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Subwavelength quantum imaging with noisy detectors
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It has been recently shown that an interferometric measurement may allow for subwavelength resolution of
incoherent light. Whereas this holds for noiseless detectors, one could expect that the resolution is in practice
limited by the signal-to-noise ratio. Here I present a qualitative assessment of the ultimate resolution limits that
can be achieved using noisy detectors. My analysis indeed indicates that the signal-to-noise ratio represents a
fundamental limit to quantum imaging, and the reduced resolution scales with the square root of the signal-
to-noise ratio. For example, a signal-to-ratio of 20 dB is needed to resolve one order of magnitude below the
wavelength.
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I. INTRODUCTION

The general goal of quantum imaging is to develop meth-
ods and techniques that exploit quantum optics to enhance
image resolution [1–14]. An influential work by Tsang, et al.
[15] has recently put forward an approach to study quantum
imaging using theoretical tools borrowed from quantum in-
formation theory. This has gathered a certain interest in the
quantum optics and quantum information communities, see
e.g., Refs. [16–45].

One of the breakthroughs of Ref. [15] was to frame imag-
ing as a problem of parameter estimation. Given two pointlike
sources, one faces the task of measuring their transverse
separation using an optical imaging system operating in the
far field. Whereas direct detection on the focal plane is limited
by the Rayleigh length xR = λR/D (where λ is the wave-
length, R the size of the entrance pupil, and D the distance
to the object), Ref. [15] showed that this is not the case if
a coherent detection scheme is employed. This is realized
by first channelling the light impinging on the focal plane
into a multiport interferometer and then measuring by photon
detection. A particular, and optimal, way of realizing this is
through spatial mode demultiplexing (SPADE). In this case,
the interferometer acts as a mode sorter that decomposes the
field in some particular set of normal modes in the transverse
field. For example, for a Gaussian point-spread function, these
can be chosen as Hermite-Gaussian modes.

Whereas Ref. [15] initially assumed noiseless detectors,
the impact of detector noise has been addressed only very
recently in Ref. [45]. This work has shown that SPADE is
in fact limited by the signal-to-noise ratio, once we depart
from the assumption of noiseless detectors and consider dark
counts. However, the fact that SPADE is an optimal detection
strategy in the ideal setting does not necessarily imply that
it remains optimal with noisy detectors. Therefore, it is not
clear if signal-to-noise ratio is the universal limit to image
resolution or if this is a feature of a particular measurement
set up.

In this paper, I will address this issue and provide a qualita-
tive assessment of the ultimate resolution of quantum imaging

with noisy detectors. Following Ref. [15], I will quantify
the resolution using the quantum Fisher information for the
estimation of the transverse separation. The results indicate
that signal-to-noise ratio does in fact pose a fundamental
limit to quantum imaging. The effect of detector noise can
be described in terms of an effective Rayleigh length that is
rescaled by inverse the square root of the signal-to-noise ratio,
xR

′ = xR/
√

SNR.
The paper will proceed as follows. Section II reviews

the model and methods developed in Ref. [16]. Section III
describes the use of the quantum Fisher information as a
theoretical tool to investigate quantum imaging. Section IV
presents a general theory for obtaining the quantum Fisher
information for the estimation of the transverse separation
between a pair of incoherent sources. Section V applies this
theory to the case of noiseless imaging of thermal sources. A
model for noisy imaging is introduced in Sec. VI. This finally
allows us to assess the ultimate limits of noisy imaging of
thermal sources in in Sec. VII. Conclusions are presented in
Sec. VIII.

II. THE MODEL

Consider the textbook model of an optical imaging system
in the far field as a thin lens with finite aperture, shown in
Fig. 1 (top).

We denote as c†
1, c1 and c†

2, c2 the creation and annihilation
operators associated with two pointlike emitters. We assume
the sources monochromatic and separated by a transverse
distance s. They are located in the object plane, orthogonal
to the optical axis, at position −s/2 and s/2. The optical
system transforms these field operators at the source into
corresponding field operators on the image plane, denoted as
a†

1, a1 and a†
2, a2.

Assuming, without loss of generality, unit magnification
factor, the point-spread function associated to the imaging
system reads [46]

T (x, y) = √
η ψ (x − y) , (1)
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FIG. 1. A diffraction-limited system creating an image of two
pointlike sources (top of the figure) is formally equivalent to a
pair of independent beam splitters (bottom of the figure), whose
transmissivities are functions of the separation between the sources,
with c± = (c1 ± c2)/

√
2.

where ψ is a function on the image plane and η is an atten-
uation factor. The latter accounts for the fact that an optical
system in the far field collects only a small fraction of the
light coming from the sources.

The image operators a1 and a2 are determined by the point-
spread function as follows:

a†
1 =

∫
dx ψ (x + s/2) a†

x , (2)

a†
2 =

∫
dx ψ (x − s/2) a†

x , (3)

where a†
x and ax denote the creation and annihilation operators

for a field localized at position x on the image screen.
A diffraction-limited optical system does in fact collect the

light coming from the sources and map it into the optical
modes defined by the operators a1, a2 on the image plane.
Therefore, this transformation can be formally represented as
a beam splitter with transmissivity η,

c1 → √
η a1 +

√
1 − η v1 , (4)

c2 → √
η a2 +

√
1 − η v2 , (5)

where v1, v2 are auxiliary environmental modes that we
assumed initially in the vacuum state.

Because of the overlap between the point-spread func-
tions ψ (x + s/2) and ψ (x − s/2), the operators a1 and a2

are not orthogonal each other, i.e., they do not satisfy the
canonical commutation relation [a1, a†

2] = 0. To orthagonal-
ize them, we define the sum and difference operators (see also
Refs. [47,48]),

c± := c1 ± c2√
2

→ √
η± a± +

√
1 − η± v± , (6)

where

η± = (1 ± δ)η , (7)

and we have introduced the operators on the image plane,

a± = a1 ± a2√
2(1 ± δ)

, (8)

with

δ = Re
∫

dx ψ∗(x + s/2)ψ (x − s/2) . (9)

It is easy to check that operators a†
±, a± satisfy the canonical

commutation relations.
Other parameters of interest are

�k2 :=
∫

dx

∣∣∣∣∂ψ (x)

∂s

∣∣∣∣
2

, (10)

γ := ∂δ

∂s
. (11)

The interpretation of Eq. (6) is that the optical modes c±
are independently attenuated and mapped into the modes a±,
with corresponding effective attenuation factors η± = (1 ±
δ)η, see Fig. 1 (bottom). Note that the attenuation factors η±
depend on the separation s through the parameter δ. Therefore,
estimating the separation s between two pointlike sources is
formally equivalent to estimating the transmissivities of a pair
of independent beam splitters. This result was obtained and
developed in detail in Ref. [16].

III. IMAGING AS PARAMETER ESTIMATION

This section recalls the notion of quantum Fisher infor-
mation, which here is used as a theoretical tool to study the
ultimate resolution of quantum imaging.

Consider two emitters separated by a transverse distance s.
The light emitted is collected into an optical imaging system
and focused on the image screen (see top of Fig. 1). The state
of the light focused on the screen is described by a density
matrix ρs, which is a function of the transverse separation.

One can then consider the problem of estimating the pa-
rameter s from a measurement of the state ρs. Given n copies
of ρs and for any unbiased estimator, the quantum Cramér-Rao
bound states that [49,50]

�s � 1√
nQFIs(ρs)

, (12)

where �s is the statistical error in the estimation of s, and
QFIs(ρs) is the quantum Fisher information for the estimation
of s.

Therefore, the quantum Fisher information quantifies, via
the quantum Cramér-Rao bound, the ultimate bound in the
statistical error for the estimation of s. Note that QFIs(ρs) can
be nonzero even when s is zero. This is because the statistical
error �s can be finite even if the true value of s is zero.

IV. A THEORY FOR IMAGING OF
INCOHERENT SOURCES

Consider a pair of incoherent sources emitting N mean
photons each. The optical imaging system collects, attenuates,
and focuses on the image plane the light emitted by the
sources.

Given that two identical sources c1, c2 emit incoherent
light, this also remains incoherent when expressed in terms of
the modes c+, c−. As we have discussed in Sec. II, the optical
imaging system is formally equivalent to a passive beam-
splitter transformation. As such, it cannot create coherence
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in the quantum state. This implies that the state of the light
focused on the image plane, expressed in terms of the normal
modes a+, a−, is also incoherent and thermal, and can be
described by a two-mode density operator of the form

ρ = ρ+ ⊗ ρ− , (13)

where

ρ± =
∞∑

n=0

p±(n)|n〉±〈n| (14)

is a number-diagonal state and

|n〉± = (n!)−1/2(a†
±)n|0〉 (15)

denotes a Fock state with n photons.
The problem we need to address here is to compute the

quantum Fisher information for the estimation of the param-
eter s on the state in Eq. (14). Note that such a state depends
on s both through the diagonal coefficients p±(n) and through
the operators a†

± in Eq. (15). The contribution to the quantum
Fisher information from the coefficients p±(n) is

〈(∂s log p)2〉 :=
∞∑

n=0

p+(n)

(
∂ log p+(n)

∂s

)2

+ p−(n)

(
∂ log p−(n)

∂s

)2

(16)

and the contribution from the operators a†
± is

2ηN

(
�k2 − γ 2

1 − δ2

)
. (17)

For details on how this is obtained, see Ref. [16].
In conclusion, for states as in Eqs. (13) and (14), Ref. [16]

obtained an exact expression for the quantum Fisher informa-
tion:

QFI = 〈(∂s log p)2〉 + 2ηN

(
�k2 − γ 2

1 − δ2

)
. (18)

V. NOISELESS IMAGING

For a pair of incoherent thermal sources with N mean
photon number, we have

p±(n) = 1

M± + 1

(
M±

M± + 1

)n

, (19)

with

M± = η±N . (20)

By applying Eq. (18) to this example, we obtain an explicit
analytical form for the quantum Fisher information for the
separation between a pair of thermal sources. First we obtain

〈(∂s log p)2〉 = 2ηN

[
γ 2

2(1 + δ)(1 + (1 + δ)ηN )

+ γ 2

2(1 − δ)(1 + (1 − δ)ηN )

]
. (21)
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FIG. 2. This plot shows the dimensionless quantum Fisher infor-
mation per photon detected, QFI

2ηN xR
2, computed from Eq. (22), versus

the dimensionless transverse separation s/xR. This is calculated as-
suming a Gaussian point-spread function as in Eqs. (23)–(26). From
top to bottom, different lines refer to ηN = 0.01, ηN = 0.1, ηN = 1,
ηN = 5, ηN = 20, and the classical limit of N → ∞ (dashed line).
The latter is obtained from Eq. (27).

Then, putting this expression into Eq. (18), we finally obtain
[16]

QFI = 2ηN

(
�k2 − ηN (1 + ηN )γ 2

(1 + ηN )2 − δ2η2N2

)
. (22)

The quantum Fisher information per photon detected (and
rescaled by the Rayleigh length) is shown in Fig. 2.

Figure 2 has been obtained assuming a Gaussian point-
spread function,

ψ (x) =
√

1√
2π xR

e
− x2

4xR
2 , (23)

where xR is the Rayleigh length. This yields

δ = e
− s2

4xR
2 , (24)

�k2 = 1

4xR
2

, (25)

γ = s2

16xR
2

e
− s2

4xR
2 . (26)

For s 
 xR, the sources are well separated, and the quan-
tum Fisher information is constant and equal to 2ηN�k2.
The more interesting regime is the sub-Rayleigh region where
s � xR. For 2ηN � 1, we observe the phenomenon of sub-
Rayleigh resolution; this is expressed by the fact that the
quantum Fisher information is essentially constant and inde-
pendent of the value of the separation s. For larger values of
2ηN , the quantum Fisher information rapidly decreases for
separation of the order of the Rayleigh length. Eventually, in
the classical limit of N → ∞, the quantum Fisher information
per photon detected reads

lim
N→∞

QFI

2ηN
= �k2 − γ 2

1 − δ2
, (27)

and is limited by the Rayleigh length. The latter is a known
phenomenon dubbed the Rayleigh curse [15]. The same
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qualitative pattern is observed for any arbitrary choice of the
point-spread function.

VI. A MODEL FOR DARK COUNTS

Section II has established that the optical imaging system
is described, in the Heisenberg picture, by the map of Eq. (6):

c± := c1 ± c2√
2

→ √
η± a± +

√
1 − η± v± . (28)

This map transforms the bosonic operators c±, which describe
the sources, into the operators a±, which describe the field
on the image screen. This is a linear transformation formally
equivalent to a beam splitter mixing a signal with the vacuum.

To model dark counts in noisy detectors, I will modify
Eq. (28). I assume dark counts follow a thermal distribution
characterized by an effective mean photon number ε. Given
the stochastic character of dark counts, I will model them
by introducing a pair of additive Gaussian random variables
in Eq. (28), yielding

c± := c1 ± c2√
2

→ √
η± a± +

√
1 − η± v± + ξ± , (29)

where ξ+ and ξ− are independent Gaussian random variables
with zero mean and variance ε.

With this modification to the map describing the optical
imaging system, the state of the light impinging on the image
screen is still of the form in Eqs. (13) and (14), but with

p±(n) = 1

η±N + ε + 1

(
η±N + ε

η±N + ε + 1

)n

. (30)

Note that with this model the dark counts, which are a
feature of the detectors, are described as a feature of the state
that is to be measured.

VII. QUANTUM FISHER INFORMATION
OF NOISY IMAGING

In Ref. [45], Len et al. presented an analysis of the ulti-
mate resolution that can be attained using SPADE with non-
ideal detectors affected by dark counts. Whereas SPADE is
known to saturate the quantum Cramér-Rao bound with ideal,
noiseless detectors, and to yield super-resolution, Ref. [45]
showed that resolution is in fact limited by the signal-to-noise
ratio. They observed that the Fisher information decreases
substantially when the separation between the source is of the
order of SNR−1/2

Note that, though SPADE is optimal with ideal detectors,
there is no guarantee that it remains such in the presence of
noise. To see if this is the case, we would need to compute the
quantum Fisher information for noisy detectors, which is an
obvious contradiction. In fact, the quantum Fisher information
is, by definition, a universal bound that is independent of any
specific measurement.

To sidestep this problem and obtain a qualitative but phys-
ically sound result, here I have introduced in Sec. VI a model
for dark counts described as thermal background radiation.
Within this model, the field on the image screen is described
by a state of the form

ρ = ρ+ ⊗ ρ− , (31)
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FIG. 3. For noisy detectors, this shows the dimensionless quan-
tum Fisher information per signal photon detected, QFI

2ηN xR
2, com-

puted from Eq. (33), versus the dimensionless transverse separation
s/xR. This is calculated putting ηN = 0.01, and for a Gaussian
point-spread function as in Eqs. (23)–(26). Different lines refer to
different values of the signal-to-noise ratio, SNR = ηN/ε. From top
to bottom, the noiseless limit, SNR = 103, SNR = 102, SNR = 10,
SNR = 1, and in the limit of SNR → ∞ (in dashed line). The latter
is identical to the dashed line in Fig. 2.

where

ρ± =
∞∑

n=0

p±(n)|n〉±〈n| , (32)

and p±(n) as in Eq. (30).
I can therefore apply the general theory of Sec. IV and

obtain, putting Eq. (30) in Eq. (18):

QFI = 2ηN

(
�k2 − γ 2

1 − δ2

)
+ 2ηNγ 2

×
(

ε
ηN + 1

)
(ηN + ε + 1) + δ2ηN((

ε
ηN + 1

)2 − δ2
)
((ηN + ε + 1)2 − δ2η2N2)

.

(33)

This quantity is plotted in Fig. 3 for different values of
the signal-to-noise ratio, SNR = ηN/ε, for a Gaussian point-
spread function [see Eqs. (23)–(26)]. For s 
 xR, the sources
are well separated and the quantum Fisher information is
constant and equal to 2ηN�k2, as in the ideal setup.

For sub-Rayleigh separation, it is the signal-to-noise ra-
tio that determines the ultimate precision bound. Following
Ref. [45], define s1/2 as the value of s such that QFI = ηN�k2,
i.e., the separation at which the quantum Fisher information
attains one half of its maximum value. Then we obtain, in
the interesting regime of ηN � 1, and for low detector noise,
SNR 
 1, the following expression for s1/2 at the lowest order
in s1/2/xR (note that in this regime s1/2/xR � 1):

s1/2 � 8xR√
SNR

. (34)

This expression has been obtained from Eq. (33), assuming
a Gaussian point-spread function. This confirms the scaling
s1/2 � SNR−1/2 observed in Ref. [45] for SPADE.
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For SNR � 1, we instead obtain

lim
SNR→0

QFI

2ηN
= �k2 − γ 2

1 − δ2
, (35)

which is identical to the classical limit in Eq. (27). Note
that this limit is essentially already achieved for SNR � 0.1.
This implies that, by increasing the mean number of thermal
photons, the resolution eventually becomes Rayleigh-limited,
irrespective of whether these photons originated form the
signal or from the noise.

VIII. CONCLUSIONS

I have presented an analysis of the ultimate resolution of
quantum imaging that one can attain using noisy detectors
affected by dark counts. This is done within the approach
put forward by Tsang et al. in Ref. [15] for the case of two
incoherent sources of thermal light.

As first noted in Ref. [15], for weak sources one observes a
phenomenon of sub-Rayleigh resolution. This is expressed by
the fact that the quantum Fisher information for the estimation
of the transverse separation is constant and independent of
the value of the separation, also if this is far below the
Rayleigh length. This is in contrast with the semiclassical
limit, obtained by increasing the mean photon number, where
the quantum Fisher information rapidly goes to zero when the
transverse separation is comparable with the Rayleigh length.

I have obtained a closed formula for the quantum Fisher
information in the presence of thermal background noise,
which models detector dark counts. The results presented here
confirm the findings that Len et al. have presented in Ref. [45]
for specific types of measurement. The ambition of my work
is to assess the impact of noise on the resolution of quantum
imaging without assuming a specific measurement strategy.
To do this, I have used the quantum Fisher information as a

theoretical tool and modeled the noise from the detectors as a
thermal background.

Note that this way of computing the quantum Fisher in-
formation, though physically sound, cannot be exact. This is
because dark counts are a feature of the measurement device,
whereas the quantum Fisher information is, by definition,
independent of the measurement apparatus. For this reason, it
would be meaningless to search for the optimal measurement
that saturates the quantum Fisher information of Eq. (33). If
such an optimal measurement existed, it would be noiseless.
This would be a contradiction as the Eq. (33) is intended to
describe noisy detectors.

In conclusion, my analysis is physically sound but, by
construction, it cannot be completely self-consistent. More
work is needed to develop the ideas presented here into a
complete and self-consistent theory. Nevertheless, this work
suggests that the detector noise degrades the super-resolution
phenomenon and introduces a resolution cutoff. For high
signal-to-noise (low noisy), this cutoff happens when the
transverse separation is of the order of xR/

√
SNR, where xR is

the Rayleigh length and SNR is the signal-to-noise ratio. This
is consistent with the results of Ref. [45], which have been
obtained with a different method. Otherwise, for small signal-
to-noise ratio (high noise), one recovers the semiclassical limit
and the Rayleigh curse.
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