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Quantum entanglement in one-dimensional anyons
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Anyons in one spatial dimension can be defined by correctly identifying the configuration space of indistin-
guishable particles and imposing Robin boundary conditions. This allows an interpolation between the bosonic
and fermionic limits. In this paper, we study the quantum entanglement between two one-dimensional anyons
on a real line as a function of their statistics.
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I. INTRODUCTION

It is well known that, in quantum mechanics, the in-
distinguishability of particles forces the multiparticle wave
functions to be either symmetric (bosonic) or antisymmetric
(fermionic) under the exchange of any pair of particles. In
the past few decades it has emerged that in low dimensions
it is possible to have more general quantum statistics. The
classical roots for this can be traced to the nontrivial topol-
ogy of the associated configuration space. Particles which
obey these generalised statistics are called anyons, and they
interpolate between bosons and fermions. Interestingly, these
particles appear as collective excitations in fractional quantum
Hall systems. In view of this, the quantum mechanical and
thermodynamic properties of anyons have been extensively
studied [1,2].

The interest in anyons has been revived recently because
of their potential application in topological quantum computa-
tion [3]. In topological quantum computation, instead of using
qubits one uses anyons to store information in their nontrivial
wave functions. Since these are topologically protected, it is
hoped that a topological quantum computer leads to fault-
tolerant and decoherence-free computation [4,5].

However, a completely robust, fault-tolerant physical sys-
tem is not desirable because it does not allow us to store
any information, let alone manipulate or extract it. In view
of this, it is important to allow the system to interact with the
apparatus (environment) in a controlled manner.

This motivates us to revisit the old problems of anyon
quantum mechanics, and study them in the framework of open
quantum systems. In particular, we are interested in knowing
how the entanglement between two anyons depends on the
statistics parameter when one of them is considered to be the
system and the other the environment.

There are two complexities associated with this problem.
First, it is well known that for indistinguishable particles,
the standard methods used to quantify the entanglement, like
finding the Schmidt rank, taking a partial trace, and finding
the von Neumann entropy, fail to work. The main reason
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for this is the nonfactorizability of the multiparticle Hilbert
space of indistinguishable particles. Various approaches have
been proposed to circumvent this problem [6–14]. Second,
these approaches mostly restrict their attention to bosons and
fermions.

Returning to our problem, we find it useful to follow
the information theoretic approach to quantum entanglement
developed by Lo Franco and Compagno [10]. In their work
they show how it is possible to define the reduced density
matrix in a system of indistinguishable particles by defining an
inner product between states belonging to Hilbert spaces with
different dimensionalities. It is straightforward to recast this
method in the language of second quantization [15,16], which
is especially suited for our purposes. Within this framework,
we show how the results can be generalized to anyons by
the simple prescription of using the anyonic algebra for the
creation and annihilation operators instead of the bosonic and
fermionic algebras which are recovered as special cases.

The rest of the paper is organized as follows. In Sec. II, we
review the information theoretic approach developed by Lo
Franco and Compagno, with special emphasis on its reformu-
lation in the language of second quantization. In Sec. III, we
review the model of indistinguishable particles on a real line,
first studied by Leinaas and Myrheim [17]. In this model they
first construct the classical configuration space by identifying
different configurations which can be obtained by permuta-
tions of particle positions, and then quantize the system to
obtain a wave function that interpolates between the bosonic
and fermionic limits through a statistics parameter η coming
from the Robin boundary conditions. A second quantization
of this model [18] gives rise to an η-dependent algebra for
the creation and annihilation operators, which reduces to the
usual bosonic and fermionic algebras as limiting cases. In
Sec. IV, we use the above results to compute the reduced
density matrix and the von Neumann entropy of a system
of two anyons on a line. In Sec. V we conclude by giving a
summary and an outlook.

II. INFORMATION THEORETIC APPROACH
TO INDISTINGUISHABLE PARTICLES

In the usual approach, a state of a system of indistinguish-
able particles is obtained by first quantizing the system as
if the particles were distinguishable, by labeling them. We
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then apply the symmetrization postulate on the product wave
functions to get bosonic and fermionic states [19].

It is instructive to restate this in the language of transition
amplitudes. For example, a two-particle state is simply written
as |ψ, φ〉, where ψ and φ represent single particle states. For
indistinguishable particles, this two-particle state should be
thought of as a holistic entity; it is not possible to say which
particle is in which single particle state. Since the particles are
not labeled, it is evident that the symmetrization postulate is
not invoked. Quantum statistics enters through the definition
of the inner product of these states.

For distinguishable particles, an initial state |φ,ψ〉 can
only evolve into the final state, say, |ϕ, ζ 〉, for which we
compute the amplitude. But when the particles are indistin-
guishable, both the final states |ϕ, ζ 〉 and |ζ , ϕ〉 contribute
to the amplitude. For the case of bosons and fermions, the
simple recipe of introducing the right sign to account for the
exchange takes care of this complication.

This ad hoc procedure does not easily generalize to anyons.
It is therefore desirable to have a more fundamental approach
to the problem where the indistinguishability of the particles
is maintained throughout. This is the idea behind the informa-
tion theoretic approach developed in [10]. If |ϕ, ζ 〉 and |φ,ψ〉
denote two two-particle states, their inner product is

〈ϕ, ζ |φ,ψ〉 = 〈ϕ|φ〉〈ζ |ψ〉 + η〈ϕ|ψ〉〈ζ |φ〉, (1)

where η = 1 for bosons and η = −1 for fermions.
The inner product between states belonging to Hilbert

spaces of different dimensionality can also be defined. If we
consider an unnormalized two-particle state, |�〉 = |ϕ1, ϕ2〉,
the inner product with a single-particle state |ψ〉 is

〈ψ | · |ϕ1, ϕ2〉 ≡ 〈ψ |ϕ1, ϕ2〉 = 〈ψ |ϕ1〉|ϕ2〉 + η〈ψ |ϕ2〉|ϕ1〉.
(2)

This is a projective measurement on a single particle, where
the unnormalized two-particle state is projected onto |ψ〉. In a
similar manner, the inner product between an N-particle state
and a single-particle state is also defined. This definition of
inner product between states belonging to Hilbert spaces with
different dimensions can be used to define the reduced density
matrix as shown below.

Let |�〉 be a normalized N-particle state. To perform the
partial trace we choose a basis {|ψk〉} for the single-particle
Hilbert space. The normalized pure state after projecting onto
a state |ψk〉 is

|φk〉 = 〈ψk|ϕ1, ϕ2〉√〈
�

(1)
k

〉
�

, (3)

where �
(1)
k = |ψk〉〈ψk|.

Define a one-particle identity operator as I(1) = ∑
k �

(1)
k .

Then the probability of finding a single particle in the state
|ψk〉 is

pk =
〈
�

(1)
k

〉
�

〈I(1)〉�
. (4)

With the knowledge of |φk〉 and the corresponding probabili-
ties pk , the reduced density matrix is defined as follows:

ρ (1) = Tr(1)|�〉〈�| =
∑

k

pk|φk〉〈φk|. (5)

After obtaining the reduced density matrix, the von Neumann
entropy can be calculated as usual,

S(ρ (1) ) = −Tr(ρ (1) log ρ (1) ) = −
∑

i

λi log λi,

where λi is an eigenvalue of the reduced density matrix.

Second quantization formalism

We can recast the above idea in the language of second
quantization. If |�〉 is an N-particle state, its inner product
with a single-particle state |ψk〉 is [15]

aψk |�〉 ≡ 〈ψk| · |�〉.
Note that since aψk is an annihilation operator, the left-hand
side of the above equation represents an (N − 1)-particle state
which, by definition, is the inner product on the right-hand
side. As mentioned earlier, this simple expedient allows us to
go beyond bosons and fermions by suitably generalizing the
operator algebra. We present this in the next section.

We conclude this section by noting that the expression
for the reduced density matrix in the second quantization
formalism is

ρ (1) = Tr(1)|�〉〈�| =
∑

k aψk |�〉〈�|a†
ψk

〈�|n̂|�〉 . (6)

Here n̂ = ∑
k a†

ψk
aψk is the total number operator. The details

are given in Appendix A.

III. ANYONS

It is well known that, in relativistic quantum field theory,
the spin-statistics theorem [20] dictates that bosonic fields sat-
isfy canonical commutation relations, while fermionic fields
satisfy anticommutation relations. In nonrelativistic quantum
mechanics, one mimics the quantum field theoretic ideas
through second quantization which directly yields multipar-
ticle wave functions of indistinguishable particles with ap-
propriate symmetry properties. In particular, particles with
(half-) integer spin have wave functions which are
(anti)symmetric under the exchange of any two particles.

In contrast, the symmetrization postulate [19] accom-
plishes this objective by attaching labels to the particles, as if
they were distinguishable, and (anti)symmetrizing the product
wave function with respect to these labels. But, labeling
indistinguishable particles is intrinsically contradictory. So, it
is desirable to look beyond this ad hoc prescription.

In a seminal paper, Leinaas and Myrheim [17] trace
the origin of the symmetrization postulate to the nontrivial
topology of the underlying classical configuration space of
indistinguishable particles. As a spin-off of this insight, they
show that, in low dimensions, it is possible to have objects
which are more general than bosons and fermions. These are
called anyons. In what follows, we briefly summarize the
Leinaas-Myrheim method that leads to anyons.
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Let us consider a system of N spinless particles in d
dimensions. Let X = Rd be the configuration space of a single
particle. If the particles are distinguishable, the configuration
space of the system is XN = X N , where X N denotes an N-fold
tensor product of the single-particle space X . A point in the
space x = (x1, x2, . . . , xN ) represents a physical configuration
of the system.

If the N particles are indistinguishable, the configura-
tion space is YN = (X N − D)/SN , where SN is the permu-
tation group on N elements. It ensures that the points x =
(x1, x2, . . . , xN ) and x′ = (xP(1), xP(2), . . . , xP(N ) ) which rep-
resent the same physical configuration are identified. Here P
represents an arbitrary permutation. D represents the set of
singular points which are unaffected by the identifications.

In the above, the description is entirely classical. The idea
is that, since the identifications have been made already at
the level of the classical configuration space, the restrictions
on quantum states would follow without the ad hoc need to
invoke the symmetrization postulate. For particles with spin,
one continues to define the configuration space as above, with
the minor modification that at each point in YN we erect a
spinor space. The spin observables act as operators on this
spinor space. We refer the reader to [17] for further details.

In the above formalism, the quantum-mechanical wave
function of the system is determined by the one-dimensional
unitary representations of the fundamental group π1(YN ) of
the configuration space. For the case of indistinguishable par-
ticles, this turns out to be the permutation group in dimensions
d � 3, whose lowest dimensional irreducible representations
allow only bosons and fermions. In two dimensions, the fun-
damental group of the system is π1(YN ) = BN , where BN is
the braid group on N strings, whose one-dimensional unitary
representations allow the wave function to pick up a phase
eiθ , where θ is a real parameter, under an exchange. This is
the underlying reason for the possibility of having anyons in
low dimensions.

A. Indistinguishable particles on the real line

In the case of indistinguishable particles on a real line, it is
not possible to perform an exchange without taking the parti-
cles through each other: an exchange gets inextricably linked
with scattering. It is nevertheless possible to define quantum
statistics by following the Leinaas-Myrheim prescription, as
shown below in the specific example of two indistinguishable
particles on a real line. If x1 and x2 are the positions of the
particles, we observe that the points x = (x1, x2) and x′ =
(x2, x1) represent the same configuration, and hence need to
be identified. The identification is done by folding the (x1x2)
plane along the line x1 = x2, which represents the singular
points. Without loss of generality, we choose to work with the
half plane x1 < x2. The problem can be solved by prescribing
appropriate boundary conditions along the diagonal.

We choose the free particle Hamiltonian for the system,
also studied by Posske et al. [18],

H = −1

2

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
, (7)

where we use the units h̄ = c = 1 and set mass equal to one.
To ensure that particles remain bounded in the region x1 < x2,

we impose the boundary condition that the normal component
of the probability current vanishes at the boundary. That is,[

ψ∗(x)

(
− ∂

∂x1
+ ∂

∂x2

)
ψ (x)

− ψ (x)

(
− ∂

∂x1
+ ∂

∂x2

)
ψ∗(x)

]∣∣∣∣
x1=x2

= 0. (8)

Note that the above equation also ensures self-adjointness of
the Hamiltonian. The general solution of the above equation
is given by(

− ∂

∂x1
+ ∂

∂x2

)
ψ (x)

∣∣∣∣
x1=x2

= ηψ (x)

∣∣∣∣
x1=x2

, (9)

where η is a dimensionless (because of the choice of units,
and mass) real parameter. The eigenstates of the Hamiltonian
are

ψ (x) = ei(k1x1+k2x2 ) + e−i[φη (k2−k1 )]ei(k2x1+k1x2 ), (10)

where

φη(k2 − k1) = 2 tan−1

(
η

k2 − k1

)
.

Note that η = 0 and η = ∞ correspond to Neumann and
Dirichlet boundary conditions, respectively, on the diago-
nal, i.e., the set of coincident points x1 = x2. The former
gives a symmetric wave function, while the latter gives an
antisymmetric wave function which also enforces the Pauli
exclusion principle. Arbitrary values of η correspond to Robin
boundary conditions, with the corresponding wave functions
being neither symmetric nor antisymmetric. These are, by
definition, one-dimensional anyons.

For η < 0, it is easy to see that the system admits one
bound state.1 This follows from the requirement that the wave
function is well behaved at ±∞, which in turn implies that
the momentum of the center-of-mass coordinate is purely
real, and the momentum of the relative coordinate is purely
imaginary.

We mention in passing that, for the case of three or
more particles, there are several diagonals corresponding to
coincident points; but the Robin boundary conditions can be
generalized in a straightforward manner as shown in the next
subsection.

N particles on the real line

In the case of N identical particles on a real line the
configuration space can be constructed in a similar way and is
chosen to be the region where R = {x|x1 < x2 < x3 < · · · <

xN }. The Hamiltonian is again the free particle Hamiltonian

H = −1

2

N∑
j=1

∂2

∂x2
j

(11)

1The Hamiltonian, despite its appearance, it is not positive definite
because of the boundary. This is what allows for the existence of a
bound state.
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and the Robin boundary conditions are

(
∂

∂x j+1
− ∂

∂x j

)
ψ (x)

∣∣∣∣
x j+1=x j

= ηψ (x)

∣∣∣∣
x j+1=x j

. (12)

The corresponding anyonic wave functions are obtained by
solving the Schrödinger equation for which we employ
the ansatz ψ (x) = ∫

k∈Cn dk α(k)eikx. The coefficients α(k)
satisfy

α(k) =
{

e−i[φη (k j+1−k j )]α
(
Pjk

)
if k j+1 − k j 	= iη,

0 if k j+1 − k j = iη,
(13)

where an elementary permutation Pj permutes the jth and
( j + 1)th elements and

φη(k j+1 − k j ) = 2 tan−1

(
η

k j+1 − k j

)
. (14)

The connection between the coefficients can be written as
follows:

α(k) = eiφP
η (k)α(Pk), (15)

where P = Pj1 . . . Pjr represents the minimum number of ele-
mentary permutations required to reach a given permutation:

φP
η (k) =

r∑
i=1

φη

[(
Pj1 . . . Pji k

)
ji
− (

Pj1 . . . Pji k
)

ji+1

]
.

The basis functions are of the form ψk(x) ∝∑
P∈Sn

eiφP
η (k)ei(Pk)x. As in the two-particle case, only special

values of k are permitted when η < 0. In contrast to the
two-particle case, however, we can have bound states with
different number of particles.

B. Second quantization

As already mentioned in the Introduction, we find it useful
to recast the above results in the language of second quan-
tization, as was done in [18]. We use the following general-
ized η-dependent algebra for the second quantized creation
operator �†(x), and annihilation operator �(x) of the anyon

fields:

[�(x), �†(y)] = δ(x−y)−2η

∫ ∞

0
dz e−zη�†(y−z)�(x−z),

[�†(x), �†(y)] = −2η

∫ ∞

0
dz e−zη�†(y + z)�†(x − z).

(16)

Note that this algebra reduces to the standard bosonic and
fermionic limits for η → 0 and η → ∞, respectively. Also
note that this algebra is slightly different from the one pre-
sented in [18]. As shown in Appendix B 1, the above equations
can be derived starting from the corresponding algebra for the
creation and annihilation operators for momentum states, re-
lated to the second quantized fields through the usual relations
�†(x) = 1√

2π

∫ ∞
−∞ dk eikxa†

k .
The following commutators involving the number operator

N̂ defined in the usual manner as N̂ = ∫ ∞
−∞ dx �†(x)�(x)

can be derived in a straightforward manner as shown in
Appendix B 2:

[N̂, �†(y)] = �†(y), [N̂, �(y)] = −�(y). (17)

Thus, although the algebra for the anyonic fields is more
complicated than the bosonic and fermionic cases, the number
operator can be defined in the usual fashion, and satisfies
the standard commutation relation with the second quantized
fields. This allows us to interpret the matrix elements of the
fields in the number operator basis as operators which trans-
form multiparticle wave functions into other wave functions
with more or fewer number of particles as explained by Fock
[21]. In Appendix B 3, we explicitly verify that the modified
algebra satisfies the conditions derived by Fock.

IV. ENTROPY OF TWO IDENTICAL PARTICLES

We consider two indistinguishable particles on the real line.
We assume that the statistics parameter η is non-negative,
so that the particles are anyons. Note that the bosonic and
fermionic limits can be retrieved from the general case as
special cases.

The field operator �†(x) acting on the vacuum creates a
particle localized at x. Rather than dealing with these local-
ized states, it is convenient for our purposes to work with
smeared fields defined as follows: �

†
f = ∫ ∞

−∞ dx f (x)�†(x),
where f (x) ∈ S (R) is a function in the Schwartz space
[22]. The algebra of the smeared fields is readily obtained
to be

[� f , �
†
g ] = 〈 f |g〉 − 2η

∫ ∞

0
dz

∫ ∞

−∞

∫ ∞

−∞
dx dy f ∗(x)g(y)e−zη�†(y − z)�(x − z),

(18)

[�†
f , �

†
g ] = −2η

∫ ∞

0
dz

∫ ∞

−∞

∫ ∞

−∞
dx dy f ∗(x)g(y)e−zη�†(y + z)�†(x − z),

where the inner product 〈 f |g〉 = ∫ ∞
−∞ dx f ∗(x)g(x). We use

the following notation to denote the states: | f 〉 ≡ �
†
f |0〉. If we

choose a set of orthonormal functions { fn(x)}, the correspond-
ing set of states {| fn〉} will form a basis for the single-particle
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FIG. 1. Plot of entropy vs statistics parameter η for the initial
two-particle state |�0,0〉.

Hilbert space. For our purpose we chose fn(x) = hn(x), where

hn(x) = 1√√
π2nn!

Hn(x)e− x2

2 is nth eigenstate of the harmonic

oscillator.
Let the two-particle state be

|� j,i〉 ≡ 1

N �
†
h j

�
†
hi
|0〉. (19)

Here N = 〈0|�hi�h j �
†
h j

�
†
hi
|0〉 is the normalization constant.

We use the one-particle basis {|hn〉} as the basis to calculate
both the partial trace and the eigenvalues of the reduced
density matrix. The one-particle reduced density matrix ρ (1)

is obtained from the two-particle state as follows:

ρ (1) =
∑∞

k=0 �hk |� j,i〉〈� j,i|�†
hk

〈� j,i|n̂|� j,i〉 ,

where n̂ = ∑∞
k=0 �

†
hk

�hk is the total number operator. A ma-
trix element of the reduced density matrix is given by

ρ (1)
m,n =〈hm|ρ (1)|hn〉=

∑∞
k=0 〈0|�hm�hk |� j,i〉〈� j,i|�†

hk
�hn |0〉

〈� j,i|n̂|� j,i〉 .

The expressions for the matrix element can be obtained
analytically. They are given by an infinite series involving
parabolic cylinder functions. They depend on η. The detailed
calculations are given in Appendix C.

Since the expressions for the reduced density matrix are
cumbersome, we resort to calculating the eigenvalues numer-
ically, by using the formula

∞∑
m=0

ρ (1)
m,ng(n) = λng(m),

where λn is an eigenvalue. The von Neumann entropy is then
given by the usual formula

S(ρ1) = −Tr[ρ1 log(ρ1)] = −
∑

i

λi log (λi ).

The dependence of the von Neumann entropy on the statistics
parameter η is plotted in Figs. 1 and 2 for different choices of
the initial two-particle state.

FIG. 2. Plot of entropy vs statistics parameter η for the initial
two-particle state |�1,0〉.

In Fig. 1, the two-particle state is taken to be |�0,0〉. It is
worth noting that, for η = 0, both the particles are in the same
state. The entropy is zero, consistent with what is expected
of bosons. Note, however, that this plot is not valid in the
fermionic limit η → ∞, because the state |�0,0〉 identically
vanishes as can be easily seen from Eqs. (18) and (19).

In Fig. 2, the two-particle state is taken to be |�1,0〉. In
this case, it worth noting that for both η = 0 and η → ∞, the
entropy is equal to unity.

In order to get a better insight into what the above plots
mean, it is useful to compare our results with [10]. Lo Franco
and Compagno consider a model of two indistinguishable
qubits in an asymmetric double-well potential. In particular,
they study the spin correlations between the qubits in the
same spatially localized state, namely the left trough. It is
important to note that the potential acts as a crutch to produce
various states for the qubits, namely, states which are localized
either on the left side, or the right side, or those which
are in a superposition of the left and right sides. Once a
state is specified, only the finite-dimensional Hilbert spaces
associated with the qubits play a role. For example, they show
that when both the qubits are localized in the left well, the
state |L ↑, L ↑〉 is not entangled, whereas the state |L ↑, L ↓〉
is maximally entangled analogous to the Bell state for dis-
tinguishable qubits. In arriving at this result the one-particle
basis used is finite dimensional, because only the spin degrees
of freedom of the qubits are considered.

In our model, the states |�0,0〉 and |�1,0〉 are analogous
to the states |L ↑, L ↑〉 and |L ↑, L ↓〉. But there are crucial
differences. The states in our model represent not two indis-
tinguishable qubits, but two indistinguishable particles. This
has important ramifications.

First, the entropy need not be bounded by unity. Second,
it depends on the statistics parameter η. That is what is
displayed in the above plots. From these one can read off the
approximate values of the entropy obtained using numerical
analysis for any given value of η.

It is interesting to note that in spite of these differences
our results agree with [10] in the limiting cases of η → 0
and η → ∞, corresponding to bosons and fermions, respec-
tively. To understand this one has to look at the nonvanishing
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eigenvalues of the reduced density matrices. However, one
has to remember that the two systems are really physically
very different. A subtle point to note is that, as already
pointed out, the states |�0,0〉 and |�1,0〉 are analogous to
the states |L ↑, L ↑〉 and |L ↑, L ↓〉, respectively. To be more
precise, as η → 0, namely the bosonic limit, the state |�1,0〉
is entangled; so is the bosonic state |L ↑, L ↓〉. As η → ∞,
namely the fermionic limit, the state |�1,0〉 is entangled; so
is the fermionic state |L ↑, L ↓〉. As η → 0, the state |�0,0〉
is not entangled; so is the bosonic state |L ↑, L ↑〉. Finally,
as η → ∞, the state |�0,0〉 vanishes as already explained,
and the fermionic state |L ↑, L ↑〉 is identically zero due
to Pauli’s exclusion principle. Hence, qualitatively, the two
systems appear to be identical in these limits if we formally
identify the spin degrees of freedom of the qubit with the
two levels labeling the � j,i. The other results that Lo Franco
and Compagno obtain regarding nonlocal entanglement use
superpositions of states localized in the left and right wells,
and are beyond the scope of the present work.

V. CONCLUSIONS

The problem of studying the entanglement between in-
distinguishable particles in quantum mechanics is tricky. A
naive usage of the usual measures like the Schmidt rank and
the von Neumann entropy leads to wrong results. A way to
bypass these problems, restricted to bosons and fermions, was
developed by Lo Franco and Compagno [10] by using ideas
coming from information theory.

In this paper we use their results, in the second quan-
tized formulation, to study the entanglement between two
one-dimensional anyons. The generalized algebra of one-
dimensional anyons obtained from a second quantization of
the Leinaas-Myrheim model [18] plays a crucial role in our
analysis. We succeed in obtaining both qualitative and ap-
proximately quantitative results for the dependence of the von
Neumann entropy on the statistics parameter.

The calculations presented in this paper are readily gen-
eralizable to studying entanglement between two clusters of
anyons with an arbitrary number of particles. Other one-
dimensional models admitting anyonic statistics like indistin-
guishable particles on a ring and the Calogero model are also
worth investigating.

The most interesting problem will, of course, be to inves-
tigate the entanglement between anyons in two dimensions,
both in the Abelian and non-Abelian cases, because of their
direct relevance to topological quantum computation. We
hope to address these questions in our future work.
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APPENDIX A: REDUCED DENSITY MATRIX IN THE
SECOND QUANTIZATION FORMALISM

In the second quantization language the N-particle state
|�〉 is obtained by acting with a suitable combination of

creation operators on the vacuum state. Let the set of states
{|ψk〉 ≡ a†

ψk
|0〉} form a basis for the single particle Hilbert

space. In analogy with Eq. (3), the state |φk〉 is defined in the
second quantization formalism as follows:

|φk〉 = aψk |�〉√
〈�|a†

ψk
aψk |�〉

.

The corresponding probabilities are

pk = 〈�|a†
ψk

aψk |�〉
〈�|n̂|�〉 ,

where n̂ = ∑
k a†

ψk
aψk is the total number operator. Then, the

one-particle reduced density matrix is

ρ (1) =
∑

k aψk |�〉〈�|a†
ψk

〈�|n̂|�〉 .

APPENDIX B: REAL-SPACE ALGEBRA

1. Derivation of the real-space algebra

The algebra of creation and annihilation operators of
momentum states obtained in [18] is

a†
pa†

q = eiφη (p−q)a†
qa†

p,

(B1)
apa†

q = e−iφη (p−q)a†
qap + δ(p − q),

where the phase eiφη (p−q) = p−q+iη
p−q−iη . The above relations may

be rewritten in a slightly modified way as follows:

a†
pa†

q =
(

p − q + iη

p − q − iη

)
a†

qa†
p,

apa†
q =

(
p − q − iη

p − q + iη

)
a†

qap + δ(p − q). (B2)

Note that the creation and annihilation operators for the
momentum states are related to the second quantized fields
through the relations

�†(x) = 1√
2π

∫ ∞

−∞
dk eikxa†

k .

To obtain the algebra of field operators we calculate the
commutator between field operators

�(x)�†(y)−�†(y)�(x) =
∫ ∞

−∞
d p dq e−ipx+iqy(apa†

q − a†
qap).

Substituting for apa†
q from the algebra of creation and annihi-

lation operators for momentum states,

�(x)�†(y) − �†(y)�(x)

= 1

2π

∫ ∞

−∞
d p dq e−ipx+iqya†

qap

[(
p−q−iη

p−q+iη

)
−1

]
+δ(p − q)

= δ(x − y) − η

π

∫ ∞

−∞
d p dq e−ipx+iqya†

qap

(
1

−ip+iq+η

)

= δ(x−y)− η

π

∫ ∞

0
dz e−zη

∫ ∞

−∞
d p dq e−ip(x−z)+iq(y−z)a†

qap

= δ(x − y) − 2η

∫ ∞

0
dz e−zη�†(y − z)�(x − z).
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Similarly, if we look at the commutator [�†(x), �†(y)], we obtain

�†(x)�†(y) − �†(y)�†(x) =
∫ ∞

−∞
d p dq eipx+iqy(a†

pa†
q − a†

qa†
p).

Substituting for a†
pa†

q,

�†(x)�†(y) − �†(y)�†(x) = 1

2π

∫ ∞

−∞
d p dq eipx+iqya†

qa†
p

[(
p − q + iη

p − q − iη

)
− 1

]

= − η

π

∫ ∞

−∞
d p dq eipx+iqya†

qa†
p

∫ ∞

0
dz e−z(ip−iq+η)

= − η

π

∫ ∞

0
dz e−zη

∫ ∞

−∞
d p dq eip(x−z)+iq(y+z)a†

qa†
p

= −2η

∫ ∞

0
dz e−zη�†(y + z)�†(x − z).

Instead if we substitute for a†
qa†

p,

�†(x)�†(y) − �†(y)�†(x) =
∫ ∞

−∞
d p dq eipx+iqy(a†

pa†
q − a†

qa†
p) =

∫ ∞

−∞
d p dq eipx+iqya†

pa†
q

(
2iη

p − q + iη

)

= 2η

∫ ∞

−∞
d p dq eipx+iqya†

pa†
q

∫ ∞

0
dz e−z(−ip+iq+η) = 2η

∫ ∞

0
dz e−zη�†(x + z)�†(y − z).

2. Commutation relations involving number operator

The number operator is N̂ = ∫ ∞
−∞ dx �†(x)�(x). We calculate the commutator between the number operator and the field

theoretic anyon creation operator by substituting in terms of momentum space operators as follows:

[N̂, �†(y)] =
∫ ∞

−∞
dx[�†(x)�(x), �†(y)]

= 1

(2π )
3
2

∫ ∞

−∞
dx

∫ ∞

−∞
d p dq dr eipx−iqx+iry(a†

paqa†
r − a†

r a†
paq)

= 1

(2π )
3
2

∫ ∞

−∞
d p dr eiry(a†

papa†
r − a†

r a†
pap)

= 1

(2π )
3
2

∫ ∞

−∞
d p dr eiry{a†

p[e−iφη (p−r)a†
r ap + δ(p − r)] − a†

r a†
pap}

= 1

(2π )
3
2

∫ ∞

−∞
d p dr eiry[δ(p − r) + e−iφη (p−r)eiφη (p−r)a†

r a†
pap − a†

r a†
pap]

= �†(y).

The corresponding result for the annihilation operator is

[N̂, �(y)] = −�(y).

The same results can be obtained using the real-space operator algebra as shown below:

[N̂, �†(y)] =
∫ ∞

−∞
dx[�†(x)�(x)�†(y) − �†(y)�†(x)�(x)]

=
∫ ∞

−∞
dx

[
�†(x)

(
�†(y)�(x) + δ(x − y) − 2η

∫ ∞

0
dz e−zη�†(y − z)�(x − z)

)
− �†(y)�†(x)�(x)

]

= �†(y) +
∫ ∞

−∞
dx

{[(
�†(y)�†(x) + 2η

∫ ∞

0
dz e−zη�†(x + z)�†(y − z)

)
�(x)

− 2η

∫ ∞

0
dz e−zη�†(x)�†(y − z)�(x − z)

]
− �†(y)�†(x)�(x)

}

= �†(y).

With a similar calculation, we can obtain the commutator of the number operator with field theoretic anyon annihilation operator.
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3. Check on the algebra

The symmetrization postulate for multiparticle wave functions in the first quantized formalism has an intimate connection
with the algebra of creation and annihilation operators in the second quantized formalism. This was clearly explained in very
general terms by Fock for the case of bosons and fermions in [21]. In this Appendix we verify the consistency of the anyonic
algebra we use along similar lines.

The field operator �(x) acts on the sequence of functions⎛
⎜⎜⎜⎝

const
ψ (x1)

ψ (x1, x2)
ψ (x1, x2, x3)

. . .

⎞
⎟⎟⎟⎠ (B3)

as follows:

�(x)

⎛
⎜⎜⎜⎝

const
ψ (x1)

ψ (x1, x2)
ψ (x1, x2, x3)

. . .

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ψ (x)√
2ψ (x, x1)√

3ψ (x, x1, x2)√
4ψ (x, x1, x2, x3)

. . .

⎞
⎟⎟⎟⎟⎠, (B4)

where the functions ψ (x1), ψ (x1, x2), ψ (x1, x2, x3), . . . are interpreted as Schrödinger wave functions [21]. Applying the operator
�(x′)�(x) on the sequence of functions, we obtain

�(x′)�(x)

⎛
⎜⎜⎜⎝

const
ψ (x1)

ψ (x1, x2)
ψ (x1, x2, x3)

. . .

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

√
2.1ψ (x, x′)√

3.2ψ (x, x′, x1)√
4.3ψ (x, x′, x1, x2)√

5.4ψ (x, x′, x1, x2, x3)
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (B5)

Similarly, applying the operator �(x)�(x′) on the sequence of functions, we get

�(x)�(x′)

⎛
⎜⎜⎜⎝

const
ψ (x1)

ψ (x1, x2)
ψ (x1, x2, x3)

. . .

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

√
2.1ψ (x′, x)√

3.2ψ (x′, x, x1)√
4.3ψ (x′, x, x1, x2)√

5.4ψ (x′, x, x1, x2, x3)
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (B6)

In the case of bosons, the right-hand side of Eq. (B5) and Eq. (B6) are the same because the bosonic wave function is symmetric
under the exchange of any pair of coordinates. This implies that the field operators �(x) and �(x′) commute with each other.
In the case of fermions, using the same argument and by noting that the fermionic wave functions are antisymmetric, one can
obtain the usual anticommutation relation between �(x) and �(x′).

In our case the field operators satisfy the following algebra:

[�(x), �†(y)] = δ(x − y) − 2η

∫ ∞

0
dz e−zη�†(y − z)�(x − z),

[�†(x), �†(y)] = −2η

∫ ∞

0
dz e−zη�†(y + z)�†(x − z).

The consistency of the algebra requires that the following equation holds:

(
�(x)�(y) − �(y)�(x) − 2η

∫ ∞

0
dz e−zη�(x − z)�(y + z)

)
⎛
⎜⎜⎜⎝

const
ψ (x1)

ψ (x1, x2)
ψ (x1, x2, x3)

. . .

⎞
⎟⎟⎟⎠ = 0,

i.e., ⎛
⎜⎜⎜⎜⎝

√
2.1[ψ (y, x) − ψ (x, y) − 2η

∫ ∞
0 dz e−zηψ (y + z, x − z)]√

3.2[ψ (y, x, x1) − ψ (x, y, x1) − 2η
∫ ∞

0 dz e−zηψ (y + z, x − z, x1)]√
4.3[ψ (y, x, x1, x2) − ψ (x, y, x1, x2) − 2η

∫ ∞
0 dz e−zηψ (y + z, x − z, x1, x2)]

. . .

⎞
⎟⎟⎟⎟⎠ = 0,
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where ψ (x1, x2, . . . , xN ) is the N-anyon wave function. Let the wave function be

ψ (x1, . . . , xN ) =
∑
P∈SN

α(kP(1), . . . , kP(N ) )e
i(kP(1)x1+···+kP(N )xN ),

where the coefficients satisfy

α(. . . k j, . . . kl , . . .) =
(

k j − kl − iη

k j − kl + iη

)
α(. . . kl , . . . ki, . . .).

We have to calculate(
ψ (y, x, x3, . . . , xN ) − ψ (x, y, x3, . . . , xN ) − 2η

∫ ∞

0
dz e−zηψ (y + z, x − z, x3, . . . , xN )

)
.

Substituting the expression for the wave function

∑
P∈SN

(
α(kP(1), . . . , kP(N ) )e

i(kP(1)y+kP(2)x+kP(3)x3+···+kP(N )xN ) − α(kP(1), . . . , kP(N ) )e
i(kP(1)x+kP(2)y+kP(3)x3+···+kP(N )xN )

− 2η

∫ ∞

0
dz e−zηα(kP(1), . . . , kP(N ) )e

i[kP(1) (y+z)+kP(2) (x−z)+kP(3)x3+···+kP(N )xN ]

)

=
∑
P∈SN

(
α(kP(1), . . . , kP(N ) )e

i(kP(1)y+kP(2)x+kP(3)x3+···+kP(N )xN ) − α(kP(1), . . . , kP(N ) )e
i(kP(1)x+kP(2)y+kP(3)x3+···+kP(N )xN )

− 2iη

kP(1) − kP(2) + iη
α(kP(1), . . . , kP(N ) )e

i(kP(1)y+kP(2)x+kP(3)x3+···+kP(N )xN )
)

,

we find that the coefficient of the term ei(kP(1)x+kP(2)y+kP(3)x3+···+kP(N )xN ) is

α(kP(2), kP(1), . . . , kP(N ) ) −
(

kP(1) − kP(2) − iη

kP(1) − kP(2) + iη

)
α(kP(1), kP(2), . . . , kP(N ) ).

Using the relation among coefficients, it is easy to see that the above term is zero, as expected.

APPENDIX C: CALCULATION OF THE ONE-PARTICLE REDUCED DENSITY MATRIX

The matrix elements of the one-particle reduced density matrix are

ρ (1)
m,n =

∑∞
k=0 〈0|�hm�hk |� j,i〉〈� j,i|�†

hk
�

†
hn

|0〉
〈� j,i|n̂|� j,i〉 .

Using the definition of the state |� j,i〉, it is rewritten as

ρ (1)
mn =

∑
k 〈0|�hm�hk �

†
h j

�
†
hi
|0〉〈0|�hi�h j �

†
hk

�
†
hn

|0〉
2〈0|�hi�h j �

†
h j

�
†
hi
|0〉 .

To obtain the expression for the one-particle reduced density matrix a generic term of the following form is calculated:

〈0|�hm�hk �
†
h j

�
†
hi
|0〉 = 〈hk|h j〉〈hm|hi〉 + 〈hk|hi〉〈hm|h j〉 −

∫ ∞

0
dz 2η e−zη

∫ ∞

−∞
dx dy h∗

m(y − z)h∗
k (x)h j (y)hi(x − z).

Using the above formula, the denominator of the one-particle reduced density matrix can be obtained by setting m = i and k = j.
The numerator is calculated below:∑

k

〈0|�hm�hk �
†
h j

�
†
hi
|0〉〈0|�hi�h j �

†
hk

�
†
hn

|0〉

= 〈hm|hi〉〈hn|hi〉 + 〈hi|h j〉〈hm|hi〉〈hn|h j〉 + 〈h j |hi〉〈hm|h j〉〈hi|hn〉 + 〈hm|h j〉〈h j |hn〉

− 2η〈hm|hi〉
∫ ∞

0
dz

∫ ∞

−∞
dx dy e−zηhn(y − z)h j (x)h∗

j (y)h∗
i (x − z)

− 2η〈hm|h j〉
∫ ∞

0
dz

∫ ∞

−∞
dx dy e−zηhn(y − z)hi(x)h∗

j (y)h∗
i (x − z)

− 2η〈hi|hn〉
∫ ∞

0
dz

∫ ∞

−∞
dx dy e−zηh∗

m(y − z)h∗
j (x)h j (y)hi(x − z)
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− 2η〈h j |hn〉
∫ ∞

0
dz

∫ ∞

−∞
dx dy e−zηh∗

m(y − z)h∗
i (x)h j (y)hi(x − z)

+ 4η2
∫ ∞

0
dz dz′

∫ ∞

−∞
dx dy dy′(e−(z+z′ )ηh∗

m(y − z)h j (y)hi(x − z)hn(y′ − z′)h∗
j (y

′)h∗
i (x − z′)).

To calculate the one-particle reduced density matrix, we use the following integrals [23]:∫ ∞

−∞
dz e− z2

2 − 1
2 (z−ζ )2

Hn(z)Hp(z − ζ )

= 1

�(n + 1)

√
π e− ζ2

4

√
2nn!

√
2p p!(−ζ )p−n

√
2n−p�(n + 1)�(p + 1) 1F̃1

(
−n; −n + p + 1;

ζ 2

2

)
, n, p ∈ N,

∫ ∞

0
xν−1e−βx2−γ x = (2β )−

ν
2 �(ν)e

γ 2

8β D−ν

(
γ√
2β

)
, ν > −1.

Here 1F̃1(a; b; z) denotes the regularized confluent hypergeometric function and D−ν (z) denotes the parabolic cylinder function.
The matrix elements of the one-particle reduced density matrix obtained from the initial state |�0,0〉 are given below:

(
ρ

(1)
0,0

)
m,n = 1

d1

[
4δm0δn0 − 4ηδm0(−1)n 1√

2nn!
D(n + 1, η) − 4ηδn0(−1)m 1√

2mm!
D(m + 1, η)

+ (−1)m+n 4η2

√
2m+nm!n!

∞∑
l=0

(
1

2l l!
D(m + l + 1, η)D(n + l + 1, η)

)]
,

where D(ν, x) = �(ν)e
η2

4 D−ν (x) and

d1 = 4[1 − ηD(−1, η)].

The matrix elements of the one-particle reduced density matrix obtained from the initial state |�1,0〉 are given below:

(
ρ

(1)
1,0

)
m,n = 1

d2

(
δm1δn1 + δm0δn0 − δm1

(−1)n+1
√

2η√
2nn!

D(n + 2, η) − δm0
η(−1)n

√
2nn!

[2D(n + 1, η) − D(n + 3, η)]

− δn1
(−1)m+1

√
2η√

2mm!
D(m + 2, η) − δn0

η(−1)m

√
2mm!

[2D(m + 1, η) − D(m + 3, η)]

+ 4η2(−1)m+n

2m+nm!n!

∞∑
l=0

1

2l l!

[
2D(n + l + 1, η)D(m + l + 1, η) − D(n + l + 1, η)D(m + l + 3, η)

+ 2D(n + l + 2, η)D(m + l + 2η) − D(n + l + 3, η)D(m + l + 1, η)
])

,

where

d2 =2
(

1 + η

2
D(3, η)

)
.
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