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Entanglement generation via power-of-SWAP operations between dynamic electron-spin qubits
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Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials. Here we show
how electron-spin qubits located on dynamic quantum dots can be entangled. Previous theoretical and numerical
models of quantum-dot entanglement generation have been insufficient to study quantum dynamics in realistic
experimental devices. We utilize state-of-the-art graphics processing units to simulate the wave-function
dynamics of two electrons carried by a SAW through a two-dimensional semiconductor heterostructure. We
build a methodology to implement a power-of-SWAP gate via the Coulomb interaction. A benefit of the SAW
architecture is that it provides a coherent way of transporting the qubits through an electrostatic potential.
This architecture allows us to avoid problems associated with fast control pulses and guarantees operation
consistency, providing an advantage over static qubits. For interdot barrier heights where the double occupation
energy is sufficiently greater than the double-dot hopping energy, we find that parameters based on experiments
in GaAs/AlGaAs heterostructures can produce a high-fidelity root-of-SWAP operation. Our results provide a
methodology for a crucial component of dynamic-qubit quantum computing.
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I. INTRODUCTION

The development of a universal semiconductor quantum
computer hinges on the ability to entangle qubits. One promis-
ing method is to use the exchange interaction between electron
spins. This concept was first introduced by Loss et al. for static
qubits [1,2] and Barnes et al. for dynamic, also called flying,
qubits carried by surface acoustic waves (SAWs) [3]. The use
of flying qubits trapped in SAWs is a particularly favorable
platform for quantum computation for two reasons. First,
the dynamic nature of the qubits enables on-chip operations
to be controlled by static electric and magnetic fields from
surface gates and magnetic microstructures [4,5]. Not having
to vary surface gate potentials reduces associated errors. Sec-
ond, the confinement caused by the SAW potential prevents
spatial dispersion of the fermionic wave packets [6]. The
framework is especially promising for building a universal
quantum transducer—a bus that transports entangled qubits
between spatially separated parts of a quantum computer that
could itself be implemented in a different technology [7,8].

The last decade has seen significant developments in the
achievement of SAW technologies [9,10]. Advances include
the reliable control of single-electron transport [11–14] and
the increase in electron-qubit coherence times [15–18]. The
SAW framework for manipulating electron-spin qubits has
shown promise for realizing opticslike quantum processes
with readily interacting particles. Experimentally, single-qubit
operations [14], beam splitters [19,20], and spin-polarization
readout devices [21] have been realized in GaAs heterostruc-
tures, and a spin-qubit toolkit for the implementation of
generalized measurements has been presented [6].

Previous works on flying electron systems have been re-
stricted to either single-particle scenarios [22,23] or analytical

models with a limited number of sites [2,3] and simplified
simulations in one dimension (1D) for two particles [24,25].
In the latter case, it was suggested that entanglement gen-
eration could be achieved using a single-shot root-of-SWAP

operation in which two electrons collide in a harmonic po-
tential. See Appendix A for a definition of a logic power-of-
SWAP operation. Attempts simulate realistic devices in layered
three-dimensional (3D) systems have faced problems owing to
the space- and time-domain scaling associated with solutions
to the many-particle time-dependent Schrödinger equation
(TDSE). However, recent advances in graphics-processing-
unit (GPU) performance [26,27] have made previously de-
manding problems readily solvable.

In this paper, we utilize state-of-the-art GPU hardware to
run a customized staggered − leap frog algorithm [28–30].
Using a combination of two previous time steps to solve the
next, alongside iterative updates of the real and imaginary
parts of the wave function, enables us to simulate the dynam-
ics of two interacting electrons efficiently and accurately. In
particular, we study SAW-based flying qubits interacting via
the Coulomb interaction in a two-dimensional (2D) double-
dot potential. The combination of our custom-built GPU
hardware and tailored software allows us to simulate time-
dependent quantum dynamics in a computation time on the
order of days rather than years. Our results demonstrate the
experimental viability of entanglement generation via root-
of-SWAP operations. Furthermore, we show that the single-
shot method [24] is not experimentally feasible. Not only
are our simulations useful to gain insight into quantum logic
operations, they also shed new light on simpler analytical
models. Specifically, we compare our simulation results to
two commonly used two-site models: the Hubbard approach
[3] and the Hund-Mulliken method for molecular orbitals [2].
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We establish the limits and applicability of these models.
We use experimentally realistic parameters for the interac-
tion duration, the device potential, and geometry. To ensure
parameter realism, we calculate the potential profile of the
heterostructure with voltages applied to the metallic gates. We
use a Poisson-Schrödinger self-consisted solver to calculate
the range of values that are possible with current semiconduc-
tor technologies [20]. Since this work demonstrates a proof
of concept for the SAW-driven entangling operation, we use
analytical equations to reproduce the potentials calculated
by our solver. In doing so, we avoid simulating a specific
device implementation and ensure that these simulations are
reproducible and adaptable to different experimental needs.
Our work is a vital step towards constructing the funda-
mental building blocks of a SAW-based quantum computer.
The simulations we present are based on the GaAs/AlGaAs
SAW-based heterostructure, but our methodology, results, and
conclusions are applicable to other semiconductor quantum
systems, including static quantum dots.

This paper is structured as follows. In Sec. II we describe
in detail the semiconductor device we use as a model in our
simulations of SAW-driven electron dynamics. In Sec. III we
provide an analytical description of a device potential, as well
as calculations of the expected evolution of the two-particle
wave function during the root-of-SWAP operation. In Sec. IV
we describe our numerical techniques and compare two meth-
ods for generating entanglement: the collision method and
Coulomb tunneling method. We also compare these results
to simple analytical two-site models. Section V contains a
study of the sensitivity of the logic operation as a function
of changes in the experimental parameters. Finally, in Sec. VI
we conclude with a discussion of our results.

II. DEVICE DESCRIPTION

Here we describe the device structure and the electron
dynamics that allow us to model an entangling operation be-
tween two spin-qubits. The physical spin-qubits are electrons,
and their spatial dynamics are controlled by SAWs. In each
operation, two qubits travel through channels separated by a
potential barrier. At the locus of the entangling operation, this
barrier is lower, allowing the electron qubits to swap via the
exchange interaction.

Figure 1 shows a SAW device designed to carry out a
power-of-SWAP entangling operation on two electrons. The
device is an adaptation of the one presented in [3]. Sinusoidal
SAWs are generated by interdigitated transducers and prop-
agate as transverse plane waves in the positive y direction.
The SAWs modulate the electric potential of a piezoelectric
substrate to produce a train of quantum dots propagating along
channels defined by metallic gates. The SAWs trap pairs of
electrons from a two-dimensional electron gas in the same
minimum [31], with one electron in each channel (separated
in the x direction by the tunnel barrier). The SAW then carries
the electrons through their respective channels. In the center
of the device, where the barrier is lower, the tunneling rate can
be controlled by voltages on TBL, TBR.

The quantum dynamics of the system are generated by the
traveling SAWs; therefore the voltages on the surface gates
can be held constant throughout the entangling operation.

FIG. 1. (a) Cross section of the potential layout in the region
of high barrier alongside a trace of the initial state of the wave
function along the x dimension. (b) Schematic of a SAW-based
power-of-SWAP device. Electrons are carried by SAWs from bottom
to top (positive y coordinate) along two channels, undergoing a
power-of-SWAP operation in the central gate region. Dotted lines
show the path electrons can take through the device.

This gives the SAW-based system a significant advantage
over static qubit systems, which are controlled by generating
voltage pulses that introduce charge noise and can induce
stray SAWs, causing decoherence.

In what follows we will consider a device consisting of
a GaAs/AlGaAs heterostructure containing a single layer of
two-dimensional electron gas trapped in a quantum well. On
the top surface, a pattern of Schottky gates creates the two
channels running in the y direction, separated by a central
barrier. We define the barrier’s center as the origin of the x
direction and label the two channels with subscript L (left) and
R (right) for negative or positive x, respectively. Negative volt-
ages on the gates labeled by SL, SR, SGL, SGR, DL, and DR

generate the outer walls of the two channels. Voltages on
the gates labeled CB, TBL, and TBR control the profile of
the central barrier and ensure that it strongly separates the
two channels, except at the middle part of the device in the
y direction, where the barrier is lower. It is in the region of
the lower central barrier that the entangling operation occurs.
TBL and TBR are sufficiently close that they produce only a
single potential maximum, in the x direction, between the two
channels [Fig. 1(a)].

III. ANALYTICAL MODEL

To describe quantum dynamics in this device, we use a
two-particle Hamiltonian of the form

Ĥ =
∑
i=1,2

(
p̂2

i

2mi
+ V̂D(ri ) + V̂SAW(t, ri )

)
+ V̂C(r1, r2), (1)

where V̂C(r1, r2) is the two-particle Coulomb potential,
V̂SAW(t, r) is the SAW potential carrying the electrons along
the channels, and V̂D(r) is the device potential. This poten-
tial is made up of two parallel harmonic channels running
along the y dimension, coupled in the central gate region
by a Gaussian tunnel barrier, forming a double quantum dot
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FIG. 2. Two-particle spatial wave functions. (a) Ground state |�S〉 (y1 = 0 and y2 = 0). (b) First excited state |�A〉 (y1 = 0 and y2 = 0).
(c) Combination of the ground state and first excited state |�LR〉. The first particle is localized in the left channel and the second particle is
localized in the right channel (y1 = 0 and y2 = 0). (d) Gaussian spread of both particles in the y dimension (x1 = 0 and x2 = 0). All four panels
show the wave function divided by its extremum, with the z axis in arbitrary units.

with harmonic confinement perpendicular to the channels,
along the x dimension. An explicit expression is given in
Appendix B. By boosting our reference frame to match
the velocity of the SAW, which is constant, we can treat
V̂SAW(t, r) as a time-independent confining potential along
the channel direction. Finding the eigenstates of the boosted
time-independent Hamiltonian using a number basis derived
from second quantization allows us to obtain the two-particle
wave functions when the barrier between both channels is
static. Since the potential does not have any explicit spin
dependence, because of a weak Lorentz term, single-qubit
spin rotations do not occur.

We assume that the electrons in both channels of the device
in Fig. 1(b) are in a separable spin state initially. At this stage,
there is a high potential barrier between the channels and
they are too far apart to interact. We also assume they are
in eigenstates of the z-axis spin. The spin part of the wave
function can thus be labeled |s1〉|s2〉, meaning that the first
electron is in spin state s1 and the second one is in spin state
s2. For a double-dot potential, the two-particle ground state
is symmetric in spatial coordinates, described by a spatial
wave function |�S(r1, r2)〉, while the first excited state is
antisymmetric, with a spatial wave function |�A(r1, r2)〉. We
call the spin-antisymmetric combination a singlet state |S〉,
which corresponds to the ground state with energy ES and the
symmetric state a triplet state |T〉, which is the first excited
state with energy ET (see Fig. 2):

|S〉 = 1√
2

|�S(r1, r2)〉 (|↑〉|↓〉 − |↓〉|↑〉), (2)

|T〉 = 1√
2

|�A(r1, r2)〉 (|↑〉|↓〉 + |↓〉|↑〉). (3)

We choose the double-dot potential of the gate region such
that an equal linear combination of these states has both

particles well localized in different channels. This results in
the eigenstates of an initial high tunnel barrier and those
of the gate region having a high overlap. The disturbance
introduced by adiabatically changing the tunnel barrier in the
SAW reference frame is thus minimized. We can write down
combined space and spin states as |s1s2〉LR, with particle 1
being in the left channel with spin s1 and particle 2 being in
the right channel with spin s2. They are linear combinations
of the triplet and singlet states:

|↓↑〉LR = 1√
2

(|T〉 + |S〉)

= 1√
2

[|�RL(r1, r2)〉 |↑〉|↓〉 − |�LR(r1, r2)〉 |↓〉|↑〉],
(4)

|↑↓〉LR = 1√
2

(|T〉 − |S〉)

= 1√
2

[|�LR(r1, r2)〉 |↑〉|↓〉 − |�RL(r1, r2)〉 |↓〉|↑〉],
(5)

where |�LR(r1, r2)〉 denotes a spatial state with particle 1 in
the left channel (negative x) and particle 2 in the right channel
(positive x). These take the form

|�RL(r1, r2)〉 = 1√
2

[|�S(r1, r2)〉 + |�A(r1, r2)〉], (6)

|�LR(r1, r2)〉 = 1√
2

[|�S(r1, r2)〉 − |�A(r1, r2)〉]. (7)

A system placed in such a linear superposition oscillates
coherently with the period, 2π h̄/(ET − ES), determined by
the energy difference between the ground state and first ex-
cited state. A full SWAP operation takes half of this period
while the root-of-SWAP operation takes a quarter of it, i.e., half
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the duration of a SWAP. In the limit where the on-site Coulomb
energy is much greater than the hopping energy, the doubly
occupied states have vanishingly small probability amplitudes
and can be ignored [3]. The state during the time evolution is

|ψ (t )〉 = 1√
2

{
|T〉 + exp

(−it

h̄
�E

)
|S〉

}
, (8)

where �E = ET − ES. This description of the power-of-SWAP

operation allows us to calculate the probabilities of observing
spin-up (spin-down) particles in the left (right) channels after
the operation. The probability of measuring a swapped state,
assuming an initial state |↑↓〉LR and a fixed time of interaction
τ , is given by

PSWAP(J ) = | 〈ψ (t = τ )|↓↑〉LR |2

= sin2
(

1
2 Jτ

)
, (9)

where J = �E/(2π h̄). This probability, given an input state,
depends only on the energy difference between the triplet
and singlet states, which in turn is a function of the device
potential.

IV. SIMULATIONS AND RESULTS

Numerical simulations of the two-particle dynamics over
two dimensions are computationally expensive. However, the
ability to model a complete set of energy eigenstates reveals
a more complicated behavior, in contrast with analytical two-
site models or one-dimensional simulations. In this section,
we present the numerical results of entanglement generation
via two different root-of-SWAP implementations [2,3,24]. In
both cases we find that the realistic dynamics deviates from
the simpler models.

A. Numerical methods

The eigenstates of the double-dot system are obtained by
numerically solving the Hamiltonian built using the allowed
two-particle basis states (Appendix C). To reduce the size of
our matrix representation, we can find the initial state of the
two-particle system efficiently by using a momentum-space
(rather than a position-space) eigensolver (Appendix D).
Since the system of interest is very close to the ground state,
only a small number of momentum basis states are needed.
The ground and first excited spatial states found using this
method are presented in Fig. 2.

These time-independent methods are sufficient to find the
initial state of the system and to describe its time evolution in
a constant potential. However, when the potential varies as the
electron travels across the device, time-dependent simulations
need to be used. We evolve the TDSE iteratively using the
staggered-leapfrog algorithm [28–30].

Specific details on our GPU implementation of the eigen-
solver and staggered-leapfrog simulator can be found in
Appendix E.

B. Coulomb tunneling entanglement generation

Building on a proposal from Ref. [3], we explore an
exchange-interaction-based method for the generation of en-
tanglement between two electrons in a SAW system. As

described in Sec. III, the two electrons occupy adjacent chan-
nels separated by a tunneling barrier, suppressing any wave-
function overlap. When the electrons enter the low-barrier
gate region, they can tunnel through to the other channel
at a rate that is determined in part by the barrier height
and in part by the Coulomb force, thus allowing for the
control of the power-of-SWAP gate by tuning the appropriate
Schottky gates. Figure 3 shows snapshots of the wave function
during an entangling operation with realistic experimental
parameters. When the potential barrier is low, the two-particle
state undergoes coherent oscillations between the initial state
and the fully swapped state. The duration of the two-particle
operation is determined by the length of the tunnel-coupled
region. Since the speed of a SAW is constant in a given
material, the operation is identical for all incoming electron
pairs.

Starting with Eq. (9) and assuming that J is exponentially
dependent on the tunnel barrier height ATB and time of interac-
tion τ is fixed, the probability of the final state being swapped
with respect to the initial state has the following dependence
on the tunnel barrier:

PSWAP(ATB, τ ) = sin2
(

1
2 J0e−bATBτ

)
, (10)

where J0 and b are numerically determined parameters.
Figure 4 shows a fit of our time-dependent numerical simu-
lation data (see Appendix B for parameter values used) with
the analytical prediction from Eq. (10). It is important to
note that although Eq. (10) can describe the behavior of a
power-of-SWAP under ideal conditions, a numerical approach
is required to account for more realistic scenarios. These can
include the presence of impurities in the quantum channels,
as well as a finite transition length between the low and high
tunnel barrier heights. The inset in Fig. 4 shows the probability
amplitude of each computational basis state as the electrons
travel through a root-of-SWAP gate. Interactions between the
electrons are initially prohibited by the high potential barrier
separating them. As they are carried through the interaction
region, the electrons become entangled. Upon leaving the
region of low potential barrier, the particles can no longer
interact and the probability amplitudes become constant. We
find that the SWAP probability around PSWAP = 0.5 varies with
the tunnel barrier height at a rate of 8.07 × 10−4 μeV−1. This
allows for an experimentally viable tunability of the quantum
gate via the control of the tunnel barrier height. Assuming a
device temperature of 300 mK, tunnel barrier variations due to
thermal fluctuations will decrease the root-of-SWAP fidelity by
<0.1%. This error could be reduced by increasing the height
of the tunnel barrier at the cost of extending the operation
time.

C. Comparison to models

To solve the dynamics of the power-of-SWAP operation
in our heterostructure SAW-based device, including the 2D
spatial extent of the wave function and a time-dependent
potential, numerical simulations must be used. However, to
avoid lengthy and complicated computations, �E can be
estimated using simplified two-site models, thus getting an
approximation for the power-of-SWAP extent via Eq. (9).
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FIG. 3. Entanglement generation using the Coulomb tunneling method. Top and middle row: trace over the x and y dimensions,
respectively, for the initial state (left), root-of-SWAP state (center), and SWAP state (right) of the wave function. Bottom row: trace over the
second particle for the initial state (left), root-of-SWAP state (center), and SWAP state (right) of the wave function. Coordinates are chosen to be
in the SAW frame of reference, with y = 0 corresponding to a SAW minimum and x = 0 the peak of the tunnel barrier.

Assuming a tight-binding-like model, where electrons
can tunnel between the quantum dots, we can estimate
the full 2D time evolution by applying the Hund-Mulliken
model for molecular orbitals [2] (see Appendix F). Alter-
natively, the evolution of the two-particle state can also

be modeled with the Hubbard approach for short-range
Coulomb interaction [3] (see Appendix G). Solving the Hund-
Mulliken Hamiltonian, we find the eigenenergies associated
with the singlet and triplet states and define the SWAP fre-
quency in terms of the on-site energy U and the hopping

FIG. 4. Probability of SWAP as a function of tunnel barrier height for fixed interaction duration. Time evolution simulation results (circles)
are fit using Eq. (9) (solid line). The parameters J0 = 2.888 ps−1 and b = 0.933 meV−1 were found numerically. The inset figure illustrates
the occupation of the computational basis states as well as the double-occupancy states. In this example, the input state |↑↓〉LR undergoes a
root-of-SWAP operation with finite tunnel barrier potential ramps.
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FIG. 5. Comparison to analytical models. Power-of-SWAP fre-
quency as a function of effective wave-function spread in the z
dimension. Coulomb softening accounts for the finite z dimension
and plays an important role in determining the rate of the exchange
interaction.

term th:

J = 1

2π h̄

[
V− − V+ + 1

2

(√
U 2

h + 16t2
h − Uh

)] = �E

2π h̄
,

(11)
where Uh = U − V+ + X . For the simplified Hubbard Hamil-
tonian, this expression reduces to

J = 1

4π h̄

( − U +
√

U 2 + 16t2
LR

) = �E

2π h̄
. (12)

For realistic Hamiltonians, it is impossible to obtain U
analytically. Instead, we numerically calculate this parameter.
To avoid unphysical results introduced by the 1/r factor, a
softened Coulomb potential is used [24] both in the models
and the numerical simulations throughout this work. We im-
plement this softening by assuming that the wave function
has a Gaussian spread in the third dimension, with a standard
deviation of �z.

We compare both the Hubbard model and the Hund-
Mulliken method described above to our simulation results for
a range of �z. We find a close match between the frequency
of the SWAP operation as calculated by our time-dependent
numerical solver and those obtained by solving the eigenvalue
problem directly. Both models [Eqs. (11) and (12)] show
significant discrepancy for most values of �z. Moreover,
the Hund-Mulliken model predicts negative frequencies for
�z < 1 nm. We conclude that although both models pro-
vide a reasonable qualitative prediction of the two-particle
dynamics for Gaussian spread of �z ∼ 10 − 100 nm, a more
sophisticated numerical approach, such as the one used in this
work, is required to obtain precise quantitative dynamics. A
comparison of both analytical models with our simulations
can be seen in Fig. 5.

D. Entanglement generation via electron collisions

In a previously suggested root-of-SWAP scheme [24], two
electrons are traveling in individual channels separated by a
high potential barrier such that there is no wave-function over-
lap. The potential barrier abruptly (or diabatically) changes
in the SAW reference frame such that the two channels are
joined to create a global potential minimum between them.
Without the presence of the barrier, both electrons fall towards
one another in a harmonic oscillator potential and interact
via the Coulomb force. Once the operation is completed, the
central barrier is reintroduced, causing the reappearance of
separate decoupled channels. As the quantum states of par-
ticles in layered semiconductor technologies are confined in
the dimension perpendicular to the quantum wells, which has
a constant potential throughout the device, the third dimension
does not significantly affect the operation. However, we find
that the previous reduction to 1D is an oversimplification,
as the possible spatial dynamics in the second dimension
strongly affects the electron-electron interactions.

Here, we simulate this single − shot (i.e., in a single colli-
sion) entanglement generation, and we find that under current
experimentally realistic parameters it is impossible to generate
a root-of-SWAP or any significant entanglement over the x
dimension.

Figure 6 shows snapshots of the two-electron wave func-
tion undergoing a single collision in two dimensions. The
wave function remains fully separable along the x dimension.
However, in the y dimension it transitions from a Gaussian-
like low-energy state to a more spread out entangled state.
This is conflicting with the desired outcome of generating a
maximally entangled state in the x dimension. The operation
is effectively a SWAP instead of a root-of-SWAP, with the
additional downside of exciting higher energy states in the
y dimension. These unwanted spatial excitations of the wave
function lead to lowering the spatial fidelity of the operation
and thus it is not possible to concatenate multiple operations
for useful quantum information processing. This also prevents
the restoration of the wave function to its original state by
applying the SWAP twice, a fundamental property of this
operation. We find that increasing the y confinement does not
prevent this behavior until the SAW amplitude is increased by
a factor of order 103, where the problem effectively reduces
to 1D. However, this would require SAW amplitudes on the
order of 104 meV, which is experimentally unrealistic [32].
Varying the x confinement over a wide range also does not
solve the issue. Therefore we conclude that the collision
method is unable to produce the root-of-SWAP operation in a
realistic 2D scenario.

V. EXPERIMENTAL SENSITIVITY

Here, we investigate the power-of-SWAP operation’s sensi-
tivity to disturbances in ATB and τ , which the output probabil-
ities depend on. From an information-theoretical perspective,
an experiment’s sensitivity to an unknown physical parameter,
θ , is quantified by the Fisher information:

F (θ ) =
∑

i

P(Mi|θ )

[
∂

∂θ
ln P(Mi|θ )

]2

, (13)
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FIG. 6. Entanglement generation via the collision of two electrons. Top and middle row: trace over the x and y dimensions, respectively,
for the initial state (left), root-of-SWAP state (center), and SWAP state (right) of the wave function. Bottom row: trace over the second particle
for the initial state (left), root-of-SWAP state (center), and SWAP state (right) of the wave function. Coordinates are chosen to be in the SAW
frame of reference, with y = 0 corresponding to a SAW minimum and x = 0 the middle of the harmonic channel.

where Mi denotes the ith measurement’s outcome [33]. Given
N experimental runs, the precision of an estimate θ̂ of θ is
bounded by the Cramér-Rao inequality, Var(θ̂ ) � [NF (θ )]−1,
such that the greater the Fisher information, the smaller the
estimator’s variance can be [34]. Using the output probabil-
ities from Sec. III, we find that F (ATB) = b2τ 2J2

0 e−2bATB : the
ability to estimate ATB decreases exponentially with ATB itself.
However, for parameters that yield the root-of-SWAP opera-
tion (ATB ≈ 3.86 meV) we find that F (ATB) ≈ 2.15 (meV)−2.
This value of F (ATB) lower bounds the standard deviation
of ATB: σATB � 0.012 meV in an experiment with N = 3000
trials. Despite the exponentially decreasing sensitivity of
tunnel-barrier heights, the relevant values for a root-of-SWAP

operation are within the experimentally viable regime [20]
specified in Appendix B. The Fisher information about τ ,
F (τ ) = J2

0 e−2bATB , is constant with respect to τ itself. For the
ideal root-of-SWAP parameters, we find that F (τ ) ≈ 6.17 ×
10−3 ps−2, which gives a lower bound on the standard devi-
ation of τ : στ � 0.23 ps, when N = 3000.

VI. DISCUSSION AND CONCLUSION

The two-qubit entangling operation is an essential building
block of a quantum information processor. We have shown
that surface-gate-controlled flying electron-spin qubits are
able to generate entanglement through the power-of-SWAP

operation in a reliable and stable fashion. We show that the

problem of wave-function dispersion can be solved through
the use of SAWs, which generate the potential confinement
needed to preserve the wave function’s profile. We present ac-
curate numerical solutions to the time-dependent Schrödinger
equation using a staggered-leapfrog method, and we inves-
tigate previously proposed schemes for generating entangle-
ment between electron-spin qubits. We find that realizing the
power-of-SWAP operation via electron collision [24] suffers
from significant problems, while an implementation based on
tunneling [2,3] is shown to be realizable with high fidelity
even when experimental control of the tunneling barrier is
imperfect. We find that this entangling operation governed by
the exchange interaction and coherent tunneling of electrons
offers a more stable approach and makes high gate fidelities
possible.

Our two-particle simulations use experimentally realistic
parameters and potential layouts and show that such devices
are readily realizable using current semiconductor fabrication
techniques. While the behavior of an ideal system can
be predicted exactly by solving the Hamiltonian and
assuming that the electrons are initialized to and remain
in a combination of triplet and singlet states, the advantage
of our numerical methods is to simulate realistic entangling
operations. Although these simulations were focused on the
experimental parameters of GaAs-based devices, the same
behavior is expected in other SAW-based semiconductor
devices. Moreover, our findings can be generalized to systems
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that do not include SAWs. Static quantum dots, confined in
every dimension and separated by a tunnel barrier, interact in
the same way. Such a tunnel barrier can be modulated using
fast microwave pulses [35] to reproduce the two-particle dy-
namics presented in this paper. A static root-of-SWAP gate was
recently realized with high fidelity using phosphorus donors
in silicon [36], proving that such systems are achievable
experimentally. Coherent-spin-state SWAP operations between
electron-spin qubits in a quadruple array of semiconductor
quantum dots were also lately achieved [37]. Our results
provide new evidence that an entangling root-of-SWAP gate
based on the exchange interaction is experimentally viable in
SAW-based semiconductor heterostructures.
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APPENDIX A: POWER-OF-SWAP QUANTUM LOGIC GATE

In the two-qubit basis |00〉 , |01〉 , |10〉 , |11〉, the power-of-
SWAP operation for the nth power is represented by the matrix

SWAPn =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1
2 (1 + eiπn) 1

2 (1 − eiπn) 0

0 1
2 (1 − eiπn) 1

2 (1 + eiπn) 0

0 0 0 1

⎞
⎟⎟⎟⎠. (A1)

For root-of-SWAP, n = 1
2 and the matrix representation is

√
SWAP =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1
2 (1 + i) 1

2 (1 − i) 0

0 1
2 (1 − i) 1

2 (1 + i) 0

0 0 0 1

⎞
⎟⎟⎟⎠. (A2)

APPENDIX B: PARAMETER VALUES

The explicit form of potentials used in Eq. (1), in terms of
the parameters above (see Table I), in the reference frame of
the SAW are

VD(x, y) = me

2
ω2

x x2 + A1 exp

(−x2

2σ 2
1

)
+ A2

2
exp

(−x2

2σ 2
2

)

×
[

2 − tanh

(
y − yd

σy

)
− tanh

(
−y − yu

σy

)]
,

(B1)

TABLE I. Ranges of parameter values used in simulations.

Parameter Value range

Distance between channels 80 nm
Tunnel coupled region start yd = 36 nm
Tunnel coupled region end yu = 144 nm
Interaction time τ = 36 ps
SAW amplitude ASAW = 25 meV
SAW wavelength λ = 1 μm
SAW velocity v = 3 nm/ps
Harmonic channel confinement ω2

x = 0.002 meV
nm2me

Electron effective mass 0.067 me

Relative permittivity (GaAs) 13.1
Gaussian tunneling barrier amplitude A1 = 15.3 meV
Gaussian tunneling barrier width σ1 = 30−40 nm
Gaussian barrier amplitude A2 = 510 meV
Gaussian barrier width σ2 = 0.8 nm
Transition between barrier heights σy = 10 nm
Coulomb softening �z = 10−100 nm

VSAW(x, t ) = ASAW

2

[
1 − cos

(
x − tv

λ

)]
, (B2)

VC (r) = e2

4
√

2πε�zU
( − 1

2 , 0, r2

2�2
z

) , (B3)

where U is the confluent hypergeometric function of the sec-
ond kind, which encapsulates a Gaussian spread with standard
deviation �z in the z dimension:

U (a, b, z) = 1

(a)

∫ ∞

0
e−zt t a−1(1 + t )b−a−1dt . (B4)

APPENDIX C: SECOND QUANTIZATION BASIS

The full set of basis states of the system using second
quantization, with two spin-1/2 fermions occupying the ith
and jth out of N spatial sites, respectively, is given by

|↑↑〉i j = c†
i↑c†

j↑ |0〉 , i 
= j

|↓↓〉i j = c†
i↓c†

j↓ |0〉 , i 
= j

|↑↓〉i j = c†
i↑c†

j↓ |0〉 ,

|↓↑〉i j = c†
i↓c†

j↑ |0〉 . (C1)

These fermionic creation operators obey the anticommu-
tation relation {c†

is1
, c†

js2
} = 0. Therefore, the basis states are

also related by |↓↑〉i j = − |↑↓〉 ji. With N = 2, the basis states
of the Hubbard two-site model as in Appendix G are obtained.

APPENDIX D: MOMENTUM-SPACE EIGENSOLVER

A real-space wave function can be written in the discrete
case as a sum of the momentum eigenfunctions:

|ψ (r)〉 =
Nk∑
k

φk |ψk (r)〉 , (D1)

where |ψk (r)〉 are the momentum eigenfunctions. Owing
to the canonical relation between momentum and position
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operators,

p̂ = −ih̄
∂

∂r
, (D2)

the eigenfunctions are

|ψk (r)〉 = (2π )
d
2 |eik·r〉 (D3)

in d dimensions. Therefore, the real-space wave function can
be written as

|ψ (r)〉 = (2π )
d
2

Nk∑
k

φk |eik·r〉 . (D4)

This is just a discrete Fourier transform:

|ψ (r)〉 = F (|φ(k)〉). (D5)

Similarly, the inverse is also true:

|φ(k)〉 = F−1(|ψ (r)〉), (D6)

where F−1 denotes the inverse discrete Fourier transform.
Momentum space can be discretized in multiples of 2π

L ,
where L is a real-space extent over which the amplitude of
the wave function should have decayed to 0 near the edges.
Defining some cutoff Nk , momentum will take the values

kn = n
2π

L
, (D7)

where n = [−Nk,−Nk + 1, . . . , 0, 1, . . . , Nk].
When we Fourier transform the Schrödinger equation

into momentum space, the kinetic term − h̄2

2m ∇2 will become
h̄2

mL2 [cosh(kL) − 1] owing to discreteness and the canoni-
cal momentum-position relation [Eq. (D2)]. The Fourier-
transformed potential matrix element becomes

V̂kq = (2π )
d
2

N∑
r

e−iq·rV (r)eik·r

= (2π )
d
2

N∑
r

V (r)ei(k−q)·r = F[V (r)](k − q). (D8)

The elements of the Hamiltonian matrix to be solved by
diagonalization in this method take the form

Hkq = h̄2

mL2
[cosh(kL) − 1]δkq + V̂kq. (D9)

Note that this matrix is not sparse, as was the case in real
space. This could be thought of as reducing the memory space
(smaller matrix) at the cost of computational complexity.
However, owing to the efficiency of fast Fourier transform
algorithms, the problem is faster to solve as opposed to a
real-space solver. This method extends readily to two or more
particles.

APPENDIX E: GPU IMPLEMENTATION

1. Eigensolver

For the double-quantum-dot system investigated here,
time-independent solutions converge for ten or more momen-
tum basis states in each dimension. The momentum wave
function is zero-padded to the required real-space number

of points, which should be at least 100 in each dimension
for the real-space time-dependent solver. An inverse discrete
Fourier transform (DFT) is applied. Using the momentum
basis makes the two-particle problem tractable in two dimen-
sions, as the Hamiltonian is reduced from ∼1016 to ∼108

elements. Such a matrix of complex floating point numbers
reaches the limitations of random access memory (RAM)
normally available to modern computers. Our eigensolver
can also run on a GPU for increased speed; however, GPU
video RAM tends to be smaller than CPU RAM. Memory
is a limiting factor, and only state-of-the-art devices are
able to solve the problem accurately, i.e., using at least ten
momentum modes in each dimension. A two-particle 2D
problem with ten points in each dimension can be solved in
tens of minutes on a modern desktop computer and gives a
result accurate enough to be used as a starting point for the
time-dependent solver while keeping the normalization errors
below 1%.

2. Staggered leapfrog

We run our time-dependent iterative solver on GPU hard-
ware to accelerate the computation by parallelizing updates
for each spatial site. The wave function can be evolved either
in real or momentum space, using DFTs to transform between
the two. We find that if the wave function does not contain
significant contributions from high-energy eigenstates, em-
ploying the momentum basis allows us to reduce the wave-
function size compared to real space, while keeping the same
accuracy. We use about 100 real-space, or 20 momentum-
space points, per dimension. However, the momentum solver
tends to perform poorly when sudden and strong interactions
take place. We find it optimal to use real space for simulating
the collision method and momentum space for the Coulomb
tunneling method.

For improved simulation speed and accuracy, we time
evolve only the |↑↓〉i j part as a spin-independent wave func-
tion |ψ〉i j . Using such a state is justified, as the root-of-SWAP

operation has an effect only on |↑↓〉i j and |↓↑〉i j states,
which are related by a spatial index exchange (|↓↑〉i j =
− |↑↓〉 ji ). Furthermore, |↑↑〉i j and |↓↓〉i j states are invariant
under the power-of-SWAP operation and thus irrelevant in this
work.

APPENDIX F: HUND-MULLIKEN MODEL
FOR MOLECULAR ORBITALS

The Hund-Mulliken model for molecular orbitals [2]
builds a two-particle basis from right- and left-localized
single-particle states |φ±〉. These states are orthonor-
malized to |�±〉 = (|φ±〉 − g |φ∓〉)/(

√
1 − 2Sg + g2), where

S = 〈φ± | φ∓〉 is the wave-function overlap and g = (1 −√
1 − S2)/S. The singly and doubly occupied two-particle

basis is constructed with direct products:

|�s
∓〉 = 1√

2
(|�+〉|�−〉 ∓ |�−〉|�+〉),

|�d
∓〉 = |�∓〉|�∓〉 . (F1)
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The Hamiltonian in this basis has the form

Ĥ =

⎛
⎜⎜⎝

V− 0 −√
2th 0

0 V+ −√
2th 0

0 −√
2th U X

0 −√
2th X U

⎞
⎟⎟⎠, (F2)

where each entry is defined as

U = e2

4πε
〈�d

±| 1

r
|�d

±〉 , (F3)

X = e2

4πε
〈�d

±| 1

r
|�d

∓〉 , (F4)

V+ = e2

4πε
〈�s

+| 1

r
|�s

+〉 , (F5)

V− = e2

4πε
〈�s

−| 1

r
|�s

−〉 , (F6)

and th is the hopping term

th = 〈�±| p̂2

2m
|�∓〉 − e2

4
√

2πε
〈�s

+| 1

r
|�d

±〉 . (F7)

Solving the Hund-Mulliken Hamiltonian in Eq. (F2), we
find the eigenenergies associated with the singlet and triplet
states and define the SWAP frequency in terms of U and th:

J = 1

2π h̄

[
V− − V+ + 1

2

(√
U 2

h + 16t2
h − Uh

)]
= ET − ES

2π h̄
,

(F8)

where Uh = U − V+ + X .

APPENDIX G: HUBBARD MODEL

The evolution of the two-particle state can be modeled with
the Hubbard approach for short-range Coulomb interaction

without magnetic fields [3]. The simplified two-site Hamilto-
nian in the second quantization basis from Eq. (C1) then has
the form

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝

V 0 0 0 0 0
0 V 0 0 0 0
0 0 0 0 −tLR −tLR

0 0 0 0 tLR tLR

0 0 −tLR tLR U 0
0 0 −tLR tLR 0 U

⎞
⎟⎟⎟⎟⎟⎠

, (G1)

where tLR is the hopping term

tLR = L〈↑| p̂2

2m
|↑〉R = L〈↓| p̂2

2m
|↓〉R , (G2)

U is the on-site energy

U = e2

4πε
LL〈↑↓|1

r
|↑↓〉LL = RR〈↑↓|1

r
|↑↓〉RR , (G3)

and

V = e2

4πε
LR〈↑↑|1

r
|↑↑〉LR = LR〈↓↓|1

r
|↓↓〉LR . (G4)

Solving this Hamiltonian, we find the eigenenergies asso-
ciated with the singlet and triplet states and define the SWAP

frequency in terms of U and tLR:

J = 1

4π h̄

( − U +
√

U 2 + 16t2
LR

) = ET − ES

2π h̄
. (G5)
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