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Row and column iteration methods to solve linear systems on a quantum computer
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We consider the quantum implementations of two classical iterative solvers for a system of linear equations,
including the row (Kaczmarz) method which utilizes a row of the coefficient matrix in each iteration step, and the
column (coordinate descent) method which uses a column instead. These two methods are widely applied in big
data science due to their simple iteration schemes. We propose fast quantum algorithms for these two approaches
by constructing efficient unitary operators in each iteration step based on the block-encoding technique. The
construction is based on the unitaries to prepare the quantum states of rows or columns of the coefficient matrix.
If the quantum states are efficiently prepared, for example, by QRAM, then the quantum iterative methods achieve
an exponential speedup in the problem size n over the classical versions. Meanwhile the dependence on the
number of steps is linear, which is the same as the classical counterparts. The complexity of the quantum iterative
linear solvers is O(κ2

s (log n)(log 1
ε

)), where κs is the scaled condition number, and ε is the error. The quantum
iterative linear solvers do not depend on Hamiltonian simulations and quantum phase estimation, and also work
for the dense case.

DOI: 10.1103/PhysRevA.101.022322

I. INTRODUCTION

A. Motivations

The classical solvers for a linear system of equations Ax =
b are generally categorized into two types: direct methods
and iterative methods. The latter is usually more practical in
the realm of a large-scale system of equations. Among the
iterative methods, the row and column iterative methods are
popular due to the simplicity and efficiency. The row iteration
method is the famous Kaczmarz method, first discovered
by Kaczmarz in 1937 [1], and rediscovered in the field of
image reconstruction by Gordon, Bender, and Herman in 1970
[2] under the appellation algebraic reconstruction technique
(ART). The column iterative method is also called the coordi-
nate descent method [3]. As the name suggests, this method
uses a column of coefficient matrix in each iterative, while
the row (Kaczmarz) method utilizes a row instead. These
two methods seek to solve different problems: the column
iteration method converges to a least-squares solution gen-
erally; the row iteration method calculates a minimum-norm
solution for a consistent system of equations and exhibits
cyclic convergence for an inconsistent problem [4]. They can
be generalized to many variants (see [5,6] and the references
therein). The advantage of these two methods lies in the fact
that at each iteration they only need access to an individual
row (or column) rather than the entire coefficient matrix. Due
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to the simplicity, they have numerous applications in the fields
ranging from computer tomography to image processing and
digital signal processing, especially the big data science [7,8].

Suppose that the size of the problem is n and the number
of required iterations is T , then the complexity of the classical
iteration algorithm is usually polynomial in n and linear in
T . The quantum iterative methods have been extensively
investigated before (e.g., see [9–11]). Due to the quantum
no-cloning theorem, an iteration algorithm is usually not easy
to implement on a quantum computer.

For instance, in [9], Rebentrost et al. proposed a quantum
gradient and Newton’s method to solve polynomial optimiza-
tion. Compared to the classical gradient or Newton’s method,
this quantum algorithm achieves exponential speedup in n.
However, the complexity depends exponentially on T . The
main reason is as follows, taking Newton’s method as an
example. One critical step of classical Newton’s method is to
solve a Newton linear system. The coefficient matrix (i.e., the
Hessian matrix) H of the linear system depends on xk , the
computed result in step k. In a quantum computer, we only
have the quantum state of xk , which is an unknown quantum
state. To solve the linear system by Harrow-Hassidim-Lloyd
(HHL) algorithm, for instance, one critical step is the Hamil-
tonian simulation of H . In [9], a similar idea to the quantum
principal component analysis [12] is used to compute the
Hamiltonian simulation of H by viewing it as an unknown
density matrix. Together with quantum phase estimation, the
Newton linear system can be solved efficiently. However,
the Hamiltonian simulation of an unknown density operator
requires O(t2/ε) copies of this density operator, where t is
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the evolution time and ε is the precision. Since H depends
on |xk〉, we need to prepare at least O(t2/ε) copies of |xk〉.
In other words, with at least O(t2/ε) copies of |xk〉, we can
prepare |xk+1〉. As a result, we need exponential copies of the
initial state to prepare |xT 〉.

In [10], Kerenidis and Prakash considered a quantum
version of the interior-point method to solve semidefinite
programming and linear programming. One critical step of the
classical interior-point method is also to solve a linear system.
Different from the idea used above, to reduce the exponential
dependence on T , at each each step, they compute a unit
vector x̃k whose quantum state is an approximation of |xk〉
by quantum tomography at the cost O(n/δ2), where δ is the
error. By doing so |xk〉 becomes a known quantum state as
we can prepare it from x̃k . Consequently, it can be prepared
many times for the next iteration. Tomography is one source
of complexity, so the complexity of their quantum algorithm
is at least linear in n. The dependence on T is polynomial due
to the accumulated errors caused in quantum tomography in
each step.

The techniques used in the above two quantum iteration
algorithms are currently standard. As we can see, using these
techniques the quantum iterative algorithms [9,10] cannot
outperform classical iteration algorithms both in n and T . The
quantum iteration algorithm is a simulation of the classical
iteration algorithm on a quantum computer, so it seems espe-
cially hard to achieve a speedup in T . However, we still expect
the quantum iteration algorithm to achieve high speedup
in n and have a reasonable dependence on T meanwhile.
Therefore, an ideal simulation of the iteration algorithm on
a quantum computer should have the complexity polynomial-
logarithm in n and linear or polynomial in T . In this paper, we
will give such implementations to the row (Kaczmarz) method
and the column (coordinate descent) method based on the idea
of block-encoding.

B. Iterative schemes

We review these two iteration schemes in the following.
Assume that A is an n-by-n matrix. For any 1 � i � n, denote
the ith row of A as aT

i , and the ith component of b as bi.
Let x0 be an arbitrary initial approximation to the solution of
Ax = b. For k � 0, randomly choose an ik ∈ {1, . . . , n} with
probability proportional to ‖aik ‖2, the randomized Kaczmarz
iteration updates the solution xk as follows:

xk+1 = xk −
(

aT
ik xk∥∥aik

∥∥ − bik∥∥aik

∥∥
)

aik∥∥aik

∥∥ , (1)

which is equivalent to the Gauss-Seidel method on AAT y = b,
where AT y = x. It can be also derived from the minimization
of a quadratic form ψ (y) = 1

2 yT AAT y − yT b along the ikth
direction. Geometrically, xk+1 is the orthogonal projection of
xk onto the hyperplane aT

ik x = bik (see Fig. 1). In each iteration
step, only one row of the coefficient matrix is needed. It is
also called the row-action method, and another names, such as
component-solution method, cyclic projection or successive
projection, are used on certain occasions.

Correspondingly, we have the column-action method. Let
c j be the jth column of A, and e j the jth column of the unit

FIG. 1. Illustrative example of Kaczmarz iteration in dimension 2.

matrix. The column-action method reads

xk+1 = xk + cT
jk (b − Axk )∥∥c jk

∥∥2 e jk , (2)

where jk is a random number from {1, . . . , n} with probability
proportional to ‖c jk ‖2. It is equivalent to the randomized
Gauss-Seidel method on AT Ax = AT b. In fact, in each iter-
ation step the approximate solution is obtained by minimizing
a quadratic function ϕ(x) = 1

2 xT AT Ax − xT b (or ‖b − Ax‖2)
in one coordinate direction, then it is also called the coordinate
descent method. Define rk = b − Axk . This column iteration
method can be re-expressed as

xk+1 = xk + cT
jk rk∥∥c jk

∥∥2 e jk , rk+1 = rk − c jk cT
jk∥∥c jk

∥∥2 rk . (3)

The convergence of Kaczmarz method (1) was studied in
[13]. Let xtrue be the exact solution of the linear system Ax =
b, and ek = xk − xtrue be the iteration error in step k. It results
in a convergence with [13, Theorem 2]

E[‖ek‖2] �
(
1 − κ−2

s

)k‖e0‖2, (4)

where κs = ‖A‖F ‖A−1‖ is known as the scaled condition
number, ‖ · ‖F , ‖ · ‖ are the Frobenius and spectral norms,
respectively. The usual condition number is defined as κ =
‖A‖‖A−1‖, thus κ � κs �

√
nκ . The convergence of the col-

umn (coordinate descent) method (3) was considered in [3].
By Theorem 3.6 of [3]

E
[‖ek‖2

AT A

]
�
(
1 − κ−2

s

)k‖e0‖2
AT A. (5)

Suppose the relative error is ε, then by Eqs. (4) and (5), the
number of required iterative steps is κ2

s log 1
ε
.

C. Main results

The main idea of our implementations of row and column
iterations on a quantum computer is to use block-encoding
technique [14] to implement the procedures (1), (3) by unitary
operators. These unitary operators are explicitly constructed.
Moreover, they can help to reduce the exponential dependence
on T to linear by overcoming the calculations of the inner
product of quantum states, which usually need many copies
of the states in each iteration step.

The unitaries that we construct to implement the row and
column iterations dominate the total cost of the quantum
algorithms. However, they highly depend on the unitaries to
prepare the quantum states of the rows and columns of the
coefficient matrix. Thus, we need to assume that these states
can be prepared efficiently. QRAM [15] is one general method
to prepare quantum states. But it needs a tree data structure
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TABLE I. The complexity comparison of classical and quantum
Kaczmarz and column iteration methods.

Algorithm Cost

Classical O(T n) = O
(
κ2

s n log 1
ε

)
Quantum O(T log n) = O

(
κ2

s (log n) log 1
ε

)

which is often difficult to obtain [16]. In some other special
cases [17], such as sparse or uniform, we can prepare the
states efficiently without QRAM. For simplicity, we will make
the assumption on the availability of QRAM in this paper. As
a result, we will show that the row (Kaczmarz) method and
the column (coordinate descent) method can be implemented
on a quantum computer in time O(T log n). In comparison,
the corresponding classical iteration methods have complexity
O(nT ). Thus our quantum algorithms achieve an exponential
speedup in the dimension n, while keeping the same depen-
dence on the number of steps T as classical algorithms.

Table I summarizes the difference of the classical and
quantum iterative algorithms obtained in this paper. In the
table we choose T = κ2

s log 1
ε
.

Table II compares the efficiency of previous quantum linear
solvers and ours. In Table III, we compare the different tech-
niques used in previous quantum linear solvers and ours. The
HHL and the Childs-Kothari-Somma (CKS) [19] algorithms
need the matrix A to be sparse, while the other three have
no such restriction. The Wossnig-Zhao-Prakash (WZP) [20]
algorithm and ours depend on the QRAM. But there is still a
little difference on the dependence. WZP’s algorithm needs
a unitary operator that can prepare all the quantum states
of the rows of A in parallel. More precisely, the unitary
achieves |i, 0〉 �→ |i, ai〉 for all i. This is a direct application
of the QRAM data structure. However, in our algorithms, we
do not need such a strong assumption. Instead, for each
row or column, we need a unitary operator to prepare its
quantum state. The unitaries of different rows or columns can
be different. So QRAM is not a necessary assumption, and our
algorithms work when we can prepare the quantum states of
the rows or columns. The Chakraborty-Gilyén-Jeffery (CGJ)
[14] algorithm is an application of block-encoding. With a
QRAM data structure, we can construct a block-encoding of
A. But the block-encoding can be constructed in many ways.

Throughout this paper, we use the following notation.
(i). A quantum state of the form

∑2k−1
i=0 αi|i〉|ψi〉 will be

simply denoted by α0|0〉⊗k|ψ0〉 + |0⊥〉⊗k| · · · 〉, when we are
only concerned about |ψ0〉 and neglect the garbage state.

TABLE II. The complexity comparison of quantum linear
solvers, where s is the sparsity of A and μ � ‖A‖F .

Algorithm Cost

HHL [18] O(sκ2(log n)/ε)
CKS [19] O(sκ (log n)poly log(sκ/ε))
WZP [20] O(κ2‖A‖F (poly log n)/ε)
CGJ [14] O(μκpoly log(n/ε))
This paper (Alg. 1, 2) O( κ2

s (log n)(log 1
ε

))

TABLE III. The techniques used in different quantum linear
solvers, where HS = Hamiltonian simulation, QPE = quantum phase
estimation.

Algorithm HS QPE QRAM

HHL
√ √

CKS
√

WZP
√ √ √

CGJ
√ √

This paper (Alg. 1, 2)
√

(ii). We denote SWAPi, j as the swap operator that swaps the
ith qubit and the jth qubit.

II. QUANTUM KACZMARZ ALGORITHM

Assume that the quantum state of at can be prepared
efficiently in the quantum computer, such as by QRAM. So
for each t ∈ {1, . . . , n}, there is an efficiently implemented
unitary operator Vt such that Vt |0〉 = |at 〉. Based on the it-
eration formula (1), without loss of generality, we suppose
that ‖at‖ = 1 for all t . This is not a mandatory assumption;
however, it can simplify the notations below. By Eq. (1), we
have xk+1 = xk − aik (aT

ik xk − bik ), that is,

|xk+1〉 ∝ ‖xk‖
(
In − ∣∣aik

〉〈
aik

∣∣)|xk〉 + bik |aik 〉. (6)

For any row index t , define a unitary operator

Ut =
[

In − |at 〉〈at | |at 〉〈at |
|at 〉〈at | In − |at 〉〈at |

]
= I2 ⊗ (In − |at 〉〈at |) + X ⊗ |at 〉〈at |, (7)

where X is the Pauli X matrix. We can rewrite Ut as

Ut = (I2 ⊗ Vt )(I2 ⊗ (In − |0〉〈0|) + X ⊗ |0〉〈0|)(I2 ⊗ V †
t ).

(8)

From this decomposition, we find that Ut is determined by Vt .
By the QRAM assumption, Vt is efficiently implemented on the
quantum computer, and so is Ut .

By Eq. (7), Ut can be viewed as a control operator: if the
second register is |at 〉, then apply X to the first register; if the
second register lies in the orthogonal complement space of
|at 〉, then do nothing to the first register.

The basic idea of the quantum implementation of
Kaczmarz iteration is as follows: Suppose that the quan-
tum information of |xk〉 is contained in |Xk〉 = √

p |0〉|xk〉 +√
1 − p |1〉| · · · 〉. Let β2 + γ 2 = 1, then we can prepare

|ψ〉 = SWAP1,2(β|0〉|Xk〉 + γ |1〉|0〉|at 〉)

= |0〉(β√
p |0〉|xk〉 + γ |1〉|at 〉) + β

√
1 − p |1〉|0〉| · · · 〉.

(9)

As for the first term, a simple calculation yields

Ut (β
√

p |0〉|xk〉 + γ |1〉|at 〉)

= |0〉 ⊗ (β
√

p(In − |at 〉〈at |)|xk〉 + γ |at 〉)

+β
√

p〈at |xk〉|1〉|at 〉. (10)
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Properly choosing the parameters β, γ , for example, β =
‖xk‖δ, γ = bt

√
pδ for some δ to ensure β2 + γ 2 = 1, then the

first term of Eq. (10) is a state proportional to the right-hand
side of Eq. (6).

The explicit procedure to implement Kaczmarz iteration is
stated in Algorithm 1 as follows.

Algorithm 1. The quantum Kaczmarz method.

1: Randomly choose a unit vector x0 such that its quantum state is
prepared in time O(log n). Set k = 0 and νk = 1. The initial state
can be expressed in the following general form:

|Xk〉 = ‖xk‖
νk

|0〉⊗k ⊗ |xk〉 + |0⊥〉⊗k | · · · 〉. (11)

2: Randomly choose tk from the index set {1, . . . , n}. Define β2
tk

=
ν2

k
ν2

k +b2
tk

, γ 2
tk

= 1 − β2
tk

and νk+1 = νk
βtk

. Then prepare the state

|Yk〉 = βtk |0〉|Xk〉 + γtk |1〉|0〉⊗k
∣∣atk

〉
.

3: Apply (I⊗k
2 ⊗ Utk ) SWAP1,k+1 to |Yk〉, then we obtain

|Xk+1〉 = ‖xk+1‖
νk+1

|0〉⊗(k+1) ⊗ |xk+1〉 + |0⊥〉⊗(k+1)| · · · 〉.

4: Set k = k + 1, and go to step 2 until convergence.

To generate the state |Yk〉 in step 2, we first prepare
(βtk |0〉 + γtk |1〉)|0〉 using the rotation determined by βtk and
γtk , then use the controlled operator that applies |Xk〉 and |atk 〉
on the second register. In step 3, we calculate that

I⊗k
2 ⊗ Utk

(
βtk ‖xk‖

νk
|0〉⊗k|0〉|xk〉 + γtk |0〉⊗k|1〉|atk 〉

+ |0⊥〉⊗k|0〉| · · · 〉)
= |0〉⊗(k+1) ⊗

[
βtk ‖xk‖

νk

(
In − |atk 〉〈atk |

)|xk〉 + γtk |atk 〉
]

+ |0⊥〉⊗(k+1)| · · · 〉
= βtk

νk
|0〉⊗(k+1) ⊗ [‖xk‖

(
In − |atk 〉〈atk |

)|xk〉 + btk |atk 〉
]

+ |0⊥〉⊗(k+1)| · · · 〉, (12)

where we use the fact that γtk =
√

1 − β2
tk = βtk btk /νk in the

last equality.
Similar to the classical Kaczmarz method, Algorithm 1

is also simple to implement on a quantum computer. Let xk

be the result obtained by the classical Kaczmarz method in
the kth step. Then the first term of |Xk〉 defined in Eq. (11)
contains all the information of xk precisely, i.e., ‖xk‖|xk〉.

Theorem 1. Assume that |at 〉 is prepared in O(log n) for
any t . In Algorithm 1, for any k � 1, we have

ν2
k = 1 +

k−1∑
i=1

b2
ti . (13)

The complexity to prepare |Xk〉 is O(k log n).

Proof. By definition in step 2 of Algorithm 1,

ν2
k+1 = ν2

k

β2
tk

= ν2
k + b2

tk .

Since ν0 = 1, we have

ν2
k = 1 +

k−1∑
i=1

b2
ti .

Assume that the complexity to prepare |Xk〉 is τk , then the
complexity for |Xk+1〉 in step 3 is τk + O(logn) since the time
for preparing |atk 〉 is O(logn). Thus, τk+1 = τk + O(logn).
Since τ0 = O(logn), we have τk = O(klogn). �

Strohmer et al. [13] sample a row in a random fashion with
probability proportional to the squared 2-norm of that row at
each iteration, and prove an exponential expected convergence
rate of the randomized Kaczmarz method. Under such discrete
sampling we have the expectation

E
[
b2

ti

] =
n∑

i=1

b2
i

‖ai‖2

‖A‖2
F

= ‖DbA‖2
F

‖A‖2
F

,

where Db = diag(b1, . . . , bn) is the diagonal matrix with the
diagonal entries defined by the vector b. Therefore,

E
[
ν2

k

] = 1 + (k − 1)E
[
b2

ti

] = 1 + (k − 1)
‖DbA‖2

F

‖A‖2
F

.

Since ‖DbA‖2
F =∑n

i=1 b2
i ‖ai‖2 � ‖b‖2

∞‖A‖2
F , we have

E[ν2
k ] � 1 + (k − 1)‖b‖2

∞. In addition, E[νk] = O(
√

k).
After it converges, in |Xk〉, we can apply the amplitude

amplification technique to increase the amplitude of |xk〉. The
complexity is O(k(log n)νk/‖xk‖). But it maybe better not
performing amplitude amplification since the norm informa-
tion of the solution xk is stored in the first term of |Xk〉. For
some problems in machine learning, such as data fitting, the
final output extracts certain global information, rather than
each component of a state. For example, to estimate the inner
product between xk and the vector c, we can first prepare the
quantum state |c〉, then apply the swap test to estimate the
inner product between |Xk〉 and |0〉⊗k|c〉. This returns an ε′
approximate of ‖xk‖〈xk|c〉/νk in time O(k(log n)/ε′). Thus,
by setting ε′ = ε/νk‖c‖, we will obtain an ε approximate of
xk · c in time O(k(log n)νk‖c‖/ε). We can also use amplitude
estimation to estimate the norm ‖xk‖ of the solution. This will
cost O(k(log n)νk/ε).

III. QUANTUM COLUMN ITERATION ALGORITHM

In this section, we apply similar techniques to Algorithm 1
to implement the column iteration algorithm on a quantum
computer. Denote the jth column of A as c j and assume that it
is normalized for simplicity. Suppose the quantum state of c j

can be efficiently prepared. That is, for each j, there exists an
efficient unitary operator S j such that S†

j | j〉 = |c j〉.
The column iteration method can be implemented as

follows. (1) Randomly choose an initial guess x0 and set
r0 = b − Ax0. (2) Randomly choose an index parameter tk ∈
{1, . . . , n} and update

xk+1 = xk + cT
tk rketk , rk+1 = (In − ctk cT

tk

)
rk . (14)
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Using quantum states, we can rewrite Eq. (14) as

|xk+1〉 ∝ ‖xk‖ |xk〉 + ‖rk‖ |tk〉〈ctk |rk〉,
|rk+1〉 ∝ ‖rk‖ (In − |ctk 〉〈ctk |)|rk〉. (15)

Before implementing the procedure (15) on the quantum
computer, we explain the main idea below. First, we consider
the update of the residual. The basic idea is the same as
Algorithm 1. Suppose that the residual of the kth step is
encoded in the state

|Rk〉 = ‖rk‖ |0〉⊗k|rk〉 + |0⊥〉⊗k| · · · 〉. (16)

Apply (I⊗k
2 ⊗ Utk )SWAP1,k+1 to |0〉|Rk〉, then(

I⊗k
2 ⊗ Utk

)
SWAP1,k+1|0〉|Rk〉

= |0〉⊗(k+1)‖rk‖(In − |ctk 〉〈ctk |)|rk〉 + |0⊥〉⊗(k+1)| · · · 〉
= ‖rk+1‖ |0〉⊗(k+1)|rk+1〉 + |0⊥〉⊗(k+1)| · · · 〉
= |Rk+1〉. (17)

This is in fact the Algorithm 1 with initial vector r0 and νk = 1
for all k.

Second, we consider the update of the approximate solu-
tion. Since 〈t |St = 〈ct |, we have

|xk+1〉 ∝ ‖xk‖ |xk〉 + ‖rk‖ |tk〉〈tk|Stk |rk〉. (18)

Algorithm 1 is not applicable to the above procedure directly.
Some modifications are required.

Suppose that the approximate solution xk and the cor-
responding residual rk are encoded in the following states,
respectively,

|X̃k〉 = ‖xk‖
ν

|0〉|xk〉 + |0⊥〉| · · · 〉, (19)

and

|R̃k〉 = ‖rk‖ |0〉Stk |rk〉 + |0⊥〉| · · · 〉. (20)

We then need to combine them to generate a state that contains
|xk+1〉.

First, we introduce two auxilla qubits to prepare the super-
position of the two states (19) and (20),

|φ1〉 = β|00〉|X̃k〉 + γ |10〉|R̃k〉, (21)

where β2 + γ 2 = 1. The state |φ1〉 is obtained in a similar way
to |Yk〉 defined in step 2 of Algorithm 1. For any t , define

Wt =

⎡⎢⎣In 0 0

0 In − |t〉〈t | |t〉〈t |
0 |t〉〈t | In − |t〉〈t |

⎤⎥⎦. (22)

Apply SWAP2,3Wtk to |φ1〉 to prepare

|φ2〉 = SWAP2,3Wtk |φ1〉
= SWAP2,3(β|00〉|X̃k〉 + γ |01〉|tk〉〈tk|R̃k〉 + |10〉| · · · 〉)

= |00〉
(

β‖xk‖
ν

|0〉|xk〉 + γ ‖rk‖ |1〉|tk〉〈tk|Stk |rk〉
)

+ |0⊥〉⊗2| · · · 〉. (23)

The operator Wtk helps us to compute 〈tk|Stk |rk〉 without using
the swap test.

To obtain the linear combinations of the right-hand side of
Eq. (18), the next step is to apply a single qubit operator to the
first register. Here we choose a rotation Gk = [ c s

−s c], where

c2 + s2 = 1. Apply I4 ⊗ Gk ⊗ In to |φ2〉, then we obtain

|φ3〉 = (I4 ⊗ Gk ⊗ In)|φ2〉

= |000〉
(

cβ‖xk‖
ν

|xk〉 + sγ ‖rk‖ |tk〉〈tk|Stk |rk〉
)

+ ∣∣0⊥〉⊗3| · · · 〉. (24)

We can properly choose the parameters c, s, β, and γ such that
the first term of |φ3〉 is proportional to

‖xk‖ |xk〉 + ‖rk‖ |tk〉〈tk|Stk |rk〉 = ‖xk+1‖ |xk+1〉. (25)

With the preparations above, we can present the quantum
column iteration algorithm as follows, where the rotation Gk

is defined by

Gk = 1√
k + 2

[√
k + 1 1

−1
√

k + 1

]
. (26)

Algorithm 2. The quantum column iteration.

1: Randomly choose a unit vector x0 such that its quantum state can
be prepared in time O(log n). Assume that r0 = b − Ax0 has unit
norm and its quantum state is prepared in time O(log n). Set
k = 0. Denote

|Xk〉 = ‖xk‖
k + 1

|0〉⊗2k ⊗ |xk〉 + |0⊥〉⊗2k | · · · 〉,

|Rk〉 = ‖rk‖ |0〉⊗k |rk〉 + |0⊥〉⊗k | · · · 〉. (27)

2: Randomly choose tk from the set {1, . . . , n}, and prepare the state√
k + 1

k + 2
|00〉|Xk〉 +

√
1

k + 2
|10〉(I⊗2k ⊗ Stk )|0〉⊗k |Rk〉, (28)

3: Apply (I⊗(2k+1)
2 ⊗ Gk ⊗ In)(I⊗2k

2 ⊗ Wtk )SWAP2,2k+2 SWAP1,2k+1

to the state (28), then we obtain |Xk+1〉.
4: Apply (I⊗k

2 ⊗ Utk )SWAP1,k+1 to |0〉|Rk〉 to generate |Rk+1〉.
5: Set k = k + 1, and go to step 2 until convergence.

In the algorithm above, the choices with β = c =√
(k + 1)/(k + 2) and γ = s = √

1/(k + 2) are optimal. The
analysis is easy since we need to keep cβ/(k + 1) =
sγ = 1/(k + 2) in Eq. (24), where ν = k + 1 comes from
Eq. (27).

We explain the update of approximate solution in details.
The state (28) in step 2 is denoted as |ψ0〉, that is,

|ψ0〉 =
√

k + 1

k + 2
|00〉

( ‖xk‖
k + 1

|0〉⊗2k|xk〉 + |0⊥〉⊗2k| · · · 〉
)

+
√

1

k + 2
|10〉(‖rk‖ |0〉⊗2kStk |rk〉 + |0⊥〉⊗2k| · · · 〉).

(29)
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If we apply SWAP2,2k+2SWAP1,2k+1 to |ψ0〉, then we obtain

|ψ1〉 =
√

k + 1

k + 2

( ‖xk‖
k + 1

|0〉⊗2k|00〉|xk〉 + |0⊥〉⊗2k|00〉| · · · 〉
)

+
√

1

k + 2

(‖rk‖ |0〉⊗2k|10〉Stk |rk〉 + |0⊥〉⊗2k|10〉| · · · 〉)
= |0〉⊗2k ⊗

(√
k + 1

k + 2

‖xk‖
k + 1

|00〉|xk〉 +
√

1

k + 2
‖rk‖ |10〉Stk |rk〉

)
+ |0⊥〉⊗2k| · · · 〉. (30)

Apply I⊗2k
2 ⊗ Wtk to |ψ1〉 to generate the state

|ψ2〉 = |0〉⊗(2k+1) ⊗
(√

k + 1

k + 2

‖xk‖
k + 1

|0〉|xk〉 + ‖rk‖√
k + 2

|1〉|tk〉〈tk|Stk |rk〉
)

+ |0⊥〉⊗(2k+1)| · · · 〉. (31)

Finally, apply I⊗(2k+1)
2 ⊗ Gk ⊗ In to |ψ2〉, then we obtain

|ψ3〉 = |0〉⊗2(k+1) ⊗
(

k + 1

k + 2

‖xk‖
k + 1

|xk〉 + ‖rk‖
k + 2

|tk〉〈tk|Stk |rk〉
)

+ ∣∣0⊥〉⊗2(k+1)| · · · 〉

= ‖xk+1‖
k + 2

|0〉⊗2(k+1) ⊗ |xk+1〉 + |0⊥〉⊗2(k+1)| · · · 〉
= |Xk+1〉. (32)

Similar to the proof of Theorem 1, we have the following
result.

Theorem 2. In Algorithm 2 the complexity to prepare |Xk〉
is O(k log n).

Remark 1. Since ‖x0‖ = 1, now assume that ‖xk‖ � k + 1
and ‖r0‖ = 1, then by Eq. (15),

‖xk+1‖2 = ‖xk‖2 + 2‖rk‖‖xk‖〈ctk |rk〉〈tk|xk〉 + ‖rk‖2〈ctk |rk〉2

� (k + 1)2 + 2(k + 1) + 1 = (k + 2)2.

Therefore, by induction the Eq. (27) is well defined.
Remark 2. By definition, r0 = b − Ax0, with a suitable

choice of x0 we can make sure that it has unit norm. Even
if it does not have unit norm, Algorithm 2 still works. Let
ρ be a parameter such that ρ‖r0‖ � 1. In Algorithm 2, it
suffices to change |R0〉 into |R̂0〉 = ρ‖r0‖ |0〉|r0〉 + |0⊥〉| · · · 〉.
By Eq. (15), ‖rk+1‖ |rk+1〉 = ‖rk‖ (In − |ctk 〉〈ctk |)|rk〉. There-
fore, |Rk〉 used in Algorithm 2 is simply changed into |R̂k〉 =
ρ‖rk‖ |0〉⊗(k+1)|rk〉 + |0⊥〉⊗(k+1)| · · · 〉, where k + 1 ancilla
qubits are used due to the extra one ancilla qubit introduced in
|R̂0〉. Since ρ‖r0‖ � 1, we have ρ‖rk‖ � 1 for all k.

Remark 3. For the update of residual we can use the linear
combinations of unitaries (LCU) [21]. It contains many appli-
cations in quantum computing, such as quantum simulation
[21,22], quantum linear solver [19]. Let U0, . . . ,Um−1 be
m unitary operators, and α0, . . . , αm−1 be m positive real
numbers. Set s =∑ j α j . Assume that V is a unitary operator

that maps |0〉⊗ log m to 1√
s

∑
j
√

α j | j〉. Given a quantum state

|ψ〉, the technique of LCU can compute
∑

j α jUj |ψ〉. In our
case, if we choose U0 = In, U1 = In − 2|ctk 〉〈ctk |, and α0 =
α1 = 1/2, then we can prepare (In − |ctk 〉〈ctk |)|ψ〉. However,
by using LCU, we will need two times the ancilla qubits in
preparing |Xk〉 in Algorithm 1, and |Rk〉 in Algorithm 2.

Denote the number of required iterations by T . From
Theorems 1 and 2, we find that the complexity of quan-
tum Kaczmarz and column iteration method is O(T log n).
However, the classical counterparts have complexity O(T n).

Therefore, in comparison, the quantum iterative algorithms
achieve an exponential speedup in the problem size n while
keep the same dependence on number of steps T .

IV. CONCLUSION

In this paper, we investigate the row (Kaczmarz) method
and the column (coordinate descent) method, and show their
simple implementations on a quantum computer based on
the idea of block-encoding. With the QRAM, the efficiency
is exponentially better in the problem size than their classi-
cal counterparts. Both quantum and classical Kaczmarz and
column iterations have linear dependence on the number of
iteration steps.

Our quantum iterative linear solvers are different from pre-
vious quantum linear solvers [18–20,23]. For solving linear
systems, our algorithms may not be superior to other quantum
linear solvers (see Table II). But the methods proposed in
this paper are independent of Hamiltonian simulation and
quantum phase estimation. They also work for the dense
linear systems. The only assumption on our algorithms is
the availability of QRAM, by which we can efficiently extract
the quantum states of the rows or columns of the coefficient
matrix. One drawback of our quantum iterative linear solvers
is the increasing number of ancilla qubits. Since the iteration
procedure is generally not unitary, we need to introduce
ancilla qubits to transform it into a unitary one. It remains
to be an unsolved problem to find better ways to reduce the
number of ancilla qubits, such as using the idea of the authors
of [24] to implement nonunitary operations.
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APPENDIX: DERIVATION OF THE ITERATIVE SCHEMES

The row and column iteration methods can be derived
in the following aspects: (1) the Gauss-Seidel method on
AAT y = b and AT Ax = AT b respectively; (2) the minimiza-
tion of quadratic functions ψ (y) = 1

2 yT AAT y − yT b and
ϕ(x) = 1

2 xT AT Ax − xT AT b in one coordinate direction at
each iteration step.

(1) The Gauss-Seidel method. For Ax = b where A ∈
Rn×n, the componentwise Gauss-Seidel scheme reads

x(l+1)
i = x(l )

i + 1

aii

⎛⎝bi −
i−1∑
j=1

ai jx
(l+1)
j −

n∑
j=i+1

ai jx
(l )
j

⎞⎠,

where the subscript i stands for the component (i =
1, . . . , n), and the subscript (l ) denotes the iteration step.
The term in the bracket is the ith component of the current
residual r = b − Ax, where the approximate solution x =
(x(l+1)

1 , . . . , x(l+1)
i−1 , x(l )

i , . . . , x(l )
n )

T
. For simplicity, we rewrite

it in a compact vector form

x ← x + 1

aii
eT

i (b − Ax)ei, (i = 1, . . . , n).

Note that the component index i can be chosen randomly from
{1, . . . , n} with certain probability.

(i) For AAT y = b, the diagonal element of AAT is aT
i ai,

where ai is the ith column of AT . Then the Gauss-Seidel
scheme for updating y reads

y ← y + eT
i (b − AAT y)

aT
i ai

ei.

Left multiplying AT , setting x = AT y and AT ei = ai, we have

x ← x + eT
i (b − Ax)

aT
i ai

ai.

Thus, we have the Kaczmarz scheme (1).
(ii) For AT Ax = AT b, the diagonal element of AT A is cT

i ci,
where ci is the ith column of A. The Gauss-Seidel method
updates x as follows:

x ← x + eT
i (AT b − AT Ax)

cT
i ci

ei.

Noticing that eT
i AT = cT

i , we have

x ← x + cT
i (b − Ax)

‖ci‖2
ei.

Thus, we have the column iteration scheme (2). Recalling that
rk = b − Axk , it can be rewritten as

αi = cT
i rk

‖ci‖2
,

xk+1 = xk + αiei,

rk+1 = rk − αici.

(2) The minimization of quadratic functions. We can derive
the iterative scheme by casting the solution to a quadratic
semidifinite programming (SDP) and minimizing in one co-
ordinate direction at each step.

(i) Minimization of ψ (y) = 1
2 yT AAT y − yT b. Let us start

from the approximate solution y and minimize it along the
direct ei. That is, we seek the next approximate solution y +
γ ei, by minimizing

1
2 (y + γ ei )

T AAT (y + γ ei ) − (y + γ ei )
T b,

which is equivalent to minimizing

1
2γ 2eT

i AAT ei − γ eT
i (b − AAT y).

Therefore,

γ = eT
i (b − AAT y)

eT
i AAT ei

= eT
i (b − Ax)

aT
i ai

.

The iterative scheme y ← y + γ ei, by using AT y = x and
AT ei = ai, can be reformulated as

x ← x + γ ai = x + eT
i (b − Ax)

aT
i ai

ai.

(ii) Minimization of ϕ(x) = 1
2 xT AT Ax − xT AT b, which is

equivalent to minimizing ‖b − Ax‖2. Assume that the current
approximate solution is x, and we minimize the function along
the direction ei. Set the next approximate solution as x + γ ei,
then we need to minimize

1
2 (x + γ ei )

T AT A(x + γ ei ) − (x + γ ei )
T AT b,

which is equivalent to minimizing

1
2γ 2eT

i AT Aei − γ eT
i (AT b − AT Ax).

Therefore,

γ = eT
i AT (b − Ax)

eT
i AT Aei

= cT
i (b − Ax)

cT
i ci

,

and the iterative scheme reads

x ← x + γ ei = x + cT
i (b − Ax)

cT
i ci

ei.
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