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Quantifying the resource content of quantum channels: An operational approach
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We propose a general method to operationally quantify the “resourcefulness” of quantum channels via channel
discrimination, an important information processing task. A main result is that the maximum success probability
of distinguishing a given channel from the set of free channels by free probe states is exactly characterized by
the resource generating power, i.e., the maximum amount of resource produced by the action of the channel,
given by the trace distance to the set of free states. We apply this framework to the resource theory of quantum
coherence, as an informative example. The general results can also be easily applied to other resource theories
such as entanglement, magic states, and asymmetry.
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I. INTRODUCTION

Understanding and utilizing various forms of quantum
resources represents a main theme of quantum information
science. To this end, a powerful framework known as the
quantum resource theory is being actively developed in recent
years to systematically study the quantification and manip-
ulation of quantum resources (see [1] for a recent review).
In fact, the resource features of certain quantum effects, in
particular quantum entanglement, have already been carefully
studied earlier [2–4], but a key observation underlying the
recent interests in the resource theory framework is that the
theories of different kinds of resource properties (stemming
from different physical constraints) can share a largely com-
mon structure and a wide range of general approaches and
results [5–12]. Indeed, this idea has been successfully applied
to the study of various other key quantum resources, such as
coherence [13–15], superposition [16], magic states [17,18],
thermal nonequilibrium [19,20], asymmetry [21,22], etc.

The well-established schemes of resource theory (at a non-
abstract level; see, e.g., [23,24] for abstract, category-theoretic
formulations that do not rely on the explicit mathematical
structures of the object space) mostly handle in particular
static resources encoded in quantum states (density operators).
However, certain quantum processes or channels can repre-
sent dynamical quantum resources which play natural and
fundamental roles in broad scenarios. The systematic study
of channel resource theories is blueprinted recently by [25],
but we are still at an early stage of developing the complete
theory.
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The quantification of resource is a central topic of all kinds
of resource theories. In particular, one is interested in the
operational interpretation of certain resource measures, i.e.,
how they correspond to the value of the resource in achieving
some operational task. In state resource theories, general op-
erational resource measures can be induced by several tasks,
e.g., resource interconversion [5,6,12] and resource erasure
[9]. However, for quantum channels, we only know that the
smooth log-robustness characterizes the randomness cost of
the task of one-shot resource erasure [25] at the general level.
(Note that the quantification of channel resources have been
previously considered in various specific contexts, such as
entanglement [26], coherence [27,28], non-Gaussianity [29],
and magic [30]).

In this work, we suggest a simple and general scheme to
quantify the resourcefulness of quantum channels based on
quantum channel discrimination, a fundamental problem in
quantum information [31–33]. (Note that channel discrimina-
tion is already known to play key roles in the characterization
of state resources [10,11,34–36].) The core question here is
how well one can distinguish a quantum channel from another
by optimizing over input probe states and output measure-
ments. We find that the maximum success probability of dis-
tinguishing the given channel from the set of free operations
by all free probe states is exactly characterized by the maxi-
mum amount of resource that can be generated by the channel,
i.e., the resource generating power, as measured by the trace-
norm distance of resource. This resource generating power
satisfies several desirable properties, such as faithfulness, con-
vexity, submultiplicity, and monotonicity. Besides, the advan-
tage of using a resource state as the probe state, compared with
free probe states, is upper bounded by the trace-norm measure
of resource. As a prominent example, we analyze in depth the
widely studied resource theory of coherence, the structure of
which allows for further results. Our study leads to several
new understandings of the coherence theory. Our approaches
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apply to many other important resource theories, such as
entanglement theory, as we shall also briefly demonstrate.

II. MAIN RESULTS

Given a finite dimensional Hilbert space H, let D(H) de-
note the set of all quantum states on H. Assume the set of free
states F to be a nonempty, convex, and closed subset of D(H).
Let F be the set of free quantum channels, or completely
positive and trace preserving (CPTP) maps. Channels in F

must map all free states to free states.
Define the resource generating and increasing power

(�/�̃) of channel N : D(H) −→ D(H) as follows. Given
some resource monotone of states ω and the set of free
states F ,

�(N ) := max
ρ∈F

ω(N (ρ)), (1)

�̃(N ) := max
ρ∈D(H)

[ω(N (ρ)) − ω(ρ)]. (2)

Note that the complete versions of resource generating and
increasing power can also be defined which, in addition,
optimize over any ancilla space (see [25] for extended dis-
cussions).

A representative type of resource monotone is the distance
to F . More explicitly, given some distance measure D, one
can define resource measure ωD for any quantum state ρ as
follows:

ωD(ρ) := min
σ∈F

D(ρ, σ ). (3)

The resource generating and increasing power given by ωD

is denoted �D/�̃D. It can be shown that they are actually
equivalent for contractive distance metrics (see the proof in
Appendix A).

Proposition 1. If the distance measure D satisfies the trian-
gle inequality and the data processing inequality (i.e., nonin-
creasing under CPTP maps), then we have

�D(N ) = �̃D(N ). (4)

Of particular importance to this work is the trace
distance 1

2‖ρ − σ‖1 := 1
2 Tr|ρ − σ |, which we denote by

subscript “1”.
Here, we aim at establishing connections between the

resource generating power of a channel and its nonfree feature
in the task of channel discrimination. Given two channels
N and M, and the same probe state ρ going through the
channels N ,M, respectively, then the success probability of
distinguishing N and M by the probe state ρ is the success
probability of distinguishing N (ρ) and M(ρ) as follows:

psucc(N ,M, ρ)

= max
{�,I−�}

{
1
2 Tr [N (ρ)�] + 1

2 Tr [M(ρ)(I − �)]
}
, (5)

where the maximization is taken over all POVM {�, I − �}.
By the Holevo-Helstrom theorem [37], psucc(N ,M, ρ) =
1
2 + 1

4‖N (ρ) − M(ρ)‖1.
The success probability of distinguishing N from the set

of channels F by the probe state ρ is defined as

psucc(N ,F, ρ) := min
M∈F

psucc(N ,M, ρ), (6)

and the maximum success probability of distinguishing N
from F by using any free state or any quantum state (denoted
by Q) as the probe state are, respectively, given by

psucc(N ,F,F ) := max
ρ∈F

psucc(N ,F, ρ), (7)

psucc(N ,F, Q) := max
ρ∈D(H)

psucc(N ,F, ρ). (8)

The following result provides an exact characterization of
the success probability psucc(N ,F,F ).

Theorem 1. Given a quantum channel N and the set of
free channels F. The maximum success probability of dis-
criminating N from F by the set of free states F is only
directly related to the resource increasing power given by
trace distance (which equals the generating power due to
Proposition 1) of N as follows:

psucc(N ,F,F ) = 1
2 + 1

2 �̃1(N ) = 1
2 + 1

2�1(N ). (9)

The proof of this theorem is provided in Appendix A.
We now show that �1(N ) satisfies the basic conditions for
resource quantifiers of quantum channels, e.g., normalized,
and monotone under left and right compositions with free
channels [25]. More specifically see the following.

Proposition 2. The trace-norm resource generating power
�1(N ) satisfies the following properties:

(i) �1(N ) � 0, and �1(N ) = 0 if N ∈ F. Moreover, if F
includes all CPTP maps which maps all free states to free
states (resource nongenerating maps), then �1(N ) = 0 iff
N ∈ F.

(ii) For any M1,M2 ∈ F, we have

�1(M1 ◦ N ◦ M2) � �1(N ). (10)

(iii) Given a set of quantum channels {Ni, pi }i with∑
i pi = 1,

�1

(∑
i

piNi

)
�

∑
i

pi�1(Ni). (11)

Moreover, if the free states on HA ⊗ HB is defined as a convex
combination of the tensor product of free states on HA and HB,
i.e., FAB = Conv {FA ⊗ FB }, then resource generating power
�1(N ) also satisfies the following properties.

(iv) Given two channels N1 and N2, it holds that

�1(N1 ⊗ N2) � max { �1(N1),�1(N2) } . (12)

(v) Given two channels N1 and N2, it holds that

�1(N1 ⊗ N2) � �1(N1) + �1(N2). (13)

In fact, each of the above properties holds under weaker
assumptions. The proof for more general distance measures is
provided in Appendix B. Due to property (i), Theorem 1 also
indicates that resource nongenerating channels are effectively
indistinguishable from each other by free probe states. Due
to property (iv), it is easy to define a regularized version of
�1(N ) by �∞

1 (N ) = limn→∞ 1
n�1(N⊗n), which is invariant

under tensoring, i.e., �∞
1 (N⊗2) = �∞

1 (N ). However, this is
not the focus of this work.

Since F⊂D(H), we have psucc(N ,F, Q)�psucc(N ,F,F ).
If the probe state ρ is not a free state, then the resource in
ρ may help improve the success probability of discriminating
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the given channel N from the set of free channels. Here we
provide an upper bound on the advantage of using a resource
probe state.

Theorem 2. Given a quantum channel N , a quantum state
ρ, and the set of free channels F. The advantage provided by
the state ρ compared with all free states to distinguish any
given channel N from F is upper bounded by the trace-norm
distance of resource:

psucc(N ,F, ρ) − psucc(N ,F,F ) � 1
2ω1(ρ). (14)

The proof is presented in Appendix C. A direct corollary
is the following bound on the success probability of discrimi-
nating N from free channels by any probe state ρ.

Corollary 1. Given a quantum channel N , a quantum state
ρ, and the set of free channels F, the success probability
psucc(N ,F, ρ) is upper bounded by

psucc(N ,F, ρ) � 1
2 + 1

2�1(N ) + 1
2ω1(ρ). (15)

III. EXAMPLE

As an application of the above general framework, we
now focus on quantum coherence, a prominent quantum fea-
ture emerging from the superposition principle of quantum
mechanics. Coherence represents a key quantum resource
which has a variety of applications in quantum information
science, including quantum metrology [38], thermodynamics
[39,40], and biology [41,42]. In recent years, the resource
theory of coherence has drawn a lot of attention, where the
manipulation and characterization of coherence in quantum
states are thoroughly investigated (see [15,43] for a review).
Now we extend the study to quantum channels following the
idea in the last section, that is, to characterize the coherence
value of a channel by its distinguishability from the typical
sets of coherence-free channels.

Given a fixed basis {|i〉}d−1
i=0 for a d-dimensional system,

any quantum state which is diagonal in the reference basis
is called an incoherent state and is a free state in the resource
theory of coherence. The set of incoherent states is denoted by
I. Let � denote the fully dephasing channel in the given basis,
which is defined as �(ρ) = ∑

i 〈i|ρ|i〉|i〉〈i|. � is a prominent
example of the resource destroying map [7].

There are several individually motivated choices of free
operations in the resource theory of coherence. The following
four, which collectively emerge from the relations with � and
can be broadly generalized via the theory of resource destroy-
ing map [7], are considered most important: (1) maximally
incoherent operations (MIO) [44], the maximum possible set
of coherence-free operations that contains all quantum opera-
tions M that maps incoherent states to incoherent states, i.e.,
M(I ) ⊂ I; (2) incoherent operations (IO) [13], containing
M that admit a set of Kraus operators { Ki } such that M(·) =∑

i Ki(·)K†
i and KiIK†

i ⊂ I for any i; (3) dephasing-covariant
operations (DIO) [7,44], containing M such that [�,M] =
0; (4) strictly incoherent operations (SIO) [44,45], containing
all M admitting a set of Kraus operators {Ki} such that
�(KiρK†

i ) = Ki�(ρ)K†
i for any i and any quantum state ρ.

Several operational motived coherence measures have been
introduced and here we consider the coherence measure

defined by l1-norm distance [13], trace-norm distance [46],
and robustness [47],

Cl1 (ρ) : = min
σ∈I

‖ρ − σ‖l1 , (16)

C1(ρ) : = 1
2 min

σ∈I
‖ρ − σ‖1, (17)

CR(ρ) = min { t � 0 : ρ + tσ ∈ I, σ ∈ D(H) } . (18)

In fact, in single-qubit system C2, the trace norm of coherence
C1 is equal to l1 norm of coherence Cl1 [46,48] and the
robustness of coherence CR [47] up to a scalar 2.

In the resource theory of coherence, certain coherence
generating power can also be used to characterize the cost
of simulating the given channel by incoherent operations
[49,50] and the capacity of a channel to generate maximally
coherent states [27]. Besides, the ability of a quantum channel
to detect nonclassicality has also been introduced to quantify
the resource of channels in terms of trace distance [28] and
relative entropy [28,51].

First, it follows from Theorem 1 that the success proba-
bility of distinguishing N from the set of free operations I,
where I can be any of {SIO, IO, DIO, MIO}, is universally
determined by the trace-norm coherence generating power.

Proposition 3. Given a quantum channel N and the set
of coherence-free operations I ∈ {SIO, IO, DIO, MIO}, the
maximum success probability of distinguishing N from I by
incoherent states is

psucc(N ,I, I ) = 1
2 + 1

2 C̃1(N ) = 1
2 + 1

2C1(N ). (19)

Again, the result indicates that channels in MIO are mu-
tually indistinguishable by incoherent states since C1(N ) =
0. Therefore, the task of discriminating a channel from
coherence-free ones gives an operational interpretation for the
coherence generating power. Compared with [34,35], which
only consider the effect of coherence in the probe states in
channel discrimination, the results here reveal the roles of
coherence in quantum channels in this task.

Since the trace norm of coherence C1 � 1 − 1/d [52,53],
the success probability psucc(N ,I, I ) � 1 − 1/(2d ). For ex-
ample, for the Hadamard gate H on single-qubit system C2,
we have psucc(H,I, I ) = 3/4, which follows from the fact
that C1(H ) = 1/2 (see Appendix A for the calculation of C1

in the single-qubit system). Due to the equivalence between
trace-norm distance and robustness of coherence, it may be
expected that this theorem can be experimentally testified in a
future work, as the robustness of coherence can be measured
in experiment [54,55].

Obviously, psucc(N ,I, Q) � psucc(N ,I, I ) for any quan-
tum channel. There exists some quantum channel N such that
the inequality is strict, which shows that the resource of probe
states is useful for distinguishing the given channel from the
set of free operations.

Proposition 4. For I ∈ {SIO, IO}, there exists some quan-
tum channel N such that

psucc(N ,I, Q) > psucc(N ,I, I ). (20)

The proof is presented in Appendix E. The above result
shows that the resource feature in probe states is useful
for improving the success probability of distinguishing the
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given channel from the set of free operations I ∈ { SIO, IO }.
However, whether the similar result holds for MIO or DIO is
unknown.

By applying Theorem 2 to the resource theory of coher-
ence, we obtain the following upper bound on the success
probability when we choose a coherent state as the probe state.

Proposition 5. Given a set of free operations I ∈
{SIO, IO, DIO, MIO} and a probe state ρ. For any quantum
channel N , we have

psucc(N ,I, ρ) − psucc(N ,I, I ) � 1
2C1(ρ). (21)

If we restrict the measurement in the channel discrimina-
tion to be an incoherent POVM, i.e., diagonal in the given
basis {|i〉}i, then the success probability to distinguish the
given two channels by a probe state ρ is

pI
succ(N ,M, ρ)

= max
{�, I − �}

diagonal

{
1
2 Tr [N (ρ)�] + 1

2 Tr [M(ρ)(I − �)]
}
.

(22)

In this case, the success probability of distinguishing
the given channel N from the set of free operations I ∈
{SIO, IO, DIO, MIO} is equal to the probability of random
guessing.

Theorem 3. Given a quantum channel N and the set of free
operations I ∈ {SIO, IO, DIO, MIO}, the success probability
by incoherent POVM is

pI
succ(N ,I, ρ) = 1

2 , (23)

for any ρ ∈ D(H).
The proof is provided in Appendix E. This indicates that

the restriction of incoherent POVM will eliminate the advan-
tage provided by the coherence of the state and channel com-
ponents of our channel discrimination task. Note that Ref. [28]
considers a slightly different scenario (for example, the order
of taking minimization over channels and maximization over
states is different, which implies the quantity in Ref. [28]
could be larger than the quantity we define here, and the
set of free operations there consists of detection-incoherent
operations, which is different from the sets we consider),
where, in contrast, it is possible to detect coherence even by
free measurements.

The general results Theorems 1 and 2 can also be applied
to other resource theories, such as entanglement, magic states,
and so on. For instance, in the resource theory of bipartite
entanglement, the free states are separable states, and the
free operations are typically chosen to be local operations
and classical communication (LOCC), or separable operations
(SEP)—the maximal set of entanglement nongenerating oper-
ations. Then we have the following.

Proposition 6. Given the set of free operations I ∈
{LOCC, SEP} and a probe state ρAB ∈ D(HA ⊗ HB). For any
quantum channel N , we have

psucc(N ,I, ρ) − psucc(N ,I, I ) � 1
2 E1(ρAB), (24)

where E1(ρAB) := minσ∈Sep(A:B) ‖ρAB − σ‖1 and Sep(A : B)
denotes the set of separable states on HA ⊗ HB.

As for the free measurement case, in general, we can also
define the free measurement { �, I − � }, where � and I − �

are proportional to some free states. If a resource theory has
resource destroying channel λ and λ† is a resource destroying
channel as well, then Theorem 3 is still true (see Appendix E).
However, whether Theorem 3 can be applied to other convex
resource theories is unknown.

IV. CONCLUSION

This work considers the fundamental task of channel dis-
crimination from a resource theory perspective, which leads to
an intuitive and general framework of operationally quantify-
ing the resource value of quantum channels by how efficiently
they can be distinguished from the resource-free ones. The
key observation is that the maximum success probability of
distinguishing a channel from the set of free operations by
all free states is characterized by the trace-norm resource
generating power of the channel. As the resource generat-
ing power satisfies the properties like positivity, convexity,
submultiplicity, and the monotonicity under free operations,
it establishes an operational framework of quantifying re-
source in quantum channels. We demonstrate the power of
this framework in the resource theory of quantum coherence.
In addition to the de-generalized results, we also show that
restricting to incoherent POVMs in this task will eliminate
any advantage over random guessing. Our results shed new
light on the operational resource theory of quantum channels
and in particular the resource theory of coherence. We hope
that the framework will lead to more interesting results for a
variety of resource theories and information processing tasks.

Several problems are left for future work. First, what we
studied here is essentially the worst-case success probability
of discriminating from free channels and its universal corre-
spondences in a general resource theory setting. In specific
cases, it could also be interesting to analyze the average-case
success probability, where we take certain averages instead
of minimizing over the set of free channels. Furthermore, the
resource measures involving optimizations are generally hard
to evaluate for large system size, but in certain cases they may
be efficiently computable by, e.g., semidefinite programs. We
leave the evaluation of relevant resource measures for future
studies.

Note added. Recently, we became aware of a recent work
by Liu and Yuan [56], which establishes general connections
between the resource generating and increasing power and
channel distillation and dilution tasks.
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APPENDIX A: CONNECTIONS BETWEEN CHANNEL
DISCRIMINATION AND RESOURCE

GENERATING/INCREASING POWER

Given a distance measure D : D(H) × D(H) → R+, we
consider the following conditions.

(1) Positivity: D(ρ, σ ) � 0, D(ρ, σ ) = 0 iff ρ = σ .
(2) Pseudojoint convexity: D(

∑
i piρi,

∑
i piσi ) �

maxi D(ρi, σi ) with
∑

i pi = 1.
(2′) Joint convexity: D(

∑
i piρi,

∑
i piσi ) �

∑
i pi

D(ρi, σi ) with
∑

i pi = 1.
(3) Data processing inequality: D(N (ρ),N (σ )) �

D(ρ, σ ) for any CPTP map N .
(4) Triangle inequality: D(ρ, σ ) � D(ρ, τ ) + D(τ, σ ) for

any τ ∈ D(H).
Here, we assume the distance measure always satisfies the

condition (1), i.e., positivity.
Lemma 1. For any given distance measure D and quantum

channel N , it holds that

�D(N ) = max
ρ∈F

min
M∈F

D(N (ρ),M(ρ)). (A1)

Proof. First, we have

max
ρ∈F

min
M∈F

D(N (ρ),M(ρ))

� max
ρ∈F

min
σ∈F

D(N (ρ), σ )

= max
ρ∈F

ωD(N (ρ))

= �D(N ),

where the inequality comes from the fact that M(ρ) ∈ F for
any ρ ∈ F .

Besides, for any ρ ∈ F , we can define the quantum channel
Nρ as Nρ (τ ) = σ 


N (ρ) for any quantum state τ ∈ D(H) with
σ 

N (ρ) ∈ F and ωD(N (ρ)) = D(N (ρ), σ 


N (ρ)). It is easy to
verify that Nρ is a free operation, i.e., Nρ ∈ F. Thus,

max
ρ∈F

min
M∈F

D(N (ρ),M(ρ))

� max
ρ∈F

D(N (ρ),Nρ (ρ))

= max
ρ∈F

D(N (ρ), σ 

N (ρ))

= max
ρ∈F

ωD(N (ρ))

= �D(N ),

where the inequality comes from the fact that Nρ ∈ F and Nρ

maps any quantum state to the free state σ 

N (ρ). �

Lemma 2. If the distance measure D satisfies the triangle
inequality and the data processing inequality (i.e., nonincreas-
ing under CPTP maps), then we have

�D(N ) = �̃D(N ). (A2)

Proof. It is obvious that �D � �̃D, thus we only need to
prove �̃D � �D.

For any quantum state ρ ∈ D(H), we have

ωD(N (ρ)) − ωD(ρ)

= min
σ∈F

D(N (ρ), σ ) − min
τ∈F

D(ρ, τ )

= max
τ∈F

[min
σ∈F

(D(N (ρ), σ ) − D(ρ, τ ))]

� max
τ∈F

min
σ∈F

[D(N (ρ), σ ) − D(N (ρ),N (τ ))]

� max
τ∈F

min
σ∈F

D(N (τ ), σ )

= max
τ∈F

ωD(N (τ ))

= �D(N ),

where the first inequality comes from the data processing
inequality and the second inequality comes from the triangle
inequality of D. Therefore, we have �̃D(N ) � �D(N ). �

Proof of Theorem 1. It is easy to verify that the trace
norm satisfies the data processing inequality and the triangle
inequality. Thus, according to Lemmas 1 and 2, we have

�̃1(N ) = �1(N ) = 1
2 max

ρ∈F
min
M∈F

‖N (ρ) − M(ρ)‖1.

Besides, the success probability psucc(N ,F,F ) can be ex-
pressed as

psucc(N ,F,F ) = 1
2 + 1

4 max
ρ∈F

min
M∈F

‖N (ρ) − M(ρ)‖1

= 1
2 + 1

2 �̃1(N )

= 1
2 + 1

2�1(N ).

�
Corollary 2. If we take the distance measure D to be max-

relative entropy Dmax or fidelity DF , then we have

�̃D(N ) = �D(N ) = max
ρ∈F

min
M∈F

D(N (ρ),M(ρ)), (A3)

where DF (ρ, σ ) =
√

1 − F 2(ρ, σ ) with F (ρ, σ ) =
Tr [|√ρ

√
σ |].

Proof. It has been proved that Dmax satisfies the data
processing inequality [57] and the triangle inequality follows
directly from the definitions. Besides, it has been proved
that DF satisfies the data processing inequality [58] and the
triangle inequality [59,60]. �

Now, let us consider the example of coherence. In the
single-qubit system, it has been proved that the trace norm
of coherence C1 is equivalent to the l1 norm of coherence Cl1
[46,48] and the analytic form of coherence generating power
for unitary operations has been obtained in [49]. Therefore,
we have the following corollary.

Corollary 3. Given a single-qubit unitary U = [Ui j]i, j=1,2,
the coherence generating power by the trace norm is

C1(U ) = max
i=1,2

|Ui1Ui2|, (A4)

especially, for the Hadamard gate H , C1(H ) = 1/2.

APPENDIX B: PROPERTIES OF �D(N )

Now, let us investigate the properties of �D(N ) for any dis-
tance measure D. We assume that the free states on HA ⊗ HB

are defined as the convex combination of the tensor product of
free states on HA and HB, i.e., FAB = Conv {FA ⊗ FB}.

Lemma 3. Given any distance measure D, �D(·) has the
following properties.
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(i) �D(N ) � 0, and �D(N ) = 0 if N ∈ F. Moreover, if
F includes all CPTP maps which maps all free states to free
states, then �D(N ) = 0 iff N ∈ F.

(ii) If the distance measure D satisfies the data processing
inequality, for any M1,M2 ∈ F,

�D(M1 ◦ N ◦ M2) � �D(N ). (B1)

(iii) If the distance measure D satisfies joint convexity,
given a set of quantum channels {Ni, pi}i with

∑
i pi = 1,

�D

(∑
i

piNi

)
�

∑
i

pi�D(Ni). (B2)

(iv) If the distance measure D satisfies the pseudojoint
convexity and data processing inequality, given two channels
N1 and N2, it holds that

�D(N1 ⊗ N2) � max { �D(N1),�D(N2) } . (B3)

(v) If the distance measure D satisfies the pseudojoint
convexity, data processing inequality, and triangle inequality,
given two channels N1 and N2, it holds that

�D(N1 ⊗ N2) � �D(N1) + �D(N2). (B4)

Proof. (i) This comes directly from the definition.
(ii) For any M ∈ F,

�D(M ◦ N )

= max
ρ∈F

min
M∈F

D(M ◦ N (ρ),M(ρ))

� max
ρ∈F

min
M∈F

D(M ◦ N (ρ),M ◦ M(ρ))

� max
ρ∈F

min
M∈F

D(N (ρ),M(ρ))

= �D(N ),

where the first inequality comes from the fact that M ◦ M ∈
F for any M ∈ F and the second inequality comes from the
data processing inequality.

Besides,

�D(N ◦ M) = max
ρ∈F

ωD(N (M(ρ))) � max
ρ∈F

ωD(N (ρ)),

where the inequality comes from the fact M(F ) ⊂ F . �
(iii) Since D is jointly convex, then the correspond-

ing resource monotone ωD is convex, i.e., ωD(
∑

i piρi ) �∑
i piωD(ρi ). Thus,

�D

(∑
i

piNi

)

= max
ρ∈F

ωD

(∑
i

piNi(ρ)

)

� max
ρ∈F

∑
i

piωD(Ni(ρ))

�
∑

i

pi max
ρ∈F

ωD(Ni(ρ))

=
∑

i

pi�D(Ni ).

(iv) We only need to prove that max {ωD(ρ1), ωD(ρ2)} �
ωD(ρ1 ⊗ ρ2).

First,

min
τ12∈F12

D(ρ1 ⊗ ρ2, τ12) � min
τ1∈F1

D(ρ1, τ1), (B5)

where τ1 = Tr2 [τ12] and the inequality comes from the
data processing inequality. Hence, we have ωD(ρ1 ⊗ ρ2) �
ωD(ρ1). Similarly, we have ωD(ρ1 ⊗ ρ2) � ωD(ρ2).

(v) We only need to prove that ωD(ρ1 ⊗ ρ2) � ωD(ρ1) +
ωD(ρ2). Due to the data processing inequality, we have

D(ρ, σ ) = D(ρ ⊗ τ, σ ⊗ τ ), (B6)

because both partial trace and tensoring with a quantum state
are CPTP maps.

Therefore, we have

min
τ12∈I

D(ρ1 ⊗ ρ2, τ12)

� D(ρ1 ⊗ ρ2, τ1 ⊗ τ2)

� D(ρ1 ⊗ ρ2, τ1 ⊗ ρ2) + D(τ1 ⊗ ρ2, τ1 ⊗ τ2)

= D(ρ1, τ1) + D(ρ2, τ2)

= ωD(ρ1) + ωD(ρ2),

where the free states τ1 and τ2 are chosen to satisfy the
conditions ωD(ρ1) = D(ρ1, τ1) and ωD(ρ2) = D(ρ2, τ2).

Proof of Proposition 2. Since the trace norm satisfies
the joint convexity, data processing inequality and trian-
gle inequality, then Proposition 2 comes directly from
Lemma 3. �

APPENDIX C: UPPER BOUND FOR psucc(N ,F, ρ)

Proof of Theorem 2. Since

1
2 min
M∈F

‖N (ρ) − M(ρ)‖1 � ω1(N (ρ)),

then by Theorem 2 and the definition of psucc(N ,F, ρ), we
have

psucc(N ,F, ρ) − psucc(N ,F,F )

= 1
4 min
M∈F

‖N (ρ) − M(ρ)‖1 − 1
2 �̃1(N )

� 1
2 (ω1(N (ρ)) − �̃1(N ))

� 1
2ω1(ρ),

where the second inequality comes from the fact that

ω1(N (ρ)) − ω1(ρ) � �̃1(N ),

for any ρ ∈ D(H). Thus, we complete the proof. �

APPENDIX D: IMPROVEMENT FROM COHERENT
STATES IN CHANNEL DISCRIMINATION

Proof of Proposition 4. It has been shown that there exists
some quantum channel N∗ ∈ MIO but not IO, i.e., there exists
some quantum state ρ such that N∗(ρ) �= M(ρ) for any M ∈
IO [61], which implies that

max
M∈IO

‖N∗(ρ) − M(ρ)‖1 > 0.
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Thus, we have psucc(N∗, IO, Q) > 1/2. However, due to Proposition 6, we have

psucc(N∗, SIO, I ) = psucc(N∗, IO, I )

= psucc(N∗, MIO, I ) = 1/2,

as N∗ ∈ MIO. Thus, we have

psucc(N∗, IO, Q) > psucc(N∗, IO, I ).

Besides, since SIO ⊂ IO, then psucc(N∗, SIO, Q) � psucc(N∗, IO, Q). Therefore,

psucc(N∗, SIO, Q) > psucc(N∗, SIO, I ). �

APPENDIX E: DISCRIMINATION WITH INCOHERENT MEASUREMENT

Proof of Theorem 3. It is easy to see that

max
{�, I − �}
�diagonal

{
1
2 Tr[N (ρ)�] + 1

2 Tr[M(ρ)(I − �)]
}

= max
{�, I − �}
�diagonal

{
1
2 Tr[N (ρ)�(�)] + 1

2 Tr[M(ρ)(I − �(�))]
}

= max
{�, I − �}
�diagonal

{
1
2 Tr[�† ◦ N (ρ)�] + 1

2 Tr[�† ◦ M(ρ)(I − �)]
}

� max
{�,I−�}

{
1
2 Tr[�† ◦ N (ρ)�] + 1

2 Tr[�† ◦ M(ρ)(I − �)]
}

= 1
2 + 1

4‖�† ◦ N (ρ) − �† ◦ M(ρ)‖1.

Besides, �† satisfies the conditions that �†(D(H)) ⊂ I and �†(ρ) = ρ for any ρ ∈ I, which implies that
1
2 min
M∈J

‖�† ◦ N (ρ) − �† ◦ M(ρ)‖1 = C1(�† ◦ N (ρ)) = 0. �

Note that, in any other resource theory with resource destroying channel λ, we can also define the free measurement
{�, I − �}, where � and I − � are proportional to some free states. Then it is easy to see that the above proof still works
for the free measurement case if λ satisfies the condition that λ†(D(H)) ⊂ F and λ†(ρ) = ρ for any ρ ∈ F , i.e., λ† is a resource
destroying map [7].
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