
PHYSICAL REVIEW A 101, 022321 (2020)
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We employ quantum optimal control theory to realize quantum gates for two protected superconducting
circuits: the heavy-fluxonium qubit and the 0-π qubit. Utilizing automatic differentiation facilitates the
simultaneous inclusion of multiple optimization targets, allowing one to obtain high-fidelity gates with realistic
pulse shapes. For both qubits, disjoint support of low-lying wave functions prevents direct population transfer
between the computational-basis states. Instead, optimal control favors dynamics involving higher-lying levels,
effectively lifting the protection for a fraction of the gate duration. For the 0-π qubit, offset-charge dependence
of matrix elements among higher levels poses an additional challenge for gate protocols. To mitigate this issue,
we randomize the offset charge during the optimization process, steering the system towards pulse shapes
insensitive to charge variations. Closed-system fidelities obtained are 99% or higher and show slight reductions
in open-system simulations.
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I. INTRODUCTION

The ability to perform fast, high-fidelity gate operations
on qubits is critical for quantum information processing. A
host of research over the past decades has pursued optimal
strategies to realize qubit gates [1–12]. Realizing universal
sets of quantum gates has been achieved through a variety of
techniques for different qubit implementations [13–19]. One
standard example of a minimal universal set of gates consists
of the single-qubit Hadamard gate H , the single-qubit T gate,
and one two-qubit entangling gate such as the controlled-Z
gate. Realizing these building blocks with high fidelities is
crucial in order to meet the gate-fidelity threshold required
for error correction codes [20,21].

With superconducting qubits, optimized gates with fideli-
ties exceeding 99% have been proposed [20,22–25], for ex-
ample, for the transmon qubit [26,27]. Driving transitions
in the computational subspace of the transmon qubit is fa-
cilitated by direct matrix elements between the states |0〉
and |1〉 whose wave functions reside in the same cosine-
potential well. Recently, a new generation of superconducting
qubits has been introduced which feature disjoint support:
low-energy wave functions are localized in different poten-
tial wells so that matrix elements of local operators are
exponentially suppressed [28–31]. Therefore, these qubits are
intrinsically protected from spontaneous transitions between
the computational-basis states. Two of the most promising
protected superconducting qubits are the heavy-fluxonium
qubit [30,32,33] and the 0-π circuit [29,34–36]. Performing
high-fidelity gates on these qubits is challenging precisely
because of the lack of direct transition matrix elements. For
the heavy-fluxonium qubit, these forbidden transitions have
been successfully accessed by stimulated Raman processes
[30,31]. For the 0-π circuit, a recent study has proposed

dc-voltage signals for realizing either an X gate or Hadamard
gate [36]. Here, we argue that optimal-control theory is a
promising route to explore the options for high-fidelity gates
in protected qubits such as heavy fluxonium and 0-π .

Optimal-control theory, applied to quantum systems,
achieves a set of optimization targets, the primary target
usually consisting of a maximized gate or state-transfer fi-
delity. Additional constraints associated with specific exper-
imental systems may be added, and include smoothing of
control pulses and limiting their amplitudes [37–39], as well
as accounting for the limited time resolution of arbitrary
waveform generators [40]. There are many different imple-
mentations of optimal-control algorithms. Examples of such
algorithms include implementations for closed [1,3,5,6,24]
and open [1,25,41] quantum systems; most of them are gra-
dient based. Some of these algorithms are available as open-
source packages [42–44], and we here utilize the automatic-
differentiation [45] based quantum optimizer we previously
introduced in Ref. [24]. Automatic differentiation allows for
the flexibility of adding optimization targets without calculat-
ing their analytical gradients. We utilize and further develop
this optimal-control implementation to obtain a universal set
of gates for the protected heavy-fluxonium and 0-π qubits. For
the latter, we find that optimal-control pulses strikingly suc-
ceed in overcoming the obstacle of offset-charge dependent
matrix elements.

II. OPTIMAL CONTROL THEORY

Quantum optimal control helps steer the time evolution
of quantum systems to realize a desired state transfer, uni-
tary operation, or readout protocol [37,38,46]. This is ac-
complished by optimizing a set of external control pulses
{u1(t ), . . . , uM (t )} which couple to the quantum system via
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TABLE I. Relevant contributions to the cost functional. Indices k, j label the kth control pulse and the jth discretized time step.

Cost functional contribution Explanation

C1 = 1 − 1
n2 |Tr(U †

t Uf )|2 Infidelity of realized unitary Uf relative to target gate Ut

C2 = ∑
k, j |uk j − uk j−1|2 First derivatives of the control parameters

C3 = ∑
k, j |uk j |2 Control pulse energy

control operators {H1, . . . ,HM} and, thus, change the system
dynamics. The resulting time-dependent Hamiltonian has the
general form

H (t ) = H0 + Hc(t ), (1)

where H0 is the intrinsic system Hamiltonian, also known
as drift Hamiltonian, and Hc(t ) = ∑M

k=1 uk (t )Hk . The task
of optimization is to determine a set of control pulses which
minimize a cost functional C[{uk (t )}]. This functional encodes
the infidelity of the target process, and may include additional
optimization constraints crucial for achieving realistic pulses.

We briefly review the pertinent contributions to the cost
functional employed in our work. In the case of a target
unitary operation Ut , acting on a closed system, the primary
cost to be minimized is the gate infidelity

C1 = 1 − Fc = 1 − 1

n2
|Tr(U †

t Uf )|2. (2)

Here, Uf is the unitary realized by a given set of control pulses
and n denotes the dimension of the Hilbert space. Secondary
optimization targets are utilized to smooth control pulses and
limit their signal power so as to enable their implementation
in the laboratory setting. In addition, cost penalties for occu-
pation of certain higher-lying states help avoid leakage and
ensure the validity of the inevitable Hilbert-space truncation.
The individual contributions to the cost functional are sum-
marized in Table I.

A common technique for cost minimization consists of gra-
dient ascent pulse engineering (GRAPE) [1] based on explicit
analytical expressions for the gradients of C with respect to
each of the control pulses uk (t ). Here, we utilize an automatic-
differentiation optimizer [24] built on TensorFlow [47], which
avoids the need for hard-coded analytical gradients of each
new contribution to the cost functional. Appendix A covers
the optimization process in greater detail.

To assess gate fidelities in the presence of dissipation and
dephasing, we employ a Lindblad master equation description
[48] of the quantum system weakly interacting with its envi-
ronment,

dρ

dt
= −i[H (t ), ρ] +

∑
l

γl

[
clρc†

l − 1

2
{c†

l cl , ρ}
]
. (3)

Here, ρ is the reduced density matrix of the system and {cl}
a set of jump operators capturing relaxation and dephasing
processes with associated rates {γl}. The metric we use for
open-system gate fidelity is given by

Fo = 1

n2
Tr(L†

t L f ), (4)

where Lt = Ut ⊗ U ∗
t is the target superoperator and L f is

the final superoperator defined by L f ρ(0) = ρ(t ), i.e., it

propagates a vectorized version of the system density matrix
(see Appendix B for more details).

III. OPTIMIZED UNIVERSAL-GATE SET FOR THE
HEAVY FLUXONIUM QUBIT

A. Single-qubit gates

The fluxonium qubit [32] is a promising superconduct-
ing circuit that may, in its most recent variants as “heavy
fluxonium” [30,32], outperform the widely used transmon
qubit [26,27]. In contrast to the transmon, heavy fluxonium
combines strong Josephson nonlinearity with T1 protection
due to disjoint support of its lowest-lying localized wave
functions. Heavy fluxonium devices utilize a decreased ca-
pacitive energy EC , which emphasizes the localization of
states [30,32]. Moreover, fluxonium eigenenergies are intrin-
sically insensitive to slow offset charge variations [49]. The
protection granted by disjoint state support, however, also
complicates the realization of universal gate operations by
means of external microwave pulses: matrix elements for
direct transitions between disjoint-support states remain ex-
ponentially suppressed. In this section, we show that optimal
control algorithms can nevertheless yield efficient protocols
for a universal gate set. Such protocols necessitate involve-
ment of higher qubit levels, and we carefully evaluate fidelity
limitations arising from temporary occupation of these states.

Experimentally, gates for heavy fluxonium have been re-
alized by driving Raman transitions [30,31], which utilize
intermediary higher-energy states to assist indirect transitions
between the protected states. We will demonstrate a similar
approach, exploiting the availability of intermediary state
transitions using optimal control theory. The optimal-control
formalism offers greater flexibility in terms of pulse shape,
and yields fast, high-fidelity single-qubit gates with gate times
below 100 ns and fidelities exceeding 99.9%. We obtain opti-
mized pulse shapes for X , H , and T gates, thereby establishing
a blueprint for realizing arbitrary single-qubit gate operations.

As typical in circuit QED [50,51], each gate is realized by
a microwave pulse applied to a transmission-line resonator
which, in turn, is coupled to the qubit. The corresponding
Hamiltonian for this driven, generalized Jaynes-Cummings
model is

HJC =
∑

l

εl |l〉〈l| + ωra†a +
∑
l,l ′

gll ′ |l〉〈l ′| (a† + a)

+ u(t )(a† + a), (5)

where εl , |l〉 are the fluxonium eigenenergies eigenstates la-
beled by index l and ωr is the resonator frequency. The relative
coupling strengths are given by gll ′ = g〈l|nφ|l ′〉, where nφ is
the fluxonium charge operator. Fluxonium eigenenergies and
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FIG. 1. First four fluxonium wave functions, slightly away from
the flux sweet spot (�ext = 0.45�0). The lowest-lying states |0〉 and
|1〉 are localized and have practically disjoint support. The auxiliary
states |2〉 and |3〉 delocalize over both potential wells and serve as
intermediate states for quantum gates. Gates involving population
transfer between |0〉 and |1〉 such as X or H gates utilize the
delocalized states for transfer across the potential barrier.

eigenstates are governed by the Hamiltonian [32,49]

H0 = 4ECn2
φ + 1

2 ELφ2 − EJcos(φ + 2π�ext/�0), (6)

in which EC , EL, and EJ denote the capacitive, inductive,
and Josephson energies, respectively. �ext is the external
magnetic flux threading the loop formed by the junction and
inductor. For the heavy-fluxonium qubit, we choose realistic
device parameters EC/h = 0.5 GHz, EL/h = 0.25 GHz, and
EJ/h = 4.0 GHz, and a flux working point slightly away from
half-integer flux, �ext = 0.45�0. This places the system in
the protected regime of nearly degenerate states |0〉 and |1〉
with disjoint support; see Fig. 1. (Operating the qubit away
from the half-integer flux sweet spot increases sensitivity to
dephasing from 1/ f flux noise, which we monitor closely in
our analysis).

Throughout this work, we focus on dispersive control of
the qubit, in which the drive tone u(t ) steers dynamics within
the qubit subsystem, but leaves the resonator state essentially
unchanged. This allows us to exclude the resonator subspace
from explicit simulation within the optimal-control algorithm.
We verify in a separate simulation that the resonator state is
unaffected by the drive tone, i.e., the average photon number
obeys 〈a†a〉 � 1 throughout the evolution. (It is interesting
to note that incorporating resonator degrees of freedom and
abandoning the dispersive regime offers additional ways for
optimal control [52] which are beyond the scope of this
paper). In the resulting driven-fluxonium Hamiltonian

H (t ) = H0 + Hc(t ), (7)

we properly account for the fact that the drive on the qubit
is filtered through the resonator. The dispersive coupling
between qubit and resonator produces an effective drive on
the qubit of the form

Hc(t ) = u(t )
∑
l,l ′

2gωr 〈l| nφ |l ′〉
(εl − εl ′ )2 − ω2

r

|l〉〈l ′| . (8)

See Appendix C for details [53]. For our simulation, we con-
sider a coupling strength and resonator frequency of g/2π =
300 MHz and ωr/2π = 7.5 GHz, respectively.

Using closed-system optimal control [54], we optimize the
control pulse u(t ) to realize three different single-qubit gates:
the Pauli-X gate, Hadamard gate, and the T gate,

X =
(

0 1
1 0

)
, H = 1√

2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)
.

The latter two gates are known to form a universal set of
single-qubit gates [55]. Optimization must balance two con-
flicting requirements: gate times tg should be as short as pos-
sible to minimize the influence of dissipation and dephasing;
at the same time, the maximum pulse amplitude max |u(t )|
must remain small enough to avoid population of the resonator
with unwanted photons. We find that pulses with tg on the
order of a few tens of nanoseconds satisfy these conditions
while also producing gates with high fidelities. In addition to
the cost-functional contribution C1, quantifying the target-gate
infidelity, we employ additional cost contributions C2 and
C3 to limit the time derivatives and maximum amplitude of
the pulse u(t ). Suppressing the maximum amplitude ensures
that occupation of the resonator with spurious photons is
minimized. The cost on pulse derivatives helps eliminate
unnecessary high-frequency components of u(t ) and render
the pulses as smooth as possible, which is important for
experimental applications, since instruments generating these
control fields have a finite impulse response.

The pulses we obtain have a gate duration of tg = 60 ns and
closed-system fidelities >99.9%. This choice of a relatively
long gate duration is driven by limiting the overall pulse
power. The panels of Figs. 2(a)–2(c) show the pulse u(t ) in
the time domain and its discrete Fourier transform ū( f ) in
the frequency domain. While interpreting optimized pulses
is notoriously difficult, we note that general features of the
three pulses and their frequency components can be given
physical meaning. The Pauli-X and Hadamard gates both
exhibit relatively well defined peaks in their Fourier spectra
ū( f ), which coincide with the relevant transition frequencies
among the lowest four levels primarily involved in the per-
formance of the gate operation; see inset in Fig. 2(a). Visual
inspection of u(t ) further reveals the staggered application of
different frequency components. The initial and final ∼5 ns
time windows are dominated by high-frequency components
related to transferring the system from the |0〉, |1〉 subspace
to the delocalized states |2〉, |3〉 (and back). The central time
window between t = 5 ns and 55 ns shows involvement of
the low-frequency components associated with the transfer
between the intermediary states |2〉 and |3〉. The T gate, by
contrast, exhibits a Fourier spectrum ū( f ) with only a single
dominant frequency component corresponding to the |1〉 ↔
|3〉 transition. This is plausible, since the T gate does not
necessitate population transfer across the potential well. The
transition peak for |1〉 ↔ |3〉 facilitates the needed eiπ/4 phase
accumulation for the |1〉 state.

Further evidence for this interpretation is given by Fig. 3,
showing the probabilities for occupying the various fluxonium
eigenstates as a function of time. For the Pauli-X gate and the
Hadamard gate, occupation probabilities pl (t ) = |〈l|ψ (t )〉|2
are obtained for the example of initial qubit state |ψ (0)〉 =
|0〉. As expected, the X gate transfers population into the
final state |1〉, while the H gate takes |0〉 into an equal
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FIG. 2. High-fidelity single-qubit gates for heavy fluxonium. (a) Optimized pulse shape u(t ) and its discrete Fourier transform ū( f ) for
the Pauli-X gate, achieving a gate fidelity of 99.94%. The Fourier transform exhibits distinct peaks that align with the transition frequencies
among the involved levels (see inset). (b) Corresponding pulse data for the Hadamard gate with a fidelity of 99.933%. (c) Optimized pulse for
the T gate with 99.933% gate fidelity. The Fourier transform shows a single peak centered at the |1〉 ↔ |3〉 transition, serving to induce the
required phase shift of π/4 for state |1〉.

superposition of |0〉 and |1〉. Both of these gates rely on the
auxiliary states |2〉 and |3〉 to transfer population between the
qubit computational states. By contrast, the T gate exhibits
qualitatively dissimilar behavior since there is no need for
state transfer across the fluxonium potential barrier. Instead,
the much weaker control field only causes a small amount
of intermediate population transfer from |1〉 to |3〉 for phase
accumulation.

Operating the fluxonium qubit away from its half-integer
flux sweet spot makes the gate fidelity more vulnerable to
the detrimental effects of 1/ f flux noise. At an external flux
of 0.45�0, we expect flux noise to limit the dephasing time
Tϕ and affect gate fidelities. To assess this issue, we follow

a hybrid approach in which we evaluate dephasing rates due
to classical 1/ f noise, and then incorporate these rates in the
Lindblad master equation. It must be emphasized that the lat-
ter step is a compromise we accept to avoid the heavier frame-
work of non-Markovian master equations strictly appropriate
for the inclusion of 1/ f noise. This compromise is justified
for a bound on the fidelity loss δF in the present context,
as gate durations are small compared to relevant dephasing
times, tg � Tϕ . (Note that the exponential decay modeled
by the Lindblad treatment is more rapid than the actual
Gaussian decay at short times). Following Refs. [35,56], we
consider the Gaussian decay (up to logarithmic corrections)
of the off-diagonal elements of the density matrix, and assign
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FIG. 3. Time evolution of state populations for 60 ns high-fidelity single-qubit gates. (a) The time evolution of states involved in the X
gate shows state transfer between the qubit computational states via the delocalized |2〉 and |3〉 states. (b) For the H gate, states are transferred
into an (approximately) equal superposition of |0〉 and |1〉. (c) In the T gate, the |1〉 state acquires an additional phase due to temporary state
transfer into the |3〉 state.

the standard deviation as the effective dephasing time. The
leading-order result from inspection of the density-matrix
element ρll ′ is given by

1/
(
T �ext

ϕ

)
ll ′ =A�ext

∣∣∂�extωll ′
∣∣√2|ln ωirt |. (9)

Here, A�ext = 1μ�0 is the flux-noise amplitude [57] and ωll ′

the frequency difference between fluxonium states |l〉 and
|l ′〉. In our calculations, we use ωir/2π = 1 Hz as the low-
frequency cutoff and t = 10 μs as the measurement time
scale [35]. For the heavy-fluxonium parameters stated above,
the extracted dephasing rates are of the order of ∼1 μs,
and specifically (T �ext

ϕ )10 = 3.1 μs for the two computational
states.

Gate fidelities are also negatively affected by depolar-
ization processes. Here, we consider dielectric surface loss
as a likely candidate for limiting the T1 time. While direct
transitions among the computational states |0〉 and |1〉 are
exponentially suppressed due to their disjoint support, tran-
sitions involving the delocalized levels |2〉 and |3〉 can occur.
The corresponding transition rates are given by

γll ′ = |〈l|nφ|l ′〉|2, (10)

where we fix the rate constant  by using the estimate 1/γ02 =
50 μs, a realistic intrawell decay time observed in experiments
using similar device parameters [58] and further supported by
dielectric loss theory [33].

Since the most relevant noise channels give rise to de-
coherence times that are about 102 times larger than tg, we
expect that open-system simulation using the optimized pulses
should only lead to small changes in gate fidelities. In our
calculation, we use a master equation of the form

dρ(t )

dt
= −i[H (t ), ρ(t )] +

(
D[c0] +

∑
l<l ′

D[cll ′ ]

)
ρ(t ), (11)

where dephasing due to flux noise is captured by the diagonal
jump operator c0 = ∑

l

√
(γϕ )l0 |l〉〈l| and depolarization due

to dielectric loss by cll ′ = √
γll ′ |l〉〈l ′|. The Lindblad damping

superoperator has the usual form D[c]ρ = cρc† − 1
2 {c†c, ρ}.

We calculate the resulting open-system gate fidelities by
means of the expressions detailed in Appendix B. The re-
sulting open-system fidelities for the X , H , and T gates are
99.66%, 99.60%, and 99.59%, respectively. This should be
compared to the corresponding closed-system fidelities of
99.94%, 99.93%, and 99.93%.

B. Controlled-Z gate

To obtain a set of gates universal for multiqubit unitaries,
we demonstrate an optimized controlled-Z (CZ) gate,

CZ =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠,

with a gate time of tg = 60 ns. We consider two heavy-
fluxonium qubits with identical circuit parameters of the same
values as in Sec. III A, but biased by different magnetic fluxes
�ext,1 = 0.45�0 (target qubit) and �ext,2 = 0.455�0 (control
qubit). Biasing the qubits by this small flux offset results in
coupling-induced energy shifts of ∼10 MHz for higher level,
noncomputational states, which can be used for state entangle-
ment. The interaction leaves computational states essentially
unshifted due to suppression of the 〈0|nφ|1〉 matrix element.

We couple each qubit to a shared resonator through a small
coupling capacitor. The resulting Hamiltonian

H (t ) = H0 + u1(t )H1 + u2(t )H2 (12)

generalizes Eq. (7). Here, H0 = H(1)
0 + H(2)

0 + H(1,2), where
H(i)

0 are the Hamiltonians for the two fluxonia (i = 1, 2)
and Hi are the dispersively filtered drives acting on each
qubit, in the form given in Eq. (8). The qubits are driven
by two separate pulses u1(t ) and u2(t ) for target and con-
trol, respectively. Due to the coupling to a shared resonator,
there is an effective mutual coupling H(1,2) between the two
fluxonium qubits that allows for entanglement generation; see
Appendix C for details.

As shown in Fig. 4(a), optimal-control theory yields pulses
u1(t ) and u2(t ) that activate a two-fluxonium CZ gate. As
in the case of a single fluxonium qubit, we employ cost
contributions C1, C2, and C3 in the optimization. The bottom
panel of Fig. 4(a) monitors the system time evolution in terms
of the occupation probabilities of participating states. We have
confirmed that the case with |11〉 acting as initial state shows
the largest amount of intermediate population transfer. This is
consistent with the fact that this state must acquire a phase
factor of eiπ , accomplished by the observed excursion into
states |13〉, |31〉, and |33〉. Like the T gate, only transitions
between states |1〉 and |3〉 are necessary to accumulate phase
factors. Figure 4(b) depicts the gate unitary achieved by
optimization. Uf is represented in the product basis |ml〉, with
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FIG. 4. Controlled-Z gate for two heavy-fluxonium qubits with a gate time of 60 ns [�ext,1 = 0.45�0 (target qubit) and �ext,2 = 0.455�0

(control qubit)]. (a) The top panel shows optimized pulses acting on the target and control qubit, u1(t ) and u2(t ), respectively, achieving
a closed-system fidelity of 99.4% and open-system fidelity of 99.0%. The cost functionals used are C1, C2, and C3. The bottom panel
shows occupation probabilities of system eigenstates |ml〉, with |11〉 chosen as the initial state. |11〉 undergoes the significant population
to intermediate states so as to induce a phase of eiπ , as required for the CZ gate. (b) Real part of the resulting unitary Uf achieved by
optimization, showing levels |0l〉 with 0 � l � 7, |10〉, and |11〉. Matrix elements between states in the computational subspace are marked by
dashed squares.

m and l labeling control and target qubit levels, respectively.
The relevant elements in the 4 × 4 computational subspace are
marked by dashed rectangles and have entries which closely
match the controlled-Z target unitary. Overall, the optimized
pulse trains realize the CZ gate with a closed-system fidelity
of 99.4% using the same gate time tg = 60 ns. Open-system
simulations including noise contributions from 1/ f flux noise
and dielectric loss result in an open-system fidelity of 99.0%.

Our optimal-control results for the CZ gate may be com-
pared to the recent work by Nesterov et al. [59]. The setup
in that work differs in the utilization of direct capacitive
or inductive coupling between the fluxonia, which are then
driven without shared resonator by a microwave tone with a
Gaussian envelope. The pulse is optimized over the ampli-
tude and drive frequency, rather than using a general-purpose
optimal-control package. For the same gate time of 60 ns
and direct capacitive coupling, they report a similar closed-
system fidelity of 99.3% employing a single pulse on only
one qubit.

IV. OPTIMIZED SINGLE-QUBIT GATE SET
FOR THE 0-π QUBIT

The 0-π circuit [29,34–36] further extends the protec-
tion afforded by the heavy-fluxonium qubit by combining
exponential suppression of both relaxation and dephasing
due to disjoint wave-function support and robust ground-state
degeneracy. We briefly review the physics of the 0-π circuit
and the parameters required for its protected regime. The
circuit consists of two superinductors of inductance EL, two
Josephson junctions with Josephson energy EJ and junction
capacitance CJ , and two large shunt capacitors C. The ideal
0-π Hamiltonian reads

H0 = (qθ − ng)2

2Cθ

+ q2
φ

2Cφ

+ ELφ2 − 2EJ cos(θ )cos(φ − π�ext/�0), (13)

where ng is the offset charge and qθ = 2enθ , qφ = 2enφ are
the charge operators canonically conjugate to the two degrees

of freedom θ and φ. The effective capacitances associated
with these two variables are Cθ = 2(C + CJ ) + Cg and Cφ =
2CJ + Cg, where Cg is a small capacitance due to coupling to
ground and external voltage lines [36]. The external magnetic
flux threading the circuit loop is denoted �ext.

For the 0-π qubit to realize the desired intrinsic protec-
tion, circuit parameters must satisfy several conditions. To
achieve localization along the θ axis, the effective mass in θ

needs to be heavy compared to that in φ direction, Cθ � Cφ ,
and the local potential wells deep enough to hold localized
states, e2/2Cθ � EJ . The latter condition also renders the
qubit charge-noise insensitive. To suppress sensitivity to flux
noise, wave functions should be delocalized along the φ

axis, obtained when EL � EJ , e2/2Cφ . Achieving this pa-
rameter regime remains experimentally challenging. Here, we
choose an “optimistic” parameter set previously considered
in Groszkowski et al. [35], namely EL/h = EC/h = 40 MHz,
EJ/h = 10 GHz, and ECJ/h = 20 GHz. This choice provides
an appropriate amount of qubit protection. The eigenspectrum
as a function of external flux �ext is shown in Fig. 5(a) along
with several eigenfunctions. The lowest two, |0〉 and |1〉, span
the computational subspace and are localized along θ = 0 and
θ = π , respectively. States higher up in the spectrum, such as
|13〉 and |14〉, are delocalized in the θ direction and will play
an important role in the gate protocols.

Similar to the situation with the heavy-fluxonium qubit,
disjoint support of the computational basis states in the 0-
π qubit provides intrinsic protection from decoherence, but
inevitably also prevents one from driving direct transitions
between the two qubit states. Di Paolo et al. [36] achieved gate
operations between states indirectly via a square voltage pulse
that drives transitions via intermediate higher excited levels.
Depending on device parameters, this strategy results either
in an X gate or a Hadamard gate, but does not readily yield a
gate set universal for single-qubit operations. For our optimal-
control search, we consider the more conventional method of
dispersively coupling the 0-π qubit to a resonator via nθ , and
driving the qubit via this resonator with a microwave pulse.
Together, the drift and control Hamiltonian for 0-π acquire
a form analogous to that encountered for heavy fluxonium in
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FIG. 5. Spectrum and matrix elements of the 0-π qubit. (a) Lowest 14 eigenenergies vs magnetic flux, and select 0-π eigenfunctions at
�ext = 0 and offset charge ng = 0.25. The lowest two eigenfunctions, forming the computational subspace, are localized around θ = 0 and
θ = π , and are nearly degenerate. The top two eigenfunctions shown are delocalized states which occupy both potential wells, and serve
as auxiliary states in gate operations. (b) Eigenenergies and nθ charge matrix elements vs offset charge ng. As eigenstates start delocalizing
along θ , eigenenergies become weakly dependent on offset charge. Charge matrix elements show significant dependence on ng for transitions
between delocalized high-energy states, e.g., |11〉 → |14〉. (Parameters: EL/h = EC/h = 40 MHz, EJ/h = 10 GHz, and ECJ/h = 20 GHz).

the previous section,

H (t ) = H0(ng) + Hc(t ). (14)

The control Hamiltonian Hc(t ) takes the form of Eq. (8), in
which we take the filtered drive to couple to the θ degree of
freedom (i.e., nφ is replaced with nθ ). Employing optimal con-
trol to find the appropriate pulse shapes u(t ) gives sufficient
flexibility for realizing a variety of single-qubit gates.

However, one challenge concerning 0-π gates which has
not previously been discussed is revealed by Fig. 5(b), show-
ing the dependence of charge matrix elements (nθ ) j j′ =
〈 j|nθ | j′〉 on the offset charge ng. Among low-lying, θ -
localized states, these matrix elements are practically ng in-
sensitive as expected. By contrast, as higher-energy states
start delocalizing in the θ direction, offset-charge dependence
of matrix elements becomes significant. This offset-charge
sensitivity may affect gate operations which utilize higher-
energy states as a means to transfer probability amplitude
between the θ = 0 and θ = π wells. The problem is ex-
acerbated by the fact that offset charge is not controlled
in experiments and is subject to significant fluctuations due
to 1/ f charge noise [60,61]. Our strategy is thus to steer
the optimizer towards control solutions that are maximally
insensitive to offset-charge fluctuations. Employing a scheme
analogous to that previously used by Khani et al. [62], we
have enhanced the optimal-control code to allow for drift
and control Hamiltonians to vary from iteration to iteration,
allowing us to choose random values of offset charge (using
a uniform distribution over 0 � ng < 1) for each individual
iteration of the optimizer. Directly applying the gradients
from each iteration results in a stochastic-gradient-descent
[63,64] process. With careful tuning of cost-function weights,

this process converges to an average solution balancing all
possible values of ng.

A second challenge concerns the inevitable presence of
disorder in circuit components which can lead to spurious
coupling to a harmonic, low-energy degree of freedom, the ζ

mode [34–36]. To avoid the overhead of a significant increase
in Hilbert space dimension, we apply the optimal-control
formalism to the ideal 0-π system, and verify subsequently
that weak coupling to the ζ mode does not significantly reduce
gate fidelities.

Figure 6 presents the results from optimal-control theory
for the three single-qubit gates X , H , and T . For all 0-π
gates, we again choose a gate duration of tg = 60 ns, which
aims to balance, on one hand, gate fidelity benefiting from
short gate times and, on the other hand, overall pulse power
which decreases as gate duration is increased. Both the X
and Hadamard gate [Figs. 6(a) and 6(b)] require probability-
amplitude transfer between computational-basis states, and
are seen to result in similar level-population dynamics ac-
cessing excited states |�10〉. Delocalization of these states
in the θ variable enables the population transfer between the
computational states, but also temporarily lifts the protection
granted by disjoint-support wave functions.

For both X and H gates, the plots of occupation probability
amplitude pj = |〈 j|ψ (t )〉|2 show initial and final phases of
state transfer out of and into the computational-basis sub-
space. The sequences of either even- or odd-numbered levels
reflect transitions among states centered at θ = 0 and π , re-
spectively. (The states |4〉 and |5〉 do not contribute due to the
lack of connecting matrix elements). Beyond these initial and
final phases, the dynamics is dominated by an extended inter-
mediate phase during which higher-excited states participate.
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FIG. 6. Optimized pulses for 0-π single-qubit gates at �ext = 0. For X gate, Hadamard gate, and T gate, (a)–(c) show panels with pulse
trains u(t ), fidelities vs offset charge, occupation probabilities, and mean and standard deviation of occupied levels (using ng = 0.25). Fidelity
variations vs offset charge are observed to be small compared to the average fidelity. The additional bottom panel in (b) depicts time evolution
snapshots of 0-π wave functions for the optimized Hadamard gate.

As expected, these states are delocalized in θ as illustrated by
the intermediate-time evolution snapshots for the Hadamard
gate [Fig. 6(b)]. As depicted in the plots of the average level
occupied and the standard deviation (calculated separately for

levels above and below the average), the intermediate-phase
dynamics is not readily interpreted as a sequence of transitions
among higher levels, but rather involves evolution among
superpositions of such states.
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Pulse shape and population dynamics are qualitatively
different for the T gate, which does not require transfer of
amplitude from the θ = 0 to the θ = π well; see Fig. 6(c).
Instead, the eiπ/4 phase accumulation required for the |1〉
state is obtained by temporary occupation of state |3〉 and
subsequent backtransfer into |1〉.

The closed-system fidelities, averaged over offset charge
ng, are 98.6% for the X gate, 99.4% for the H gate, and
99.95% for the T gate. The sub-99.9% fidelities for the X
and H gates can be attributed to the significant offset-charge
dependence of the transition matrix elements (nθ ) j j′ between
high-energy delocalized states; see Fig. 5(b). Since pulses for
X and H gates require occupation of these high-energy aux-
iliary states intermediately, optimization must compromise
between higher-fidelity solutions for different fixed offset
charges ng. The trade-off is most significant between the
offset charge values ng = 0 and 0.5. As shown in Fig. 5(b),
certain transitions between delocalized states are symmetry
forbidden at ng = 0, such as the |10〉 → |11〉 transition. This
forces the system to take a detour into higher-energy states
such as |13〉 or |14〉. The situation is reversed for ng = 0.5,
where |10〉 → |11〉 is allowed, but |10〉 → |14〉 is strongly
suppressed. The fidelity plots for the X and H gates in
Figs. 6(a) and 6(b) are consistent with this trade-off, show-
ing decreases in fidelity at ng = 0 and 0.5. The resulting
pulse shapes appear more complicated than their heavy-
fluxonium counterparts and their Fourier transforms (not
shown) do not exhibit the well-resolved peaks observed in the
fluxonium case.

We next investigate the performance of the optimized
pulses in the presence of circuit disorder—in particular, in
C and L. Such disorder leads to spurious coupling to the
harmonic ζ mode with mode frequency �ζ = √

8ELECζ
/h̄,

where ECζ
= e2/2Cζ and Cζ = 2C + Cg ≈ 2C [35,36]. The

resulting Hamiltonian reads

H = H0−π + �ζ a†a +
∑
j, j′

(κ j j′ | j〉〈 j′| a + H.c.), (15)

where | j〉 are 0-π eigenstates and κ j j′ = κ
φ

j j′ + i κθ
j j′ are cou-

pling strengths defined by

κθ
j j′ = 1

2
EC� dC

(
32EL

ECζ

)1/4

〈 j|nθ | j′〉 , (16)

κ
φ

j j′ = 1

2
ELdEL

(
8ECζ

EL

)1/4

〈 j|φ| j′〉 . (17)

We assume the relative disorder in inductance and capacitance
to be at the level of dL = dC = 5%. Disorder also leads to an
additional component to the drive that couples to the ζ mode,

nθ → nθ − βnζ , (18)

where nζ is the charge-number operator for the ζ mode and
β = C dC/Cζ (see Appendix A of Ref. [36]).

As noted in Ref. [35], the coupling to the ζ mode opens
up an unwanted shot-noise dephasing channel that is absent
in the symmetric 0-π device, and can become a dominant
source of dephasing. In addition to shot noise, we consider
1/ f charge noise. Since the induced dephasing rates are

offset-charge dependent, we consider a worst-case scenario
by maximizing dephasing rates over ng. Charge noise impacts
the system at intermediate times of the gate protocol, when
the system occupies unprotected high-energy states that are
delocalized in the θ variable. We further take into account
the effect of dissipation due to dielectric surface loss. Like
in heavy-fluxonium, while direct transitions between |1〉 and
|0〉 are suppressed due to disjoint support, transitions between
excited states can still occur. Using realistic parameters and
operating at the �ext = 0 sweet spot, we have confirmed that
other noise channels such as critical-current fluctuations and
flux noise are subdominant and do not lead to significant
reductions of the fidelity.

For the open-system simulation, we employ the obtained
pulses and evolve the system composed of 0-π and ζ mode
under the Lindblad master equation [see Eq. (11)]. Shot
noise is incorporated using absorption and relaxation rates
κζ nth(�ζ ) and κζ nth(�ζ ) + 1, respectively, where the ζ -mode
thermal occupation nth(�ζ ) is 2.29 at a temperature of 15 mK
and 1/κζ = 100 μs. Charge-noise dephasing is incorporated
using dephasing rates (γϕ ) j0, evaluated using the analog of
Eq. (9), here with derivative evaluated with respect to ng.
Finally, we model dielectric decay rates in the same way as
for fluxonium, i.e., we take γ j j′ =  |〈 j|nθ | j′〉|2 and fix the
rate constant  by taking 1/γ02 = 50 μs.

Based on this master-equation simulation, we obtain con-
servative lower bounds on average gate fidelities for the three
single-qubit gates: 95.8% for X , 97.9% for H , and 99.7% for
T . Evidently, inclusion of noise and coupling to the ζ mode
mainly affects the X and H gates. This fidelity loss is primarily
due to two factors: shot-noise dephasing induced by the ζ

mode, as well as occupation of higher delocalized states with
enhanced sensitivity to charge noise. (Note that lower bounds
report the worst fidelity, reached for a particular ng). We thus
find that the main barrier to achieving high-fidelity single-
qubit gates for 0-π is coupling to the ζ mode, offset-charge
fluctuations, and dielectric surface loss.

V. CONCLUSION

In summary, we have used optimal control theory for
implementing quantum gates for protected superconducting
qubits whose computational states have practically disjoint
support. We have presented optimal control pulses yielding
a fully universal set of gates for the heavy-fluxonium qubit
and a set universal for single-qubit gates for the 0-π qubit.
Specifically, we considered the Pauli-X gate, Hadamard gate,
and T gate with closed-system fidelities of >99.9% for heavy-
fluxonium; likewise a controlled-Z gate with a closed-system
fidelity of 99.4%. For the 0-π qubit, we implemented an
enhanced optimal-control method by allowing offset charge
to vary for each optimizer iteration. Applying gradients from
each iteration results in a stochastic-gradient-descent process.
This process converges to an average solution yielding a
fidelity averaged over a range of ng. We presented pulses
with closed-system average fidelities of 98.6%, 99.4%, and
99.95% for X , H , and T , respectively. Remarkably, this
method thus provides a way to find control pulses with
good fidelities which are roughly insensitive to random offset
charge changes.
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All constructed gates represent a compromise between lim-
iting drive powers to realistic values and mitigating the effects
of noise. To assess the fidelity losses in the open system, we
incorporated optimized pulses into a master equation treat-
ment. For heavy fluxonium, 1/ f flux dephasing and dielec-
tric surface losses were the primary sources of decoherence.
The resulting open-system fidelities obtained were >99% for
single-qubit gates and 99.0% for the controlled-Z gate. For
0-π , shot-noise dephasing in the ζ mode, 1/ f offset-charge
dephasing, and dielectric surface loss were the most relevant
noise sources. The resulting conservative lower bounds on
average fidelities for 0-π + ζ mode were 95.8%, 97.9%, and
99.7% for X , H , and T .

Future work should consider combining drive pulses with
the active cooling scheme proposed in Ref. [36], and con-
structing the more challenging 0-π multiqubit gates. Further
extensions may also entail using open-system optimization
algorithms [25,41] to partially mitigate gate-fidelity losses
due to noise. These will involve significantly more compu-
tational overhead. We believe that optimal control provides a
promising avenue toward universal gates on today’s protected
superconducting qubits.
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APPENDIX A: GRAPE OPTIMIZATION

In this Appendix we describe the GRAPE optimization
scheme summarized in Sec. II and utilized throughout the
paper. The optimizer iteratively adjusts the set of control
fields {u1(t ), . . . , uM (t )} such that the deviation of the realized
unitary Uf from the target unitary Ut is minimized. For the
numerical treatment, but also motivated by the finite resolu-
tion of arbitrary waveform generators, the gate time tg is dis-
cretized into a large number N of small time intervals δt and
corresponding discrete time instances t j = jδt . The control
amplitudes at these times, uk j = uk (t j ), can be grouped into
a vector u = (uk j ) ∈ RNM , and form the set of optimization
parameters.

The primary quantity to be optimized is the gate fidelity

Fc(u) = 1

n2
|Tr(U †

t Uf (u)|2, (A1)

where Ut is the desired target unitary, Uf (u) the unitary
realized by means of the control field, and n the relevant
Hilbert space dimension. The realized unitary is computed by
a decomposition into short-time propagators,

Uf = UNUN−1 · · ·U1U0, (A2)

where Uj = exp(−iHjδt ) describes the unitary evolution of
the system from time t j to t j + δt , and

Hj = H0 +
M∑

k=1

uk jHk (A3)

is the Hamiltonian at time t j .
In addition to the infidelity cost function C1(u) = 1 −

Fc(u), we also want to include additional costs to ensure
that the total control-pulse energy is not too large and that
the signals u j (t ) do not vary too rapidly. We thus define a
composite cost function

C(u) = C1(u) + α2C2(u) + α3C3(u), (A4)

in which C2 and C3 are the contributions quantifying pulse
derivatives and energy, as shown in Table I. The coeffi-
cients αm are the corresponding cost-function weights. (These
weights may need to be adjusted intermittently throughout the
course of optimization in order to help navigate toward higher
fidelities and more desirable pulse shapes).

The most basic way of minimizing the cost functional C(u)
is to apply updates of u by following the opposite direction of
the gradient,

up+1 = up − ηp
∂C(up)

∂up
. (A5)

Here, p denotes the pth iteration and ηp denotes the step size
on the pth iteration. This gradient descent can be improved,
e.g., by using ADAM [65], a “momentum-accelerated” gradi-
ent descent method that iteratively updates u using moving
averages of both the gradient direction and magnitude. We
implement ADAM with an exponentially decaying step size
(“learning rate”) given by ηp = η0e−βp, in which the param-
eters η0 and β, like the regularization coefficients α2 and α3,
may need to be intermittently adjusted.

Gradients ∂C(up)/∂up are computed using automatic dif-
ferentiation, a central tool in machine learning [45]. Rather
than hard-coding analytical gradients, this algorithm decom-
poses C(up) into its computational graph of elementary oper-
ations, each having known derivatives. Starting at the outer-
most function C in the graph, these derivatives are evaluated
iteratively in a back-propagation process. The gradient is
obtained from these elementary derivatives according to the
chain rule.

Throughout this paper, the initial pulses u0 are chosen as
Gaussian white noise, thus suppressing any bias towards any
particular pulse shape. The truncated Hilbert-space dimen-
sions for the fluxonium and 0-π qubits are n = 10 and n = 30,
respectively. Computations are carried out on a CPU with a
step count of N = 5000 for the chosen 60 ns gate duration,
amounting to a time step δt = 12 ps. The total number of iter-
ations typically ranged from 1000–2500, resulting in runtimes
of the order of a few hours.

APPENDIX B: OPEN-SYSTEM GATE FIDELITY

To assess the effects of dissipation on optimized gates,
we employ a definition of open-system fidelity that correctly
reduces to the closed-system fidelity when the coupling to
the environment is eliminated. This allows for consistent
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comparison between open and closed-system fidelities. The
definition makes use of the density matrix in vectorized (co-
herence vector) form, stacking the rows of the n×n density
matrix ρ into a n2×1 vector |ρ〉〉,

ρ =
∑

i j

ρi j |i〉 〈 j| −→|ρ〉〉 =
∑

i j

ρi j |i〉 | j〉 . (B1)

The evolution of the density matrix is then written with the
help of the n2×n2 superoperator L as |ρ(t )〉〉 = L|ρ(0)〉〉.

A consistent measure for the open-system gate fidelity is
then given by

Fo = 1

n2
Tr(L†

t L f ), (B2)

where Lt is the target superoperator and L f is the fi-
nal achieved superoperator. This metric correctly reduces
to the expression of the closed-system trace fidelity Fc =
|Tr(U †

t Uf /n)|2 when dissipation is switched off. To prove this,
we first describe the action on vectorized states equivalent to
matrix multiplication from the right and left on ρ,

Aρ =
∑

i j

ρi jA |i〉 〈 j| −→
∑

i j

ρi jA |i〉 | j〉 = A ⊗ I|ρ〉〉,

ρB =
∑

i j

ρi j |i〉 〈 j| B −→
∑

i j

ρi j |i〉 BT | j〉 = I ⊗ BT |ρ〉〉.

In the case of closed-system dynamics, the density matrix is a
pure state |ψ〉〈ψ |, and the evolution reduces to

Lcρ = Lc |ψ〉 〈ψ | = U |ψ〉 〈ψ |U † = UρU †, (B3)

where U is the closed-system propagator. In the vectorized
picture, this reads

Lcρ = UρU † −→ U ⊗ U ∗|ρ〉〉. (B4)

Therefore, computation of Fo yields

Fo = 1

n2
Tr

(
U †

t Uf ⊗ U T
t U ∗

f

) = 1

n2
|Tr(U †

t Uf )|2 = Fc, (B5)

consistent with the closed-system gate fidelity.

APPENDIX C: DISPERSIVELY FILTERED DRIVE AND
QUDIT COUPLING

This Appendix briefly summarizes the derivation of the
dispersive drive term [Eq. (8)] and the effective qudit-qudit
coupling mediated by a resonator. The derivation follows as
a slight generalization from Ref. [66] and is based on the
dispersive Schrieffer-Wolff transformation.

Consider a generalized Jaynes-Cummings Hamiltonian de-
scribing two qudits coupled to a resonator, the latter driven by
a microwave tone u(t ):

H = H0 + V + u(t )(a† + a). (C1)

Here, H0 = ωra†a + H (1)
0 + H (2)

0 comprises the resonator and
bare qudit Hamiltonians. V = V (1) + V (2) describes the qudit-
resonator coupling which is of the form

V (k) =
∑

ll ′
g(k)

ll ′ |lk〉〈l ′
k| (a† + a). (C2)

|lk〉 are the eigenstates of qudit k and g(k)
ll ′ = g 〈lk|nφ|l ′

k〉 the
coupling matrix elements with overall strength g. In the
dispersive regime, detunings are large compared to the cou-
pling, i.e., λ

(k)
ll ′ = g(k)

ll ′ /�
(k)
ll ′ � 1 with �

(k)
ll ′ = ε

(k)
l − ε

(k)
l ′ − ωr

denoting the detuning between qudit-k transition l → l ′ and
the resonator and ε

(k)
l the lth eigenenergy of qudit k. For our

second-order treatment, we only require the leading order of
the Schrieffer-Wolff transformation generator,

S ≡ −i
∑

k

∑
ll ′

(
λ

(k)
ll ′ a − λ

(k)
l ′l a†

) |lk〉〈l ′
k| , (C3)

with the second-order result

H ′ = H0 + u(t )(a† + a) + V + [iS, H0 + u(t )(a† + a)]

+ [iS,V ] + 1
2 [S, [S, H0 + u(t )(a† + a)]]. (C4)

First, focus on the first-order term [iS(k), u(t )(a† + a)].
This term is the leading drive contribution on qudit k. Eval-
uating the commutator yields

[iS(k), u(t )(a† + a)] = 2gωru(t )
∑

ll ′

|lk〉 〈lk| nφ |l ′
k〉 〈l ′

k|(
ε

(k)
l − ε

(k)
l ′

)2 − ω2
r

,

which captures the filtered drive on qudit k.
Second-order terms in Eq. (C4) become essential for cal-

culation of the effective qudit-qudit coupling. The terms that
lead to coupling are the “cross” commutators, [iS(k),V ( j)]
and 1

2 [S(k), [S( j), H0]] (k �= j). Together, these generate the
coupling term

H(1,2) = g2

2

(
n(1)

φ ⊗ ñ (2)
φ + ñ (1)

φ ⊗ n(2)
φ

)
, (C5)

where

ñ (k)
φ ≡ 2ωr

∑
ll ′

〈lk| nφ |l ′
k〉(

ε
(k)
l − ε

(k)
l ′

)2 − ω2
r

|lk〉〈l ′
k| . (C6)

The above coupling term is the natural generalization of the
two-qubit coupling discussed in Ref. [67].
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