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We derive a trade-off relation between accuracy of implementing a desired unitary evolution using a restricted
set of free unitaries and the size of the assisting system, in terms of the resource generating and losing capacity
of the target unitary. In particular, this relation implies that, for any theory equipped with a resource measure
satisfying lenient conditions, any resource changing unitary cannot be perfectly implemented by a free unitary
applied to a system and an environment if the environment has finite dimensions. Our results are applicable to
a wide class of resources including energy, asymmetry, coherence, entanglement, and magic, imposing ultimate
limitations inherent in such important physical settings, as well as providing insights into operational restrictions
in general resource theories.
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I. INTRODUCTION

One of the ultimate goals in quantum information science
is to understand the operational enhancement made possible
by quantum phenomena as well as limitations on the enhance-
ment imposed by laws of quantum mechanics. This is not
only an important theoretical question but also of practical
relevance, as recent years have witnessed the burgeoning
development in manipulation of systems on small scales, in
which quantum effects play central roles.

Any quantum information processing involves time evo-
lution of quantum states, and the most fundamental building
block for the quantum dynamics is unitary evolution. Even
though general quantum dynamics is described by completely
positive trace preserving (CPTP) maps, also called quantum
channels, any channel acting on a system can be simulated by
an appropriate unitary operation applied over the system and
an environment [1], and thus any quantum evolution can be
realized if one has access to an arbitrary unitary. However, due
to technological limitations as well as restrictions imposed by
laws of physics, physical systems usually do not allow one to
apply an arbitrary unitary. This makes it essential to consider
to what extent a desired unitary dynamics can be realized
only using a limited set of accessible unitaries. This question
has been specifically addressed for the systems with additive
conserved quantities, in which only unitaries that respect
the conservation laws can be applied [2–8]. In particular,
Ref. [7] has derived a lower bound for the necessary amount
of quantum fluctuation that the ancillary state must possess to
implement a desired unitary in terms of its implementation
accuracy and the amount of energy that the target unitary
can create, and they further derived lower and upper bounds
that always match asymptotically in the region where the
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implementation error is small [8]. The presented bounds lead
to a fundamental no-go theorem that prohibits the perfect
implementation of any unitary that can create energy using
an energy conserving unitary and finite-sized ancillary state.

However, there are various settings where other types of
quantities can play the main role, and one can ask whether
this type of trade-off relation is a general property shared
by generic physical situations. This line of thought naturally
leads to the idea of resource theories, which are general
frameworks that deal with quantification and manipulation
of precious quantities considered “resource” under a given
setting [9]. The resource theoretic framework allows for sys-
tematic investigation on specific physical settings [10–27] and
has turned out to be especially useful for providing a unifying
operational view to a general class of quantities [28–42]. In
this context, it can be seen that the previous works [7,8] dealt
with a specific theory [i.e., theory of asymmetry with U(1)
group [17,20]], and it has remained elusive whether one can
extend the relevant consideration to more general resources.

Here, we address the above question for the setting where
a set of “free” (i.e., accessible) unitaries is given, and one
aims to implement “resourceful” (i.e., nonfree) unitaries with
a free unitary and an aiding state defined in the ancillary
system. Our main results are trade-off relations between the
implementation accuracy, the amount of resources that the
target unitary can change, and the size of the ancillary system,
which are applicable to a wide class of physical settings that
satisfy several lenient conditions. These relations immediately
lead to no-go theorems that prohibit us from implementing
any resourceful unitary with perfect accuracy only using free
unitaries and aiding states defined in a system with finite size,
which qualitatively reproduces the results in [7,8] as a special
case. We also apply our results to several important settings
and discuss significance of the results.

This paper is organized as follows. In Sec. II, our setup and
useful quantities as well as conditions that play major roles
in later discussions are introduced. In Sec. III, our first main
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result on the trade-off relation between accuracy, the amount
of resources the target unitary can change, and the size of the
ancillary system is presented. In Sec. IV, we show our second
main result that relaxes one of the conditions in the trade-
off relation, which significantly increases its applicability.
In Sec. V, we apply our results to various resources such
as energy, asymmetry, coherence, entanglement, and magic.
In Sec. VI, we discuss possibilities of extending the no-go
result to even more general settings. We finally conclude our
discussion in Sec. VII.

II. FREE UNITARIES AND RESOURCE MEASURES

Let Hd denote the Hilbert space with dimension d and
D(Hd ) be the set of density operators acting on Hd . Also,
let UF (d ) ⊆ U (d ) be some set of unitaries acting on Hd and
define UF := ⋃

d UF (d ), which we call a set of free unitaries.
The set of free unitaries is usually determined by the system of
interest, and it can be most naturally understood as free oper-
ations in the context of resource theories. A resource theory is
specified by its set of free states and free operations, which
are considered given for free under the interested physical
setting, and an important requirement for free operations is
that they are not capable of creating any resources out of
free states. For instance, for the setting where two parties are
physically separated apart, a reasonable theory comes with
the set of separable states as free states and the set of local
operations and classical communication (LOCC) as free op-
erations. Motivated by the resource theoretic considerations,
we also define resource measures as the maps from states to
non-negative real numbers. If one assumes some underlying
resource theory of quantum states, one natural choice is to take
resource monotones (which evaluate zero for free states and
do not increase under application of free operations) defined
in the theory as resource measures.

Once some resource theory is provided, one can naturally
consider UF as the set of unitaries that are also free operations
(e.g., the set of local unitaries for the case of entanglement).
However, although considering the underlying resource the-
ory is conceptually useful, for our purpose, as long as the set
of free unitaries is given, one does not necessarily need to
assume an underlying structure of the resource theory. Indeed,
as we shall see later it is sometimes convenient to only con-
sider the set of free unitaries, not explicitly taking into account
the underlying set of free states. In the same vein, we do
not impose the monotonicity property for resource measures
in general. Instead, we consider the following properties for
a resource measure R determined by the given set of free
unitaries, which play major roles in later discussions.

Property 1 (Invariance under free unitaries). R(ρ) =
R(V ρV †),∀V ∈ UF .

Property 2 (Continuity). There exist non-negative increas-
ing functions f , g with limx→0 f (x) = 0, g(x) < ∞, ∀x < ∞,
and a real function h with limx→0 h(x) = 0 such that

|R(ρ) − R(σ )| � f (D(ρ, σ ))g(d ) + h(D(ρ, σ )) (1)

for ρ, σ ∈ D(Hd ), where D(ρ, σ ) is some distance measure
between ρ and σ .

Property 3 (Additivity for product states). R(ρ ⊗ σ ) =
R(ρ) + R(σ ).

Property 1 refers to the fact that free unitaries do not
change the resource contents attributed to quantum states, and
it is especially a natural property when application of a free
unitary can be reversed by another free unitary. Property 2
states that, if two states are close to each other, the amount
of resources possessed by these states should be also close.
Property 3 is the property that if a state is prepared indepen-
dently of another state, the resource contents attributed to the
two states are evaluated as the sum of the amount of resources
possessed by each state. As we see in Sec. V, these properties
are shared by a number of known resource measures, and we
shall obtain ultimate bounds on implementation accuracy of
desired unitary in terms of the resource measures satisfying
these conditions.

We also define the resource generating power and resource
losing power for unitary U [36,43–46]:

GU := max
ρ

{R(UρU †) − R(ρ)}, (2)

LU := − min
ρ

{R(UρU †) − R(ρ)}. (3)

Note that GU ,LU � 0 for any U because there always exists a
state ρ that is invariant under U , for which one can for instance
take ρ = |u〉〈u|, where |u〉 is an eigenstate of the unitary.

III. IMPLEMENTATION OF RESOURCEFUL UNITARIES

Once the concept of free unitaries is introduced, one can
ask what can be done with them and what are ultimate
limitations imposed on the tasks accomplished by the given
free unitaries. One of the fundamental questions that is both
practically and theoretically important is whether we can
implement (or simulate) nonfree unitaries, which we call
resourceful unitaries, only using free unitaries with the aid
of the ancillary system.

More specifically, our aim is to simulate the given unitary
US on the Hilbert space HS by a channel �S implemented by
a free unitary VSE ∈ UF acting on the Hilbert space HS ⊗ HE

and some ancillary state ρE ∈ D(HE ), i.e.,

�S (·) := TrE [VSE (· ⊗ ρE )V †
SE ]. (4)

The tuple I := (HE ,VSE , ρE ) defines a specific imple-
mentation of the channel. A standard way of evaluating the
closeness of two quantum channels is to see how close
the output states from these channels are when the channels
are allowed to act on only part of the input space. In order to
take into account the worst-case input, we define the error for
the given implementation I, which is a type of gate fidelity, as

δ
US
I := max

ρS

δ
US
I (ρS ), (5)

where

δ
US
I (ρS ) := Le(ρS,�U †

S
◦ �S ), (6)

�U (·) := U · U † (7)

and

Le(ρS,�) :=
√

2[1 − Fe(ρS,�)], (8)

Fe(ρS,�) := √〈ψ |SR [� ⊗ idR](ψSR) |ψ〉SR, (9)
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where |ψ〉SR is a purification of ρS . A related distance measure
is the Bures distance for two quantum states:

L(ρ, σ ) :=
√

2[1 − F (ρ, σ )], (10)

where F (ρ, σ ) := ‖√ρ
√

σ‖1 is the Uhlman fidelity. The
choice of this distance measure is primarily due to the math-
ematical convenience in later discussions, but because of the
well-known relations with other distance measures, one can
easily transform the results to the ones with respect to other
measures as well—indeed, we will reformulate the relation
in terms of the distance measure based on trace norm and
diamond norm, which come with clear operational meaning
in terms of distinguishability.

Then, we obtain the following trade-off relation between
resourcefulness of desired unitary, implementation accuracy,
and dimension of the ancillary system with respect to any
resource measure satisfying the three properties above.

Theorem 1. Let R be a resource measure satisfying Prop-
erties 1, 2, 3 and fL, gL, hL, GUS , LUS be the functions defined
in (1), (2), (3) with respect to R and the Bures distance:
D(ρ, σ ) := L(ρ, σ ). Then, for any implementation I, it holds
that

GUS + LUS � αL
(
δ

US
I , dE

) + βL
(
δ

US
I

)
, (11)

where αL(x, y):= fL(2
√

2x)gL(y)+2 fL(2x)gL(dS·y), βL(x) :=
hL(2

√
2x) + 2hL(2x), with dE := dim HE , dS := dim HS .

The proof of Theorem 1 can be concisely stated by utilizing
the “no-correlation lemma” shown in [8], which quantitatively
clarifies the fact that, in order to implement a unitary on
the target system approximately, the correlation between the
target system and the external device must become weak. We
defer a detailed proof to the Appendixes. Note that αL and βL

are increasing functions that approach zero as x, y → 0. Thus,
fixing the dimension of the system of interest, Theorem 1
can be seen as a trade-off relation between the size of the
device in the ancillary system and the implementation ac-
curacy, and in particular the result indicates that in order to
implement a resourceful unitary the dimension of the ancillary
system must grow as the implementation becomes better,
and at the limit of perfect implementation the size of the
ancillary system must diverge. Notably, Theorem 1 holds for
any resource measure that satisfies Properties 1, 2, 3, which
ensures a wide applicability of the trade-off relation. This
observation immediately leads to the following fundamental
no-go theorem.

Corollary 1. Given the set of free unitaries UF and a
finite-dimensional ancillary system HE with dim HE < ∞,
it is impossible to perfectly implement any unitary that can
generate (or lose) nonzero resources in terms of at least one
resource measure satisfying Properties 1, 2, 3 by means of
Eq. (4).

Theorem 1 and Corollary 1 suggest an important
implication—one might think that if a target operation can
only create a certain amount of resource, supplying a state
defined in a finite-dimensional space with roughly the same
amount of resource would be enough to accomplish the de-
sired implementation. The above results state that it is not

the case when it comes to the unitary implementation, and
Theorem 1 in particular provides a quantitative estimation
of the necessary dimension even when a nonzero error is
allowed.

It is also convenient to rewrite Theorem 1 in terms of the
trace norm and diamond norm.

Corollary 2. Suppose the implementation I = (HE , ρE ,

VSE ) implements channel �S with the error measured by the
diamond norm: δ

US
I,
 := ‖�US − �S‖
. Let R be a resource

measure satisfying Properties 1, 2, 3 and f1, g1, h1, GUS , LUS

be the functions defined in (1), (2), (3) with respect to R and
the trace norm: D(ρ, σ ) := ‖ρ − σ‖1. Then, it holds that

GUS + LUS � α1
(
δ

US
I,
, dE

) + β1
(
δ

US
I,


)
, (12)

where α1(x, y) := f1(4
√

2x)g1(y) + 2 f1(4
√

x)g1(dS · y) and
β1(x) := h1(4

√
2x) + 2h1(4

√
x).

This is a direct consequence from Theorem 1, but we
include a proof in the Appendixes for completeness.

IV. RELAXATION OF ADDITIVITY CONDITION

Although a large class of resource theories possess generic
resource measures that satisfy Property 1 and Property 2, the
additivity condition (Property 3) is rather a peculiar one. In
fact, classes of resource measures that can be defined for
any convex resource theory (e.g., relative entropy measure,
robustness measure, convex roof measure, etc.) are often only
subadditive for product states. Thus relaxing the additivity
condition is highly desired in order for the results to be
applicable to more generic scenarios.

Here, we relax the additivity condition into that for pure
product states. It gives us much more freedom to choose re-
source measures because some important measures are addi-
tive only for pure product states. Examples for such measures
include relative entropy of entanglement [47] and (logarithm
of) stabilizer extent for the theory of magic [48], which we
discuss later in detail.

To this end, we introduce a relaxed version of Property 3
for resource measures.

Property 3′ (Additivity for pure product states). R(ρ⊗σ ) =
R(ρ) + R(σ ) for any pure states ρ, σ .

We also define the following resource generating and los-
ing power for pure input states:

G p
U := max

|ψ〉
{R(U |ψ〉〈ψ |U †) − R(|ψ〉〈ψ |)}, (13)

Lp
U := − min

|ψ〉
{R(U |ψ〉〈ψ |U †) − R(|ψ〉〈ψ |)}. (14)

For the same reason that GU ,LU � 0, it also holds that
G p

U ,Lp
U � 0 for any unitary U .

Then, we obtain the following trade-off relation.
Theorem 2. Let R be a resource measure satisfying Prop-

erties 1, 2, 3 ′ and fL, gL, hL, G p
US

, Lp
US

be the functions
defined in (1), (13), (14) with respect to R and the Bures
distance: D(ρ, σ ) := L(ρ, σ ). Then, for any implementation
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I = (HE ,VSE , ρE ) with a pure state ρE , it holds that

G p
US

+ Lp
US

� 2
(

fL
(
2(1 +

√
2)δUS

I
)
gL(dE dS ) + hL

(
2(1 +

√
2)δUS

I
))

.

(15)

A proof can be found in the Appendixes. It is worth noting
that R does not have to be defined for general mixed states; as
long as it is well defined for pure states, the statement holds
and the continuity (Property 2) can be relaxed to that for pure
states.

This Theorem leads to a variant of the aforementioned
no-go theorem on perfect implementability of a resourceful
unitary.

Corollary 3. Given the set of free unitaries UF and a
finite-dimensional ancillary system HE with dim HE < ∞,
it is impossible to perfectly implement any unitary that can
generate (or lose) nonzero resources out of pure states in terms
of at least one resource measure satisfying Properties 1, 2, 3 ′
by means of Eq. (4) with ρE being a pure state.

These results encompass a standard setup where some unit
resource state (e.g., Bell state for entanglement and uniform
superposition state for coherence), which is usually pure, is
prepared in the ancillary system. Although using the unit state
as a resource supply appears to be more effective than using
a mixed state, interestingly the requirement for Theorem 2
to hold is more lenient than that for Theorem 1, imposing
more severe restriction on the achievable accuracy for the
implementation with a pure ancillary state.

V. APPLICATIONS

Here, we examine the validity of our results by applying
them to specific physical settings. Although there is no sys-
tematic way of constructing a resource measure satisfying the
three properties to our knowledge, it turns out that many of the
important settings come with such measures tailored to each
situation.

A. Systems with additive conserved quantities

Consider a composite system consisting of subsystems
{Si}M

i=1 with an observable Htot = H1 ⊗ I⊗M−1 + I ⊗ H2 ⊗
I⊗M−2 + · · · , where Hi are local observables associated with
subsystem Si. For these observables, we choose the set of
free unitaries as the ones that conserve the expectation values
for any states, or equivalently, commute with the observable.
Namely, we choose

UF = {
US1...SM

∣∣[Htot,US1...SM

] = 0
}
. (16)

An important setting that fits into this formalism is the
system with conserved energy where the observable in ques-
tion is the Hamiltonian of the system. Then, the free unitaries
can be considered time evolutions that respect the energy-
conservation law, which in particular play key roles in ther-
modynamics on small scales [13,14,49–57].

For this theory, natural resource measures one can take
will be the expectation value of the observable: R(ρS ) :=
Tr[ρSHS]. It is clear that this measure satisfies Properties 1
and 3. Regarding Property 2, let us take the observable of the

form HS = ∑dS−1
j=0 j| j〉〈 j|. Then, we get

|R(ρ) − R(σ )| = | Tr[(ρ − σ )HS]|

=
∣∣∣∣∣∣
∑

j

(ρ j j − σ j j )HS, j

∣∣∣∣∣∣
�

∑
j

|(ρ j j − σ j j )||HS, j |

�
∑

j

|(ρ j j − σ j j )|‖H‖∞

= ‖	(ρ − σ )‖1(dS − 1)

� ‖ρ − σ‖1(dS − 1), (17)

where ρ j j = 〈 j| ρ | j〉, σ j j = 〈 j| σ | j〉, HS, j = 〈 j| HS | j〉, 	 is
the dephasing with respect to the eigenbasis of HS , and we
used the contractivity of the trace norm under CPTP maps in
the last inequality. Thus, for this case, one can take f1(x) = x,
g1(x) = x, and h1(x) = −x in Corollary 2, and we conclude
that the finite-dimensional environment does not allow for
perfect implementation of unitary that changes the energy by
any energy-conserving unitary and an energy “battery” state,
which qualitatively reproduces the results in [7,8]. Although
we considered the observable with uniform spectrum, a sim-
ilar argument can be applied to other observables with more
general form.

It will be worth pointing out that this is a situation where
our approach in which one does not necessarily need to
assume any underlying resource theory becomes useful, since
the concept of free states and free operations for this setting
can be ambiguous—from the perspective that the energy is
resource, one could say that the ground state |0〉 is free, but
in that case the set of free unitaries defined in terms of free
operations does not coincide with the set of energy-conserving
unitaries since any unitary that can change energy but does not
affect the ground state (e.g., bit flip between |1〉 and |2〉) also
becomes free in this definition. Thus, when the focus is put
on the conservation law, it is natural to just consider the set of
free unitaries that meets the physical requirement.

On the other hand, by shifting our focus on the type of
resource of interest from the expectation value of the observ-
able to that of fluctuation, the underlying resource theory can
be naturally identified as the resource theory of asymmetry
[17,20]. In particular, the resource theory of asymmetry with
U(1) group with unitary representation Ut = eiHSt is equipped
with a family of resource monotones that are additive for
product states known as metric-adjusted skew informations
[58–60]. One of the examples in this family is the well-known
Wigner-Yanase skew information [61,62] defined as

IWY (ρ, HS ) = − 1
2 Tr([

√
ρ, HS]2)

= Tr
(
ρH2

S

) − Tr(
√

ρHS
√

ρHS ). (18)

Since this satisfies Properties 1 and 3, Theorem 1 and Corol-
lary 2 can be applied with respect to this measure as well,
providing another way of looking at the trade-off relation.

Finally, when the observable of interest is the Hamilto-
nian, the free unitaries in (16) preserve the Gibbs state τ =
exp(−HS/T )/Z , where T is the temperature and Z is the
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partition function of the system. This motivates us to consider
the “athermality,” a measure indicating the distance from the
Gibbs state to the given state, and especially the free energy is
recovered by taking the relative entropy as a distance measure:

AR(ρ) := S(ρ||τ ) = 1

T
[F (ρ) − F (τ )], (19)

where F (ρ) := Tr[ρHS] − T S(ρ) is the free energy. It is then
easy to see that this also satisfies all the three properties.

B. Coherence

Consider the theory of coherence [10,12,23], where one
is interested in the degree of superposition with respect to
the given preferred basis {|i〉}. For this theory, the set of
incoherent states I := conv({|i〉〈i|}) is a reasonable choice
for the free states and one can naturally choose the relevant
free unitaries UF (d ) = {U | U = ∑d−1

j=0 eiθ j |π ( j)〉〈 j|}, where
π is the permutation on {0, . . . , d − 1}, which is often called
the set of incoherent unitaries.

As a resource measure, let us consider a standard coherence
measure, the relative entropy of coherence:

CR(ρ) := min
σ∈I

S(ρ||σ ) = S(	(ρ)) − S(ρ). (20)

For this measure, it is easy to see that Property 1 is
satisfied. The explicit form of CR in (20) ensures Property 3
as well because of the additivity of the von Neumann entropy
for product states. As for Property 2, recall the following
asymptotic continuity property that holds for relative entropy
measure MR(ρ) := infσ∈F S(ρ||σ ), with F being any convex
and closed set of positive semidefinite operators that contains
at least one full-rank operator [63]:

|MR(ρ) − MR(σ )| � κε + (1 + ε)b

(
ε

1 + ε

)
(21)

for any two states 1
2‖ρ−σ‖1 � ε, where κ:= supτ,τ ′ {MR(τ ) −

MR(τ ′)} and b(x) := −x log x − (1 − x) log(1 − x) is the
binary entropy. For the case of theory of coherence, Eq. (21)
reduces to the following bound:

|CR(ρ) − CR(σ )| � ε log d + (1 + ε)b

(
ε

1 + ε

)
, (22)

for which we find f1(x) = x, g1(x) = log x, and h1(x) =
(1 + x)b[x/(1 + x)]. Since this measure is also faithful, i.e.,
CR(ρ) = 0 iff ρ ∈ I , Corollary 2 implies that any coherence
generating unitary that can create a coherent state out of an
incoherent state cannot be implemented with zero error with
the aid of any coherent state acting on a finite-dimensional
ancillary system.

C. Entanglement

Arguably, entanglement is one of the most important re-
sources to consider, which has a strong connection to opera-
tional tasks in quantum information processing. In particular,
using only local operations and classical communication to
implement desired global operations with the help of pre-
shared entanglement is a key idea of quantum network and
distributed quantum computing [64,65], and methodology as
well as necessary entanglement cost for implementing global

gates with local operations and classical communication have
been considered for various settings [66–72]. Our formalism
addresses a more restricted scenario where the parties only
have access to local gates in order to implement a desired
global gate with the aid of preshared entanglement. Our
results induce necessary size of the shared entangled state and
imply the impossibility of perfectly implementing any entan-
gling gate with finite-sized aiding system. Since it is clearly
possible to perfectly implement any global unitary if classical
communication is allowed (via quantum teleportation), our
results clarify the significance of classical communication for
the situations such as distributed quantum computing [73].

In order to apply our results, we need to find an entangle-
ment measure satisfying the three properties. In particular, one
needs to be careful about the additivity property since some
well-known entanglement measures [e.g., such as the (max-)
relative entropy of entanglement [74,75] and robustness of
entanglement [76]] are only subadditive even for product
states, and it had been indeed an important program to find an
additive measure of entanglement. As a result, the squashed
entanglement was introduced as an additive entanglement
measure [77] and its continuity was also shown [78]. In
addition, the conditional entanglement of mutual informa-
tion [79] was introduced as another additive and continuous
measure of entanglement. Remarkably, this measure can be
easily extended to multipartite entanglement, which allows
our results to be applied to the multipartite scenarios.

On the other hand, Theorem 2 allows us to avoid this
subtlety and take an even simpler entanglement measure. For
instance, the relative entropy of entanglement is additive for
pure product states, as can be seen by noting that it reduces
to the entanglement entropy for pure states. Since it clearly
satisfies Properties 1 and 2 as well, Theorem 2 and Corollary 3
immediately follow for such measure.

D. Fault-tolerant quantum computation

To realize the quantum computation in a noise-resilient
fashion, which is so called fault-tolerant quantum compu-
tation [80,81], encoding quantum states into quantum error
correcting codes and carrying out logical computation inside
the code space is essential. Since many promising error cor-
recting codes allow for relatively efficient implementation of
the logical Clifford gates in a fault-tolerant manner [82–86],
for the situations where those codes are in use, Clifford gates
can be naturally considered “free”. However, since Clifford
gates do not form a universal gate set, some non-Clifford gate
needs to be implemented fault tolerantly, and a popular way of
realizing it is via the gate teleportation [87], in which “magic
states” [88] are injected as resources of “non-Cliffordness.”
Since good logical magic states are hard to prepare in gen-
eral, a magic-state distillation protocol [88] should be run
beforehand to increase the quality of the noisy magic states.
However, a large overhead cost comes with the distillation
protocols and how to reduce the overhead has been under
active research [89–100] (error correcting codes that avoid
using the magic-state distillation have also been investigated
[101–108]), and this costly nature of magic states motivates
us to consider the resource theory of magic, which considers
the “magicness” as precious resources.
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The resource theory of magic is defined by the set of free
states called stabilizer states, which is the convex combination
of pure states produced by Clifford gates [26]. By definition,
non-Clifford gates are able to create nonstabilizer states out
of stabilizer states, and as described above it is an essential
building block for universal quantum computation. This oper-
ationally motivated framework leads us to a natural question
on how well a non-Clifford gate could be implemented by
Clifford gates with the aid of magic states as resources.
Our results address this question by considering appropriate
resource measures for magicness. We consider the cases of
qubits (dimension 2) and quopits (qudits with odd-prime
dimensions) separately.

1. Qubits

Although one can consider valid magic monotones defined
for multiqubit states (e.g., relative entropy of magic [26] and
robustness of magic [19]), they are not additive for product
states in general, which prevents us from applying Theorem 1.
However, Theorem 2 turns out to be useful in this case
since there indeed exists a measure defined for pure states
and additive for pure product multiqubit states. To this end,
consider the stabilizer extent introduced in [48]:

ξ (|ψ〉) := min

⎧⎨
⎩

(∑
i

|ci|
)2

∣∣∣∣∣∣ |ψ〉 =
∑

i

ci |φi〉
⎫⎬
⎭, (23)

where |φi〉 are pure stabilizer states. The stabilizer extent
was originally introduced for investigating the overhead cost
for classically simulating quantum circuits, but we find that
it is also useful for our purpose, providing another per-
spective to this measure. Let us take our resource measure
as R(|ψ〉〈ψ |) = log ξ (|ψ〉). It was shown that the stabilizer
extent is multiplicative for tensor products between states
supported on up to three qubits [48], and thus R satisfies
Property 3 ′. Property 1 is also satisfied because of the mono-
tonicity of ξ under Clifford gates and reversibility of Clifford
unitary under another Clifford unitary (since Clifford gates
constitute a group). As for Property 2, we first remark that our
measure coincides with the max-relative entropy of magic for
pure states as shown in [39], where the max-relative entropy
measure is defined as

Dmax(ρ) := min { r | ρ � 2rσ, σ ∈ STAB}, (24)

where STAB refers to the set of stabilizer states and � denotes
the inequality with respect to the positive semidefiniteness.
Then, we prove the following continuity bound for max-
relative entropy of magic, which may be of independent
interest. Using the identity between R and (24) for pure states,
the continuity of stabilizer extent is derived as a special case
of this result. It would be also worth noting that the following
result holds for the max-relative entropy measure defined for
any convex resource theory that includes the maximally mixed
state as a free state. (One can also easily extend the relation to
the theories with at least one full-rank free state.)

Proposition 1. Let ρ, σ ∈ D(HdS ) and suppose that
‖ρ − σ‖1 < 1/(2dS ). Then, it holds that

|Dmax(ρ) − Dmax(σ )| � 2‖ρ − σ‖1dS. (25)

The proof is presented in the Appendixes. Our results
provide an interesting implication for implementation of non-
Clifford gates. Suppose we are given qubits acting on system
A and try to implement some non-Clifford gate UNC on the
subsystem A1 ⊂ A by applying Clifford gates on A. Let N
be the number of qubits supported on the subsystem A \ A1.
Then, our results imply that, in order to realize the implemen-
tation accuracy ε with respect to the diamond norm, the re-

quired number of qubits N must scale as �
[

log
(G p

UNC
+Lp

UNC√
ε

)]
.

This observation explicitly tells us the importance of mea-
surement + feedforward (adaptive) operations for quantum
circuits to gain their power.

2. Quopits

For the case when the dimension of the system that each
qudit acts on is odd prime, “mana” was introduced as a magic
monotone [26]:

M(ρ) := log

(∑
u

|Wρ (u)|
)

, (26)

where Wρ (u) is the discrete Wigner function for state ρ [109].
The mana essentially measures the total negativity of the
discrete Wigner function, which is motivated by the fact that
stabilizer states only take non-negative value for the discrete
Wigner function. An important property of this measure for
our purpose is that it is additive for product states, which
comes from the fact that the discrete Wigner function for
a product state is just the multiplication of the two discrete
Wigner functions of the states that constitute the product
state. It is also continuous (although it is not asymptotically
continuous as shown in [26]), and Property 1 can be also easily
seen by the monotonicity of mana under Clifford gates and the
fact that the application of Clifford gate can be reversed by
another Clifford gate. Thus Theorem 1 and Corollary 1 can be
applied with respect to the mana measure.

Note that the mana is not faithful: there exists a magic
state ρ with M(ρ) = 0 [110]. However, the discrete Hudson’s
theorem [109] ensures that it is faithful for pure states, which
is enough to show that any non-Clifford unitary cannot be
implemented with zero error with a finite number of magic
states.

VI. TOWARD FULL GENERALITY

Although Theorem 2 covers most of the known important
settings, one could still argue that some theory of interest
may not come with a resource measure that satisfies all the
three properties, especially the additivity condition. Here, we
focus on the qualitative no-go statement and see that it is quite
unlikely for the perfect implementation of resourceful unitary
to be possible even in more general settings.

Suppose that free unitary VSE and pure state |φ〉 al-
low for an exact implementation of US , i.e., TrE [VSE (ρS ⊗
|φ〉〈φ|E )V †

SE ] = USρSU †
S for any ρS . By taking δ

US
I = 0 in

(C1), we get

TrS[VSE (ρS ⊗ |φ〉〈φ|E )V †
SE ] = σ ′

E , (27)
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where σ ′
E is a pure state. Since states with pure reduced states

are only product states, we know that the total state must look
like

VSE (ρS ⊗ |φ〉〈φ|E )V †
SE = USρSU †

S ⊗ σ ′
E . (28)

Then, we get for any ρS and any measure R that is invariant
under free unitaries that

R(ρS ⊗ |φ〉〈φ|) = R(VSE (ρS ⊗ |φ〉〈φ|)V †
SE )

= R(USρSU †
S ⊗ σ ′

E ). (29)

Thus, for the given theory, unless any resource measure
with Property 1 (but not necessarily Properties 2, 3, 3 ′)
satisfies (29) for any ρS , it is impossible to implement the
target US exactly. Note that this is a very strong restriction,
and when R is additive for product states, Corollaries 2 and 5
are reproduced.

Let us impose another natural condition on R that it be
a subadditive monotone for some resource theory in which
composition of free states and partial trace are free operations.
For such cases, one can show that R(|φ〉〈φ|) = R(σ ′

E ) as
follows. Take a free state τS and ηS = U †

S τSUS . Then, we get

R(|φ〉〈φ|) � R(τS ⊗ |φ〉〈φ|)
= R(USτSU †

S ⊗ σ ′
E ) � R(σ ′

E ) (30)

and

R(σ ′
E ) � R(USηSU †

S ⊗ σ ′
E )

= R(ηS ⊗ |φ〉〈φ|) � R(|φ〉〈φ|), (31)

where to show both of the above relations we used that the
composition of free states is a free operation in the first
inequalities, the invariance of R under free unitaries and (28)
in the equalities, and that the partial trace is a free operation
in the last inequalities together with the assumption that R is a
monotone under free operations.

This makes it even more surprising that Eq. (29) holds for
any ρS for resourceful unitary US since it would indicate that
attaching ancillary states with the same amount of resources
to two states with different amounts of resources would nec-
essarily produce the states with the same amount of resources.
We leave the thorough analysis on how general the no-go
statement can be made for future work.

VII. CONCLUSIONS

We considered a general setting where one aims to imple-
ment a target unitary with access to a restricted set of unitaries
as well as ancillary system. We derived a trade-off relation
between the implementation accuracy and the size of the
ancillary system in terms of the amount of the resources that
can be changed by the target unitary with respect to resource
measures that satisfy three properties: invariance under free
unitaries, continuity, and additivity for product states. Using
this relation, we presented a fundamental no-go theorem
on the perfect implementation of resourceful unitaries with
finite-dimensional ancillary systems. We further relaxed the
subtle condition in the above three properties, additivity for
product states, and showed an analogous trade-off relation
that only requires the resource measures to be additive for

pure product states, in addition to the other two properties.
We exemplified the wide validity of our results by applying
them to various important settings and discussed the physical
significance implied by the results for specific settings. We
finally discussed the feasibility of extending our no-go results
to even more general settings that do not assume all the
properties for the resource measures we considered.

For future work, it will be intriguing to clarify whether
some of the required properties for resource measures consid-
ered in this work can be dropped to obtain a similar trade-off
relation. It will also be interesting to investigate how good
our lower bounds are in general by constructing upper bounds
with explicit protocols that approximately implement desired
unitaries.

Note added. Recently, we became aware of the independent
related work by Chiribella, Yang, and Renner [111].
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APPENDIX A: PROOF OF THEOREM 1

We first retrieve the main lemma we use for the readers’
convenience.

Lemma 1 (No-correlation lemma [8]). Let �AB be a chan-
nel on the composite system AB and UA be a unitary operation
on A. We consider three possible initial states of A: ρ

(0)
A , ρ

(1)
A ,

and ρ
(0+1)
A := (ρ (0)

A + ρ
(1)
A )/2 and write the initial state of B

as ρB. We refer to the final states of AB and B with the initial
state ρ

(i)
A (i = 0, 1, 0 + 1) as

σ
(i)
AB := �AB

(
ρ

(i)
A ⊗ ρB

)
, (A1)

σ
(i)
B := TrA

[
σ

(i)
AB

]
. (A2)

Let �A be the channel implemented by the implementa-
tion I = (HE ,�AB, ρB), i.e., �A(·) := TrB[�AB(· ⊗ ρB)], and
write the accuracy of implementation of UA with implementa-
tion I for input state ρ

(i)
A as δ

U,(i)
I := δU

I (ρ (i)
A ) as in (7). Then,

for any UA and I, we have the following relations.
(1) It holds that

L
(
σ

(i)
AB,UAρ

(i)
A U †

A ⊗ σ
(i)
B

)
� 2δ

UA,(i)
I . (A3)

(2) There exists a state σ
′(0+1)
B of B such that

L
(
σ

(0)
B , σ

′(0+1)
B

) + L
(
σ

′(0+1)
B , σ

(1)
B

)
� 2

√
2δ

UA,(0+1)
I . (A4)

Moreover, if ρB is a pure state and �AB is a unitary
operation, one can take a pure state for σ

′(0+1)
B .

We are now in a position to prove Theorem 1.
Proof. Define ρ

(i)
S , i = 0, 1 as

ρ
(0)
S := argmax[R(USρSU †

S ) − R(ρS )], (A5)

ρ
(1)
S := argmin[R(USρSU †

S ) − R(ρS )] (A6)
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and corresponding final states on SE and E as

σ
(i)
SE := VSE

(
ρ

(i)
S ⊗ ρE

)
V †

SE , (A7)

σ
(i)
E := TrS

[
σ

(i)
SE

]
. (A8)

Due to Properties 1 and 3 of the resource measure R, we have

R
(
ρ

(i)
S

) + R(ρE ) = R
(
σ

(i)
SE

)
. (A9)

Using (A3), we get

L
(
σ

(i)
SE ,USρ

(i)
S U †

S ⊗ σ
(i)
E

)
� 2δ

US
I . (A10)

Due to Property 2 of R and (A9), (A10), we obtain∣∣R(
ρ

(i)
S

) + R(ρE ) − R
(
USρ

(i)
S U †

S

) − R
(
σ

(i)
E

)∣∣
� fL

(
2δ

US
I

)
gL(dE dS ) + hL

(
2δ

US
I

)
. (A11)

Using the triangle inequality and (A11), we get∣∣R(
ρ

(0)
S

) − R
(
USρ

(0)
S U †

S

) − R
(
σ

(0)
E

)
− R

(
ρ

(1)
S

) + R
(
USρ

(1)
S U †

S

) + R
(
σ

(1)
E

)∣∣
� 2

(
fL

(
2δ

US
I

)
gL(dE dS ) + hL

(
2δ

US
I

))
. (A12)

Another use of the triangle inequality leads to∣∣R(
σ

(0)
E

) − R
(
σ

(1)
E

)∣∣
�

∣∣R(
USρ

(0)
S U †

S

) − R
(
ρ

(0)
S

) − R
(
USρ

(1)
S U †

S

) + R
(
ρ

(1)
S

)∣∣
− 2

(
fL

(
2δ

US
I

)
gL(dE dS ) + hL

(
2δ

US
I

))
= GUS +LUS − 2

(
fL

(
2δ

US
I

)
gL(dE dS ) + hL

(
2δ

US
I

))
, (A13)

where we used GUS ,LUS � 0 in the equality. On the other
hand, using (A4) together with triangle inequality and Prop-
erty 2 of R, we get∣∣R(

σ
(0)
E

) − R
(
σ

(1)
E

)∣∣ � fL
(
2
√

2δ
US
I

)
gL(dE ) + hL

(
2
√

2δ
US
I

)
.

(A14)

Combining (A13) and (A14), we finally obtain

GUS + LUS � fL
(
2
√

2δ
US
I

)
gL(dE ) + hL

(
2
√

2δ
US
I

)
+ 2

(
fL

(
2δ

US
I

)
gL(dE dS ) + hL

(
2δ

US
I

))
= αL

(
δ

US
I , dE

) + βL
(
δ

US
I

)
. (A15)

�

APPENDIX B: PROOF OF COROLLARY 2

Proof. Recall the relation between the Bures distance and
the trace distance [112]

1
2 [L(ρ, σ )]2 � 1

2‖ρ − σ‖1 � L(ρ, σ ), (B1)

which also implies δ
US
I �

√
δ

US
I,
. Then, Eqs. (A3) and (A4)

imply

1
2

∥∥σ
(i)
SE − USρ

(i)
S U †

S ⊗ σ
(i)
E

∥∥
1 � 2

√
δ

US
I,
 (B2)

and

1
2

∥∥σ
(0)
B − σ

(1)
B

∥∥
1 � 2

√
2δ

US
I,
. (B3)

Then, the same proof as Theorem 1 can be employed to obtain
the statement. �

APPENDIX C: PROOF OF THEOREM 2

Proof. Lemma 1 together with the assumption that ρE is
pure ensures that there exists a pure state σ ′

E that satisfies (A4),
namely

L
(
σ

(i)
E , σ ′

E

)
� L

(
σ

(0)
E , σ ′

E

) + L
(
σ

(1)
E , σ ′

E

)
� 2

√
2δ

US
I . (C1)

Then, we obtain

L
(
σ

(i)
SE ,USρ

(i)
S U †

S ⊗ σ ′
E

)
� L

(
σ

(i)
SE ,USρ

(i)
S U †

S ⊗ σ
(i)
E

)
+ L

(
USρ

(i)
S U †

S ⊗ σ
(i)
E ,USρ

(i)
S U †

S ⊗ σ ′
E

)
� 2δ

US
I + L

(
σ

(i)
E , σ ′

E

)
� 2(1 +

√
2)δUS

I , (C2)

where in the first inequality we used the triangle inequality,
in the second inequality we used (A3) and the fact that L(ρ ⊗
σ, ρ ⊗ τ ) = L(σ, τ ), and in the third inequality we used (C1).

Let ρ
(0)
S and ρ

(1)
S be pure states that achieve (13) and (14),

respectively. Then, Properties 1 and 3 ′ of R lead to

R
(
σ

(i)
SE

) = R
(
ρ

(i)
S

) + R(ρE ) (C3)

and

R
(
USρ

(i)
S U †

S ⊗ σ ′
E

) = R
(
USρ

(i)
S U †

S

) + R(σ ′
E ). (C4)

Combining Property 2, (C2), (C3), and (C4), we get∣∣R(
ρ

(i)
S

) + R(ρE ) − R
(
USρ

(i)
S U †

S

) − R(σ ′
E )

∣∣
� fL

(
2(1 +

√
2)δUS

I
)
gL(dE dS ) + hL

(
2(1 +

√
2)δUS

I
)
. (C5)

Hence

0 = R(ρE ) − R(σ ′
E ) + R(σ ′

E ) − R(ρE )

� R
(
USρ

(0)
S U †

S

) − R
(
ρ

(0)
S

) − R
(
USρ

(1)
S U †

S

) + R
(
ρ

(1)
S

)
− 2

(
fL

(
2(1 +

√
2)δUS

I
)
gL(dE dS ) + hL

(
2(1 +

√
2)δUS

I
))

= GUS + LUS − 2
(

fL
(
2(1 +

√
2)δUS

I
)
gL(dE dS )

+ hL
(
2(1 +

√
2)δUS

I
))

, (C6)

which proves the statement. �

APPENDIX D: PROOF OF PROPOSITION 1

Proof. We assume Dmax(ρ) � Dmax(σ ) without loss of
generality. The definition of max-relative entropy measure
(24) admits the following dual form [113]:

maximize log Tr[ρX ]

subject to X � 0

Tr[τX ] � 1, ∀τ ∈ STAB. (D1)

Let Xρ be an optimal solution that achieves (D1) for state
ρ. Then, we obtain

Dmax(σ ) � log Tr[σXρ]

� log(Tr[ρXρ] − ‖ρ − σ‖1‖Xρ‖∞)

= Dmax(ρ) + log

(
1 − ‖ρ − σ‖1‖Xρ‖∞

Tr[ρXρ]

)
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� Dmax(ρ) + log (1 − ‖ρ − σ‖1dS )

� Dmax(ρ) − 2‖ρ − σ‖1dS. (D2)

The first inequality is because Xρ is a suboptimal solution
for σ . The second inequality is because of the same argu-
ment in (17). The third inequality is because it holds that
‖Xρ‖∞ � dS from the second constraint in (D1) together with
the fact that the maximally mixed state I/dS is a stabilizer

state, and that Tr[ρXρ] � 1 because I serves as a suboptimal
solution for X that gives Tr[ρI] = 1. The fourth inequality is
because it holds that log(1 − x) � −2x for 0 � x � 1/2 (note
that we take the base 2 for the logarithm), where we used
the assumption that ‖ρ − σ‖1 < 1/(2dS ). Note also that the
logarithm in (D2) is always well defined because Tr[ρXρ] �
1 and ‖ρ − σ‖1‖X‖∞ � 1/2. The statement is reached by
combining the assumption that Dmax(ρ) � Dmax(σ ). �
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