(I · j), (A2)

(r · se)(r · I)

r2
= (r · se)(r · j)

r2

(I · j)
j( j + 1)

= (r · se)(r · se)

r2

(I · j)
j( j + 1)

= 1

4

(I · j)
j( j + 1)

, (A3)

(l · se)(se · I) = (l · se)(j · se)
(I · j)

j( j + 1)

=
[

1

4
l2 − 1

2
l · se + (l · se)s2

e

]
(I · j)

j( j + 1)
= j( j + 1) + l (l + 1) − 3/4

8 j( j + 1)
(I · j), (A4)

(l · se)(l · I) = (l · se)(l · j)
(I · j)

j( j + 1)
=

[
(l · se)l2 + 1

4
l2 − 1

2
l · se

]
(I · j)

j( j + 1)
(A5)

=
[

l (l + 1)
j( j + 1) − l (l + 1) − 1/4

2
− j( j + 1) − l (l + 1) − 3/4

4

]
(I · j)

j( j + 1)
, (A6)

ı(r · se)(p · I) = ı(r · se)(p · j)
(I · j)

j( j + 1)
= ı(r · se)(p · se)

(I · j)
j( j + 1)

=
[

1

4
ı(r · p) − 1

2
l · se

]
(I · j)

j( j + 1)
= 1

4
{ı(r · p) − [ j( j + 1) − l (l + 1) − 3/4]} (I · j)

j( j + 1)
. (A7)

APPENDIX B: EQUIVALENCE OF THE FWP AND GAUGE-INVARIANT HAMILTONIANS
FOR THE HYPERFINE STRUCTURE

If one uses the FWP Hamiltonian, the first-order contribution becomes

�E (6M )(FWP)
hfs-first order = 〈U2c〉 + 〈U2d〉 + 〈U ′

2d〉 + 〈
U (FWP)

5b

〉
. (B1)

Comparing with the first-order terms of Eq. (67), one can see that both expressions are equivalent if the following equality holds:

〈U ′
2d〉 = 〈

U (GI)
5b

〉 − 〈
U (FWP)

5b

〉 = −〈
U (GI)

5b

〉
. (B2)

We separate U ′
2d into three terms:

〈
U ′(1)

2d

〉 = 1

2
〈U2d〉 = 1

4

〈
p2 1

r3

〉(
〈se · I〉 − 3

〈
(r · se)(r · I)

r2

〉)
=

〈
p2 1

r3

〉
j( j + 1) − l (l + 1) − 3/4

8 j( j + 1)
〈I · j〉, (B3)

〈
U ′(2)

2d

〉 = −1

2

〈
ip2 1

r3
(r · p)

〉
〈se · I〉 = −Z

2

〈
1

r4

〉
〈se · I〉 = −Z

2

〈
1

r4

〉
j( j + 1) + 3/4 − l (l + 1)

2 j( j + 1)
〈I · j〉, (B4)

〈
U ′(3)

2d

〉 = 1

2

〈
ip2 1

r3
(r · se)(p · I)

〉
=

〈
p2 1

r3
{ı(r · p) − [ j( j + 1) − l (l + 1) − 3/4]}

〉 〈I · j〉
8 j( j + 1)

=
[

Z

〈
1

r4

〉
−

〈
p2 1

r3

〉
[ j( j + 1) − l (l + 1) − 3/4]

] 〈I · j〉
8 j( j + 1)

, (B5)

−〈
U (GI)

5b

〉 = −Z

2

〈
1

r4

〉(
〈se · I〉 −

〈
(r · se)(r · I)

r2

〉)
= −Z

2

〈
1

r4

〉
j( j + 1) − l (l + 1) + 1/4

2 j( j + 1)
〈I · j〉. (B6)

In the above derivations, we have used the relationship (59). One finally gets〈
U ′(1)

2d

〉 + 〈
U ′(2)

2d

〉 + 〈
U ′(3)

2d

〉 = −〈
U (GI)

5b

〉
, (B7)

which proves that the results from both forms of the NRQED Hamiltonian are identical for any l �= 0 state of a hydrogenlike
atom.
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