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User-specified random sampling of quantum channels and its applications
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Random samples of quantum channels have many applications in quantum information processing tasks.
Due to the Choi-Jamiołkowski isomorphism, there is a well-known correspondence between channels and
states, and one can imagine adapting state sampling methods to sample quantum channels. Here, we discuss
such an adaptation, using the Hamiltonian Monte Carlo method, a well-known classical method capable of
producing high-quality samples from arbitrary, user-specified distributions. Its implementation requires an exact
parametrization of the space of quantum channels, with no superfluous parameters and no constraints. We
construct such a parametrization, and demonstrate its use in three common channel sampling applications.
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I. INTRODUCTION

Quantum channels, or completely positive (CP) and trace-
preserving (TP) maps, are a central concept in describing the
dynamics of quantum systems. They form the basic models
for imperfect quantum operations used for quantum informa-
tion processing (QIP). Random—according to some specified
distribution—samples of quantum channels are needed in
many QIP tasks, including the evaluation of the distributional
average of channel-related quantities, the computation of error
bars for quantum process tomography, the exploration of typ-
ical properties of quantum channels, the numerical optimiza-
tion of functions of channels over a complicated landscape,
and others.

Sampling from specific distributions over the quantum
state space is a well-studied problem, with many different
approaches, including the Monte Carlo (MC) technique for
arbitrary distributions, and other methods for sampling from
specific distributions [1–8]. Due to the Choi-Jamiołkowski
isomorphism [9,10], which gives a correspondence between
CP channels and states, these state sampling methods can be
adapted to sample quantum channels. Indeed, in the recent
work by Thinh et al. [11], a Metropolis-Hasting Markov chain
(MHMC) MC approach was used to sample channels from
arbitrary distributions, by sampling the purification of the
Choi-Jamiołkowski state corresponding to the channel. Ref-
erences [12,13] discuss a procedure for generating samples of
quantum channels with a specific distribution on the channel
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space by making use of the channel-state correspondence.
An alternative way of generating the same distribution of
channels is to couple the input state and an ancilla initially
in an arbitrary pure state by a Haar-random unitary operator
and then taking the partial trace over the ancilla. See Ref. [14]
for more discussion on the properties of the distribution of
channels generated by these two procedures.

As a general method for sampling from arbitrary distri-
butions, MC methods stand out in their wide-ranging appli-
cability and efficiency. The MHMC variety of MC methods
used, for example, in Ref. [11], however, suffer from strong
correlations between sample points, and one requires large
samples for reliable answers not biased by these correlations.
This was observed, for instance, in the MHMC state sampling
algorithm of Ref. [1]. A significant improvement in the quality
of the samples was seen when we switched to the Hamiltonian
Monte Carlo (HMC) approach [2], reaffirming the advantage
of HMC over MHMC MC also observed in other settings
[15–19].

The HMC method requires the availability of a
parametrization of the domain space with exactly the right
number of parameters, with no superfluous parameters and
no constraints. The parametrization of the channel and state
space used in Ref. [11], which has superfluous parameters,
cannot be used for HMC. The exact parametrization of states
used in the HMC algorithm in Ref. [2] gives, through the
Choi-Jamiołkowski isomorphism, a parametrization of the set
of all CP, but not necessarily TP, maps. The TP property has
to be imposed as an explicit constraint, thus rendering the
parametrization unsuitable in a HMC algorithm for sampling
CPTP channels.

In this work, we construct one exact parametrization
of the space of CPTP maps, with no superfluous parame-
ters, and no constraints. This can then be used in a HMC
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procedure for sampling from arbitrary, user-specified, distri-
butions over the channel space. To illustrate the usefulness of
our parametrization and the HMC algorithm, we apply our
methods to three quantum sampling problems. Our examples
are focused on problems in quantum process tomography,
reflecting the interests of the authors; our parametrization and
the HMC method, however, are just as useful for sampling
problems in other areas of QIP. As an aside, our construction
exactly parametrizes the space of all bipartite mixed quantum
states with the completely mixed state for one of the parties.

Here is the brief outline of our paper. We first review
the Choi-Jamiołkowski isomorphism in Sec. II. Section III
explains our main contribution: the exact parametrization of
the space of CPTP channels. In Sec. IV, we illustrate the
use of our parametrization in a HMC sampling algorithm
through three examples from quantum process tomography:
(a) the construction of error regions in process estimation;
(b) marginal likelihood for estimating specific properties of
the channel; (c) model selection among candidate channel
families. The reader is referred to Ref. [2] or Appendix A for
an introduction to the HMC algorithm used here. We conclude
in Sec. V.

II. CHANNEL-STATE DUALITY

There are many ways of writing the CPTP map of a
quantum channel. Given our desire to make the connection
with the sampling of quantum states, we make use of the
channel-state duality and describe the quantum channel by
a state via the Choi-Jamiołkowski isomorphism. Here, we
remind the reader of this isomorphism, and, in the process,
define the notation used throughout the article.

We begin with the d-dimensional Hilbert space H describ-
ing the state vectors (pure states) of the system. We define a
map ∗ : H → H,

∗(|ψ〉) ≡ |ψ〉 ∈ H for |ψ〉 ∈ H, (1)

such that

〈ψ |φ〉 = 〈φ|ψ〉 ∀ |ψ〉, |φ〉 ∈ H, (2)

and ∗ is “∗-linear,” i.e.,

∗
(∑

i

ci|ψi〉
)

=
∑

i

c∗
i |ψ i〉, (3)

where c∗
i is the complex conjugate of ci. Note that Eq. (2)

specifies the ∗ map only up to a unitary transformation of
no consequence. One specific realization of the ∗ map, and
what we use in our numerical examples below, is to first pick
a basis {|i〉} on H, define |i〉 ≡ |i〉, and then extend the action
of ∗ to arbitrary vectors using the ∗-linearity property. See also
Sec. 3.1 in Ref. [20] for qubit examples of the ∗ map.

We extend the action of the ∗ map to adjoint vectors
∗(〈ψ |) = 〈ψ | = (|ψ〉)† = [∗(|ψ〉)]†, and further to the set of
operators on H, denoted as B(H),

∗
(∑

i j

ci j |ψi〉〈φ j |
)

≡
∑

i j

c∗
i j |ψ i〉〈φ j |. (4)

We write ∗(X ) ≡ X , for any X ∈ B(H). Note that X † = (X )†,
and we denote X T ≡ X

†
, a basis-independent transpose oper-

ation. If X is non-negative, then so is X T .
Using the ∗ map, we define the vectorization map, a linear

map from operators to vectors in a vector space V , vec :
B(H) → V ,

vec(|ψ〉〈φ|) ≡ ∗(|φ〉) ⊗ |ψ〉 = |φ〉 ⊗ |ψ〉 = |φ ψ〉, (5)

for any |ψ〉, |φ〉 ∈ H and extended to all operators by linear-
ity. We write, for any X ∈ B(H ), vec(X ) ≡ |X 〉〉 ∈ V . Note the
useful identity

vec(ABC) = (CT ⊗ A) vec(B). (6)

Also, if {|i〉} is an orthonormal basis for H, then so is
{|i〉}. Consequently, the vectorized identity operator |1〉〉 =
vec(1) = ∑d

i=1 |ii〉 can be regarded as a bipartite maximally
entangled (unnormalized) state on H ⊗ H.

Now, we are ready to state the channel-state duality.
Consider a CP map E : B(H) → B(H), acting as E (·) =∑

a Ea(·)E†
a for a (nonunique) set of Kraus operators {Ea}. We

define

ρE ≡
∑

a

|Ea〉〉〈〈Ea| =
∑

a

(1 ⊗ Ea)|1〉〉〈〈1|(1 ⊗ E†
a )

= (1 ⊗ E )(|1〉〉〈〈1|), (7)

where we have used the identity in Eq. (6); the 1 in 1 ⊗ E
denotes the identity map. Thus defined, ρE is a non-negative
operator on V; it can also be regarded as an unnormalized state
(density operator) on the bipartite Hilbert space H ⊗ H ≡
H1 ⊗ H2, labeling the two subsystems by 1 and 2. In the
latter picture, one regards |1〉〉〈〈1| as the density operator for
a maximally entangled state on H ⊗ H, and ρE is the density
operator that results from the action of the map 1 ⊗ E on it.

That ρE is invariant under a change of Kraus representation
for the E is manifest in the last line of Eq. (7). We can turn the
logic around: Any bipartite state on H ⊗ H possesses a spec-
tral decomposition into eigenvectors, and the identification of
those eigenvectors, with their corresponding (square root of
the) eigenvalues, as vectorized Kraus operators immediately
gives an associated CP map on B(H). Equation (7) hence
states a duality between CP maps E and states ρE � 0. ρE is
sometimes called the “Choi state” of the CP map E . Observe
that

E (X ) = tr1{ρE (X T ⊗ 1)}. (8)

We are primarily interested in CP maps that are also TP. In
this case, the state ρE dual to the CP and TP channel satisfies
the partial trace condition

tr2(ρE ) = 1, (9)

i.e., E is CPTP if and only if ρE � 0 and tr2(ρE ) = 1. A
simple count verifies that we have just the right number of
parameters: A CP E is represented by d4 real parameters—a
positivity-preserving map that specifies how a d2-element
basis of operators on H is mapped back to itself—and this
is the same number of real parameters needed to specify an
unnormalized non-negative ρE ; the TP condition removes d2

parameters, leaving d2(d2 − 1) real parameters for a CPTP
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map, i.e., a quantum channel. Note that the set of ρE ’s cor-
responding to quantum channels form a convex set of states,
each with trace d . We denote the convex set of all ρE that
satisfy Eq. (9) by STP, and refer to ρE ∈ STP as a TP state.

This duality between quantum channels and states enables
us to sample quantum channels with algorithms for sampling
quantum states (see the next section). Furthermore, the prob-
lem of process tomography—the estimation of the full de-
scription of a quantum channel acting on a quantum system—
can be recast as that of state tomography. As the applications
of our channel sampling algorithm discussed below are related
to estimating quantum channels, we use the remainder of this
section to recall this connection between state and process
tomography, stemming from the channel-state duality [21].

Quantum process tomography seeks to discover the full
description of some unknown quantum channel E , through N
uses of the channel. Standard strategies involve choosing a set
of input states {ρ (i)}, sending N (i) copies of state ρ (i) through
the channel E , and then measuring the output state using a
positive-operator-valued measure (POVM) �(i) ≡ {�(i)

k }. For
each i, the tomographic outcome probabilities come from the
Born rule

p(i)
k = tr

{
�

(i)
k E

(
ρ (i)

)} = tr
{
ρE�

(i)
k

}
, (10)

where �
(i)
k ≡ (ρ (i) )T ⊗ �

(i)
k . Written in this manner, the ex-

pression for p(i)
k reminds one of the situation of state tomog-

raphy of ρE , where the set {�(i)
k } forms a pseudo-POVM in

that �
(i)
k � 0 ∀ k, i, and

∑
k �

(i)
k = ρ (i) ⊗ 1 for any i. Note

that
∑

k p(i)
k = 1, as guaranteed by the TP condition in Eq. (9)

together with the normalization tr(ρ (i) ) = 1.
The likelihood function for the data D = {D(i) =

(n(i)
1 , n(i)

2 , . . .)}—n(i)
k denotes the number of clicks in detector

�
(i)
k when ρ (i) is sent, and

∑
k n(i)

k = N (i)—collected is

L(D|ρE ) =
∏

i

L
(
D(i)

∣∣ρE
) =

∏
i

[∏
k

(
p(i)

k

)n(i)
k

]
, (11)

where we omit the combinatorial factors that are needed for
proper normalization but are not important here. Disregard-
ing quantum constraints, the likelihood is maximized, over

all {p(i)
k }, by setting p(i)

k = n(i)
k

N (i) ; with quantum constraints, a
constrained maximization of L(D|ρE ) over all permissible
probabilities—those p(i)

k ’s that could have come from a non-
negative ρE and which satisfy

∑
k p(i)

k = 1 ∀ i—yields what
is known as the maximum-likelihood estimator (MLE) for
ρE [21].

III. PARAMETRIZING CHANNELS

A. Arbitrary channels

To obtain a sample of quantum channels according to some
specified distribution, we generate Choi states ρE with the
HMC algorithm. The HMC method demands a parametriza-
tion of the state space (in this case the space of ρE ) with no su-
perfluous parameters and no external constraints. In Ref. [2],
the ability to sample quantum states with the HMC algorithm
was demonstrated using a parametrization of the full quantum
state space. Because of the TP condition, sampling of quantum

channels demands a parametrization of, not the full quantum
state space as in Ref. [2], but only of the set STP of TP states.
Here, as our central result, we explain how to accomplish this.

We first choose a product basis {|i j〉}d
i, j=1 on H ⊗ H and

represent ρE as a d2 × d2 matrix—also denoted as ρE , to
simplify notation—with complex entries. Positivity of ρE
means that we can write ρE = A†A, where A is a d2 × d2

upper triangular complex matrix with real entries in the last
column. The d2 columns of A are labeled using a double index

A =
⎛⎝ | | |

ϕ11 ϕ12 . . . ϕdd

| | |

⎞⎠, (12)

so that ρE = ∑d
i jkl=1 ϕ

†
i jϕkl |i j〉〈kl|, as the abstract, basis-

independent object. Stacking the columns of A to form
columns with d3 entries,

ϕi ≡

⎛⎜⎜⎝
ϕi1

ϕi2
...

ϕid

⎞⎟⎟⎠ for i = 1, 2, . . . , d, (13)

permits writing the TP condition in Eq. (9), that is,
tr2(ρE ) = ∑

i j (
∑

k ϕ
†
ikϕ jk )|i〉〈 j| = 1 = ∑

i j δi j |i〉〈 j|, as an
orthonormality condition on the ϕi’s:

ϕ
†
i ϕ j = δi j for i, j = 1, 2, . . . , d. (14)

Hence, to sample quantum channels, we simply need to find a
parametrization for the orthonormal set {ϕi}d

i=1.
Let us count the number of parameters needed. Since A is

upper triangular, ϕik has (ik) + 1 generically nonzero entries,
where (ik) ≡ (i − 1)d + (k − 1) is a d-nary number. Each ϕi

thus has Ki ≡ ∑
k[(ik) + 1] = id2 − 1

2 d (d − 1) nonzero en-
tries. These nonzero entries are all complex, except for the d2

of them in ϕdd , which are real. The orthonormality conditions
on the ϕi’s remove d2 real parameters. Altogether then, the
ϕi’s are described by 2

∑
i Ki − d2 − d2 = d2(d2 − 1) real

parameters, exactly the number needed to describe a quantum
channel.

To specify an appropriate parametrization of the ϕi set, it is
convenient to reshuffle the rows of ϕi so that all the identically
zero entries of each ϕi are collected together. We first define
the matrix

	 ≡
⎛⎝ | | |

ϕ1 ϕ2 . . . ϕd

| | |

⎞⎠. (15)

Observe that the orthonormality conditions on the ϕi’s trans-
late into the requirement that 	†	 = 1. Let P be a d3 × d3

permutation matrix such that


 ≡ P	 =
⎛⎝ | | |

ψ1 ψ2 . . . ψd

| | |

⎞⎠ (16)

has columns ψi’s, each of which is a reshuffled ϕi with all
identically zero entries located below the generically nonzero
ones, i.e., the kth entry of ψi, which we denote as ψik ,
is generally nonzero for k = 1, . . . , Ki, and zero for k =
Ki + 1, . . . , d3. Such a P matrix exists because A is upper
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triangular. Requiring 	†	 = 1 is equivalent to demanding

†
 = 	†P−1P	 = 1.

We are now ready to state the parametrization for the ψi’s,
thereby giving a parametrization for STP. We begin with
ψd , parametrizing it with spherical coordinates so that it is
normalized,

ψdk ≡
{

eiφk (cos θk−1)Sk for k = 1, . . . , Kd ,

0 for k = Kd + 1, . . . , d3,
(17)

where θ0 ≡ 0 fixed, and the Sk’s are recursively defined as
Sk = (sin θk )Sk+1, with SKd = 1. Here, the φk’s for the ψdk’s
that come from the real entries of ϕdd are understood to be
set to zero (which ones they are, depends on the choice of P).
ψd is hence parametrized by real parameters θ1, . . . , θKd −1,
and Kd − d2 φk (real) parameters, giving 2Kd − 1 − d2 real
parameters in all. Note the identity

m∑
k=1

|ψdk|2 = S2
m for any m = 1, 2, . . . , Kd , (18)

so that the norm square of ψd is simply ψ
†
d ψd =∑Kd

k=1 |ψdk|2 = S2
Kd

= 1, i.e., ψd has length 1.
Next, let vn, for n = 1, . . . , Kd−1 − 1, be the d3-long col-

umn vector with the kth entry defined as

vnk ≡ 1

Sn+1

{
ψdk

∣∣
θn→θn+ π

2
for k = 1, . . . , n + 1,

0 for k = n + 2, . . . , d3

= 1

Sn+1

⎧⎪⎨⎪⎩
ψdk

cos θn
sin θn

for k = 1, . . . , n,

ψd (n+1)
− sin θn
cos θn

for k = n + 1,

0 for k = n + 2, . . . , d3.

(19)

Observe that vn is orthogonal to ψd , for every n, since

Sn+1v
†
nψd = cos θn

sin θn

n∑
k=1

|ψdk|2 − sin θn

cos θn
|ψd (n+1)|2

= cos θn sin θnS2
n+1 − sin θn cos θnS2

n+1 = 0. (20)

One can check, in a similar manner, that the vn column vectors
form an orthonormal set.

The span of {vn}Kd−1−1
n=1 lies in the orthogonal subspace of

ψd . ψ1, ψ2, . . . ψd−1 are to be orthogonal to ψd , so we can
set them to be in the linear span of {vn}. Note that both
ψd−1 and vKd−1−1 have the same number (= Kd−1) of nonzero
entries, the largest among the ψis (i = 1, . . . , d − 1) and vn’s.
Specifically, we define⎛⎝ | | |

ψ1 ψ2 . . . ψd−1

| | |

⎞⎠ ≡ V 
̃, (21)

where V is the (nonsquare) matrix with columns
v1, v2, . . . , vKd−1−1. 
̃ is defined such that its columns
are the coefficients of the ψi’s when expressed as a linear
combination of the vn’s, i.e., ψi = V ψ̃i = ∑

n ψ̃invn, where
ψ̃i is the ith column of 
̃, and ψ̃in are its entries. Note
that V is a d3 × (Kd−1 − 1) matrix with the last d3 − Kd−1

rows completely zero, while 
̃ is a (Kd−1 − 1) × (d − 1)
matrix.

Observe that the orthonormality of the ψi’s, for i =
1, . . . , d − 1, is equivalent to the orthonormality of the
columns of 
̃, i.e., 
̃†
̃ = 1. This is then the same problem
as before, for 
, with now one fewer column. We hence repeat
the procedure above, parametrizing ψ̃d−1 using a new set of
spherical coordinates (θ ’s and φ’s; note that none of the φ are
set to zero as the ψi 
=d ’s are generally complex), defining new
v vectors orthogonal to it, getting a new 
̃, and so forth. We
do this recursively until all ψi’s are parametrized.

Let us check that the recursive procedure yields the right
number of parameters for the full set of orthonormal ψi’s. As
mentioned earlier, in the first round, ψd (and the V there) is
parametrized by 2Kd − 1 − d2 parameters, that subtraction of
d2 coming from the d2 zero φk’s done for ψd only. In the
next round, ψd−1 is parametrized by an additional (on top
of the ones that go into V ) 2(Kd−1 − 1) − 1 real parameter;
in yet the next round, ψd−2 is parametrized by an additional
2(Kd−2 − 2) − 1 real parameter; and so forth. Altogether then,
we have −d2 + ∑d−1

i=0 [2(Kd−i − i) − 1] = d4 − d2 real pa-
rameters, exactly the right number needed for parametrizing
d-dimensional quantum channels.

To illustrate how one applies the above parametrization,
the case of qutrit channels is discussed in Appendix B. In
the following sections, we make use of our parametrization
in a HMC algorithm to sample quantum channels according
to specified distributions, and demonstrate the usefulness of
these samples in different applications. Before we get to that,
however, let us mention a parametrization designed specifi-
cally for unital qubit channels, useful for one of our examples
below.

B. Unital qubit channels

A useful class of quantum channels is the set of unital
channels, those that preserve the identity operator E (1) = 1.
The unitality condition can be stated in terms of the Choi state
as the requirement

tr1(ρE ) = 1. (22)

A unital quantum channel thus has ρE such that tri(ρE ) = 1
for i = 1, 2, stating both the TP and unitality conditions.
This is generally a difficult pair of conditions to impose, for
a parametrization of unital channels with exactly the right
number of parameters, as needed for HMC.

For unital qubit channels, however, this can be done in a
straightforward manner, as we describe here [22]. The Choi
state of a qubit channel is a two-qubit state. Any two-qubit
state (normalized to trace 2) can be written as

ρ = 1

2
(1 + σ · s + t · τ + σ · C · τ), (23)

where σ = (σx, σy, σz ) is the vector of Pauli operators for the
first qubit and τ = (τx, τy, τz ) is the vector of Pauli operators
for the second qubit. (Here, the word “vector” is used in the
physicist’s sense of a three-dimensional spatial vector.) s and
t are the Bloch vectors for qubits 1 and 2, respectively; C
is a dyadic, representable by a 3 × 3 matrix of real numbers
corresponding to the coefficients of σiτ j , for i, j = x, y, z. The
TP condition requires s = 0; the unitality condition demands
t = 0. The Choi state of a unital qubit channel thus takes the
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form

ρE = 1

2
(1 + σ · C · τ). (24)

Up to local unitary transformation, the dyadic C can al-
ways be chosen to be diagonal Cdiag. For ρE to be positive
semidefinite, the three diagonal entries of Cdiag must lie within
a tetrahedron with the vertices

v1 = (−1,−1,−1),

v2 = (−1, 1, 1),

v3 = (1,−1, 1),

and v4 = (1, 1,−1), (25)

where each vertex corresponds to one of four pairwise orthog-
onal maximally entangled two-qubit states. We parametrize
the three entries of Cdiag by the convex combination of the
four vertices

(c1, c2, c3) = α1v1 + α2v2 + α3v3 + α4v4, (26)

where

α1 = cos2 θ1,

α2 = sin2 θ1 cos2 θ2,

α3 = sin2 θ1 sin2 θ2 cos2 θ3,

α4 = sin2 θ1 sin2 θ2 sin2 θ3. (27)

Generally, the dyadic C can be written as

C = R1CdiagRT
2 , (28)

where R1 and R2 are the rotation matrices representing the
local unitary transformations (equivalently, spatial rotations
in the Bloch-ball picture) of qubits 1 and 2, respectively. R1
and R2 can each be parametrized by three rotation angles.
Altogether, we have a parametrization of the set of all unital
qubit channels, specified by nine angle parameters.

IV. APPLICATIONS

The HMC algorithm is a method for generating random
samples from any target distribution by making use of pseudo-
Hamiltonian dynamics in a mock phase space. Upon identify-
ing the parameters in the parametrizations given in Sec. III—
which satisfy the requirements of not having superfluous
parameters and no constraints—as the position variables in
the mock phase space, we can employ the HMC algorithm.
We give a brief review of the HMC algorithm in Appendix
A. A more detailed discussion can be found in Ref. [2]. In
this section, we demonstrate the use of random samples of
channels in three applications related to process tomography.
That the examples are related to tomography simply reflects
the authors’ original motivation and source of interest in
the matter of channel sampling. The channel parametrization
invented here and the resulting ability to sample according
to a user-specified distribution using a HMC algorithm are
applicable beyond tomography tasks.

A. Error regions for process estimation

Whether one chooses to use the MLE or some other estima-
tor for ρE , the point estimator will not coincide exactly with
the true ρE with finite data. It is important then to endow the
point estimators with error regions expressing the uncertainty
in our knowledge of the identity of the channel. Here, we
adopt as error regions the notion of smallest credible regions
(SCRs) proposed in Ref. [23]. SCRs were originally proposed
for the estimation of quantum states, whether they are TP
states or not, but completely analogous notions can be defined
for STP. Here, we examine the construction of SCRs for the
task of quantum process estimation, as an application of our
channel sampling algorithm. We first recall a few key points
about SCRs pertinent to our discussion here; the reader is
referred to [23] for further details.

The SCR is the region—a set of states—in STP with the
smallest size for a chosen credibility. Size is the prior content
of a region in STP, i.e., the prior (before any data are taken)
probability that the true state is in the region; credibility is
the posterior (after incorporating the data) content of that re-
gion. The SCRs are bounded-likelihood regions (BLRs), i.e.,
regions Rλ comprising all states with likelihood no smaller
than a threshold fraction λ ∈ [0, 1] of the maximum likelihood
Lmax(D),

Rλ(D) = {ρ ∈ STP : L(D|ρ) � λLmax(D)}, (29)

with R0 = STP. The size sλ of the BLR Rλ is its prior
content, and its credibility cλ is its posterior content

sλ(D) =
∫
Rλ(D)

(dρ) and cλ(D) =
∫
Rλ(D)

(dρ)
L(D|ρ)

L(D)
,

(30)

with s0 = c0 = 1 when λ = 0. The volume element (dρ)
expresses the prior distribution; (dρ) L(D|ρ)

L(D) is the posterior
distribution. L(D) ≡ ∫

R0
(dρ)L(D|ρ), a normalizing factor, is

the likelihood of obtaining the data D for the chosen prior.
For tomography problems, it is often natural to state the prior
distribution in terms of the POVM-induced probabilities [see
Eq. (10)]

(dρ) = (d p) w0(p), (31)

where w0(p) is the prior density, nonzero only for p ≡
(p(1)

1 , p(2)
1 , . . . , p(1)

2 , . . .) that corresponds to a ρ ∈ STP, and
(d p) ≡ d p(1)

1 d p(2)
1 . . . .

To report the error region for an experiment with data D,
following the scheme of Ref. [23], sλ and cλ are calculated for
all values of λ. The error regions are reported by plotting sλ

and cλ as functions of λ. For a desired level of credibility, the
λ value is read off, and the error region is the Rλ for that value
of λ. The size and credibility of a BLR [see Eq. (30)] cannot,
in general, be computed analytically, due to the complicated
integration region. Instead, we make use of MC integration:
We generate random samples using HMC according to the
prior and posterior distributions; the size and credibility are
then the fractions of points contained in the BLR for the two
distributions.

A related concept is the plausible region [24]. This is the
set of all points in STP, for which the data provide evidence
in favor of—L(D|ρ) > L(D). The plausible region is in fact a
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TABLE I. Simulated data for the first example in Sec. IV A. Each
entry n(i)

k represents the number of clicks in detector �k when the
input state ρ (i) is sent.

�k

1 2 3 4

1 7 5 6 6
2 3 13 4 4

ρ (i)

3 2 7 8 7
4 3 7 8 6

BLR, with a critical value of λ,

λcrit(D) = L(D)

Lmax(D)
. (32)

Once we have computed the size and credibility curves, we
can also identify the plausible region for the data.

As a first example, we look at single-qubit channels. The
input states ρ (i) for process tomography are taken to be the
tetrahedron states

ρ (i) = 1
2 (1 + ai · σ ), i = 1, 2, 3, and 4 (33)

where ai = 3−1/2vi with the vertex vectors of Eq. (25). For
every i, we use the same POVM, the four-outcome tetrahedron
measurement, with outcomes

�k = 1
4 (1 + ak · σ), k = 1, 2, 3, and 4. (34)

We simulate data using an amplitude-damping channel de-
scribed by the Kraus operators

E0 ≡
(

1 0
0

√
1 − γ

)
and E1 ≡

(
0

√
γ

0 0

)
, (35)

where γ , the damping parameter, is set to 0.4. The matrices
above refer to the computational basis. For the matrices ap-
pearing in the rest of this paper, it should be assumed that
they refer to the computational basis as well. 24 copies of
each input state ρ (i) are measured (simulated), giving a total
of 96 counts over the four input states. The simulated data are
reported in Table I.

For the prior distribution, we choose the conjugate prior

(d p) w0(p) ∝ (d p)
4∏

i,k=1

(
p(i)

k

)48p̄(i)
k , (36)

where p̄ = { p̄(i)
k } corresponds to the Born probabilities [see

Eq. (10)] for an amplitude-damping channel with γ = 0.5,
expressing our prior belief that that is the actual channel.
Figure 1(a) shows the size and credibility curves, obtained
from MC integration using 500 000 sample points generated
from HMC with the channel parametrization of Sec. III. The
critical λ value for the plausible region is indicated with a
red dashed line, with size value s = 0.2102 and credibility
value c = 0.8586. The true channel is contained in all BLRs
with λ < 0.0302 and cλ > 0.5511, and is thus in the plausible
region.
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FIG. 1. Size sλ and credibility cλ of the BLRs Rλ, plotted against
log10 λ, for (a) the qubit amplitude-damping channel, and (b) the
qutrit amplitude-damping channel. The red vertical dashed lines
mark the respective critical λ values λcrit = 0.0073 for (a), and
λcrit = 3.5598 × 10−20 for (b). These identify the plausible regions.

Now, qubit channels are simple to characterize and there
are many ways of sampling from the space of qubit chan-
nels. It is hence useful to see how our sampling algorithm
works for examples beyond the qubit situation, for which
proper sampling is more challenging. As a second example,
we consider an amplitude-damping qutrit (three-dimensional
quantum system) channel with the Kraus operators

E0 ≡
⎛⎝1 0 0

0
√

1 − γ1 0

0 0
√

1 − γ2

⎞⎠, (37)

E1 ≡
⎛⎝0

√
γ1 0

0 0 0

0 0 0

⎞⎠, and E2 ≡
⎛⎝0 0

√
γ2

0 0 0

0 0 0

⎞⎠,

for γ1 = 0.1 and γ2 = 0.5.
The POVM used is one of the symmetric, informationally

complete POVM (SIC-POVM) from the one-parameter family
of qutrit SIC-POVMs. It can be described by a set of states
{|μi〉}; when written in the computational basis, they are given
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TABLE II. Simulated data for the second example in Sec. IV A.
Each entry n(i)

k represents the number of clicks in detector �k when
the input state ρ (i) is sent.

�k

1 2 3 4 5 6 7 8 9

1 8 1 4 1 8 2 1 2 0
2 3 10 3 1 1 2 3 3 1
3 1 1 9 1 2 2 3 5 3
4 8 3 3 4 0 1 4 3 1

ρ (i) 5 2 3 3 1 10 2 4 2 0
6 3 4 4 2 0 8 2 2 2
7 3 2 4 2 0 2 9 4 1
8 2 0 4 0 0 2 6 8 5
9 3 3 3 1 5 0 1 3 8

explicitly by

(|μ1〉|μ2〉 . . . |μ9〉)

≡ 1√
2

⎛⎝1 1 1 0 0 0 ω ω∗ 1
ω ω∗ 1 1 1 1 0 0 0
0 0 0 ω ω∗ 1 1 1 1

⎞⎠, (38)

where ω = ei2π/3, ω∗ = ω2, and 1 + ω + ω2 = 0. The POVM
elements are

�i = 1
3 |μi〉〈μi|, i = 1, 2, . . . , 9. (39)

The input states are

ρ (i) = |μi〉〈μi|, i = 1, 2, . . . , 9. (40)

For each of the input states, the number of copies mea-
sured is 27, giving a total of 243 counts. The simulated data
are reported in Table II. The prior is the primitive prior,
i.e., w0(p) is a constant wherever it is nonzero. Figure 1(b)
shows the size and credibility curves, obtained from MC
integration with 100 000 sample points using HMC and our
channel parametrization. As before, the critical λ value for
the plausible region is indicated by the vertical dashed line.
The size and credibility of the plausible region are s = 0.0032
and c = 0.9990, respectively. The true channel is contained in
all BLRs with λ < 1.1560 × 10−6, and is thus in the plausible
region.

B. Marginal likelihood for channel properties

Often, one is only interested in certain properties of a
channel, like the fidelity between the output of the channel
and its input, rather than a full channel description in the form
of its process matrix. If one could directly measure that one
quantity of interest, one expects to accomplish the estimation
task with significantly fewer uses of the channel than needed
for full tomography. However, a direct measurement of the
quantity of interest may be difficult to design and implement,
while the process tomography measurement is often standard
procedure. Even in the latter case, one should still estimate
the quantity of interest directly from the tomography data,
rather than first estimating the full process matrix and then
computing the quantity of interest from that estimate [25].

The key ingredient in making inferences about a property
F of a channel from tomographic data D is the marginal
likelihood, obtained by integrating the full likelihood L(D|p)
over the irrelevant parameters

L(D|F ) =
∫

(d p) wr (p) δ(F − f (p)) L(D|p)∫
(d p) wr (p) δ(F − f (p))

≡ Wr,D(F )

Wr,0(F )
, (41)

where Wr,D(0)(F ) is the integral in the numerator (denomi-
nator). f (p) is the function that expresses F in terms of the
tomographic probabilities p, and wr (p) is the prior density
on p, which induces a prior density on F . δ(F − f (p)) is
the Dirac delta function that enforces f (p) = F . Once we
have the marginal likelihood, we can proceed in an analogous
way as in Sec. IV A to construct the smallest credible interval
(SCI) and the plausible interval for F , as well as perform other
statistical inference tasks based on the marginal likelihood.

We thus need a general procedure for computing the
marginal likelihood L(D|F ). In Ref. [25], an iterative al-
gorithm was developed for that purpose, requiring the use
of random samples according to specified distributions. The
reader is referred to Ref. [25] for the full description of the
iterative algorithm, and to Appendix C for the details relevant
for our examples below. Here, we give only a brief account of
the basic ideas. The delta functions in the defining equation
(41) are difficult to handle in a numerical evaluation of the
integrals. Instead, we evaluate the antiderivatives Pr,i(F ), with
respect to F , of Wr,i(F ),

Pr,i(F ) ≡
∫

dF Wr,i(F ), i = D, 0 (42)

with step functions in place of the delta functions. Pr,i can be
computed by MC integration. The results are closely fitted
with several-parameter functions, and then differentiated to
give Wr,i, and hence the marginal likelihood. This procedure
works, in principle; in practice, one runs into numerical accu-
racy problems. If wr (p) has little weight over some range of
F , a rather generic situation, Pr,0 will be very flat there, and
its derivative cannot be reliably estimated. To overcome this
problem, the crux is to note that, because of the delta func-
tions, the marginal likelihood is invariant under the replace-
ment wr (p) → wr (p)g( f (p)) for any function g(F ) positive
over the entire range of F . We thus have the freedom to choose
the wr (p) used to evaluate L(D|F ). This freedom of choice
is exploited in the iterative procedure described in Ref. [25],
where the estimate of Wr,0 is successively improved by using
an wr (p) modified by the previous (possibly inaccurate) esti-
mate of Wr,0, until the desired convergence level is reached.
Each iterative step requires the ability to sample according
to the new wr (p); that is where the HMC algorithm, permit-
ting sampling in accordance to a user-specified distribution,
comes in.

Below, we carry out the iterative algorithm and compute
the marginal likelihood for two common channel properties,
average fidelity Favg and minimum fidelity Fmin. We make
use of the HMC algorithm made possible by our channel
parametrization of Sec. III. Both examples are for qubit
channels, and use the same (simulated) tomographic data
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TABLE III. Simulated data for the examples in Sec. IV B. Each
entry n(i)

k represents the number of clicks in detector �k when the
input state ρ (i) is sent.

�k

1 2 3 4

1 9 4 4 7
2 6 6 3 9

ρ (i)

3 3 5 10 6
4 8 4 5 7

obtained from tetrahedron input states [see Eq. (33)] and the
tetrahedron POVM [see Eq. (34)] for the true channel

EPauli(·) ≡
(

1 −
∑

i=x,y,z

pi

)
(·) +

∑
i=x,y,z

piσi(·)σi, (43)

a Pauli channel. Here, the σi’s are the standard Pauli operators,
and (px, py, pz ) = (0.05, 0.15, 0.2). The data are generated
from 96 uses of the channel. The simulated data are reported
in Table III. We regard the Pauli channel as noise acting on our
quantum system. We are interested in the fidelity measures
Favg and Fmin quantifying the effect of this noise channel on
our system.

1. Average fidelity

The average fidelity Favg is defined here as the (squared)
fidelity between the input and output of the channel E , aver-
aged over all input pure states according to the Haar measure.
We write F (ψ, ρ) ≡ 〈ψ |ρ|ψ〉 for the square of the fidelity
between a pure state ψ ≡ |ψ〉〈ψ | and an arbitrary state ρ.
Then, the average fidelity for the channel E is

Favg(E ) ≡
∫

dψ 〈ψ |E (ψ )|ψ〉

=
〈
ψ0

[∫
dU U †E (Uψ0U

†)U

]∣∣∣∣ψ0

〉
= 1

d
[1 + (d − 1)q]. (44)

Here, dU is the Haar measure for the space of unitary op-
erators, and ψ0 is some fiducial pure state. In arriving at
the last line, we have used a standard result of the twirling
operation [26] (namely, the expression in the brackets in the
second-to-last line), with q given by

q ≡ 1

d2 − 1

∑
i

tr
[
ρE

(
OT

i ⊗ Oi
)]

, (45)

where Oi’s are all the traceless elements of an orthonormal
(according to the Hilbert-Schmidt inner product) operator
basis, containing an element proportional to the identity op-
erator, for the d-dimensional H. In the qubit case, q has the
explicit formula

q = 1
3 tr[ρE (σx ⊗ σx − σy ⊗ σy + σz ⊗ σz )], (46)

where we have chosen the ∗ map such that |i〉 = |i〉 for
{|i〉}1

i=0, the σz basis for the qubit (see comment about this
choice in the second paragraph of Sec. II).
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FIG. 2. The marginal likelihood L(D|Favg), computed using
the iterative procedure of Ref. [25] and HMC with our channel
parametrization.

We use the iterative procedure of Ref. [25] to compute the
marginal likelihood L(D|Favg), for F ≡ Favg. The final result
is shown in Fig. 2; the intermediate steps of the iterative
algorithm are described in Appendix D 1. With the marginal
likelihood at hand, as an example of its usefulness, we can
construct, as in Sec. IV A, the SCI for our estimate of Favg.
Figure 3(a) gives the size and credibility curves, as well as
the critical λ value for the plausible region. Figure 3(b) shows
the SCI for Favg for different credibility values. The horizontal
black line specifies the plausible interval, which includes the
true value of Favg = 0.7333 (indicated with an arrow).

2. Minimum fidelity of unital qubit channels

As a second example, also to illustrate the use of the
parametrization of the unital qubit channels of Sec. III B, we
look at the minimum, or worst-case, (squared) fidelity of a
unital channel. The minimum fidelity for a channel E is the
fidelity of the output of E with its (pure) input, minimized
over all input states, i.e.,

Fmin ≡ min
|ψ〉

F (ψ, E (ψ )). (47)

In the qubit case, Fmin can be written explicitly using the
Bloch-ball representation as

Fmin = min
s:|s|=1

1
2 (1 + s · sE ), (48)

where s is the Bloch vector of the input state ψ , and sE is that
of the output E (ψ ). For a unital qubit channel, sE is the image
of a linear map on the Bloch vector: sE = Ms. The minimum
fidelity can thus be written simply as

Fmin = min
s:|s|=1

1
2 (1 + sT Ms) = 1

2 (1 + μmin), (49)

where μmin is the smallest eigenvalue of 1
2 (M + M†). This

provides the direct connection between the unital qubit chan-
nel and Fmin, and, in particular, allows us to express Fmin
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FIG. 3. (a) Size (blue) and credibility (green) curves for the
bounded likelihood intervals for Favg. The red vertical dashed line
marks the critical value of λ, at λcrit = 0.3819. (b) SCI for Favg.
The blue curve indicates the boundaries of the SCIs for different
credibility values. The black horizontal line marks the plausible
interval and the arrow indicates the true value of Favg = 0.7333.

in terms of the tomographic probabilities associated with a
channel E .

Here, we assume the promise that the unknown channel is
a unital one; the Pauli channel used to simulate the data is
indeed unital. In effect, this unitality assumption restricts the
relevant space of Choi states dual to the channels, to a strict
subset of STP, namely, to those that also satisfy Eq. (22).
Any channel sampling is thus done only from this subset.
Using the parametrization of Sec. III B, we employ HMC
integration to compute the marginal likelihood L(D|Fmin). The
result is given in Fig. 4; the intermediate steps are provided
in Appendix D 2. With this marginal likelihood, one can
construct the corresponding SCIs and the plausible region, as
well as perform other statistical inferences about the unital
qubit channel.

C. Model selection

Often, one may not need the full generality of a CPTP
channel to describe the dynamics of a quantum system. In-
stead, a simpler model with fewer parameters may suffice.
Simpler models are computationally easier to work with, are
likely more easily motivated from a physical standpoint, and
may already describe the tomographic data well. One can
phrase this problem as one of model selection in statistics,
where the best model, among a few candidate models, is
chosen, given the available data. Here, we discuss the quantum
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FIG. 4. The marginal likelihood L(D|Fmin ), computed using
the iterative procedure of Ref. [25] and HMC with our channel
parametrization.

problem of model selection for channel families. Our sam-
pling algorithm is used for two purposes here: (1) to evaluate
a criterion—based on the notion of relative belief—for the
“best” model; (2) to assess and compare the performance of
different model selection criteria by testing them on many
randomly chosen true channels.

Two criteria for model selection commonly used in classi-
cal problems are the Akaike information criterion (AIC) [27]
and the Bayesian information criterion (BIC) [28]. The AIC is
based on the quantity (which we denote also as “AIC”)

AIC = 2k − 2 ln(Lmax), (50)

k is the number of parameters in the model and Lmax is the
maximum value of the likelihood of the model for the data.
The best model is the one with the smallest AIC value. The
BIC is defined in a similar manner, but uses the value of N ,
the number of copies measured,

BIC = k ln(N ) − 2 ln(Lmax). (51)

The best model according to this criterion is again the one
with the smallest BIC value.

Another approach to model selection is based on the rela-
tive belief ratio (RBR) of Ref. [24]. The RBR of a model M is
the ratio of its posterior to prior probabilities,

RBR(M|D) = P(M|D)

P(M )
, (52)

where

P(M|D) =
∫

M
(dρE )

L(D|ρE )

L(D)
and P(M ) =

∫
M

(dρE ).

(53)

If the posterior probability for a model M increases after the
data, i.e., RBR(M|D) > 1, the data provide evidence in favor
of the model; the data provide evidence against the model
if RBR(M|D) < 1. It is also useful to have a measure of
strength of evidence since the data might provide evidence
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FIG. 5. The hierarchy of the five candidate models for the exam-
ple in Sec. IV C.

in favor of more than one model from our candidate set, and
one would like some basis of choosing among those models.
The RBR value by itself is not a measure of the strength of
evidence (see Ref. [24] for a discussion of various aspects,
and also Ref. [29]). We supplement it with the posterior
probability

PM0 ≡ P[[RBR(M|D) = RBR(M0|D)] | D] (54)

for the model M0 in question, and M ranges over the set
of candidate models. If RBR(M0|D) > 1 and PM0 is large,
then there is strong evidence in favor of M0. The best model,
according to the RBR criterion of relative belief ratio, is
the one with the largest posterior probability PM , among all
candidate models with RBR(M|D) > 1.

As an example, we consider as candidate models five
nested qubit channel families: dephasing channels ⊂ Pauli
channels ⊂ symmetric unital channels ⊂ unital channels ⊂
general CPTP channels; see Fig. 5. The smallest set is the
one-parameter family of dephasing channels

{Dp(·) ≡ (1 − p)(·) + pσz(·)σz, p ∈ [0, 1]}, (55)

and its Choi state is given by

ρE =

⎛⎜⎝ 1 0 0 1 − 2p
0 0 0 0
0 0 0 0

1 − 2p 0 0 1

⎞⎟⎠. (56)

The set of Pauli channels is a three-parameter family{
Paulip(·) ≡

(
1 −

∑
i

pi

)
(·) +

∑
i

piσi(·)σi

}
, (57)

for p ≡ (px, py, pz ), pi � 0, and
∑

i pi � 1. The Choi state of
a Pauli channel is of the form

ρE =

⎛⎜⎝pI + pz 0 0 pI − pz

0 px + py px − py 0
0 px − py px + py 0

pI − pz 0 0 pI + pz

⎞⎟⎠, (58)

where pI = 1 − px − py − pz. The six-parameter family of
symmetric unital channels refers to the subset of unital qubit
channels such that R1 = R2 in Eq. (28). We then have the

9-parameter family of unital qubit channels and, lastly, the
12-parameter set of all CPTP qubit channels.

A natural prior on the model space is one that puts equal
weights on each family. This is easily defined by the sampling
procedure: the prior sample is constructed by generating
500 000 sample points with the primitive prior for each family.
For the dephasing channel, the sample is generated by sam-
pling p uniformly from [0,1]. For the Pauli channel, we obtain
the sample by generating (px, py, pz ) uniformly from the 3-
simplex. For the symmetric unital, the unital, and the general
channels, we make use of HMC and the parametrizations
in Sec. III to generate the sample points. Note that in the
numerical procedure that generates the samples for, say, the
set of Pauli channels, we will never come across a sample
point that is exactly a dephasing channel with px = 0 = py.
Thus, even though the channel families are nested sets, one
can consider each family to have prior probability of 1

5 . We
use this prior to compute the RBR criterion for simulated
data of different sizes. For our choice of prior, P(M ) = 1

5 for
all models and P(M|D) is calculated by taking the average
of L(D|ρ)

L(D) over the sample points for each model. PM0 is
computed by summing the posterior probabilities P(M|D) of
all the models M with the same RBR as model M0. Typically,
PM0 = P(M0|D).

To assess the performance of the three model-selection
criteria, for each family of channels, we randomly (according
to the primitive prior, as described above) draw 1000 channels.
For each channel, we simulate data—with tetrahedron input
states and a tetrahedron measurement [see Eqs. (33) and
(34)]—for N = 20, 50, 100, 1 000, 10 000, and 100 000 copies
measured, and evaluate the AIC, BIC, and RBR criteria for
that data. Table IV shows the conclusions when the three
criteria are applied to the simulated data. When the number
of measured copies is very small, i.e., N = 20, the results
based on AIC and BIC show a strong bias toward simpler (i.e.,
fewer-parameters) models. In particular, both criteria rarely
identify the right model when the true channel comes from the
unital or general families. Results based on RBR, however,
show significantly more instances where the correct model
is identified for the more complex (i.e., more parameters)
models. For a moderate number of measured copies, i.e.,
N = 1 000, AIC and RBR give equally good results, whereas
BIC shows a slight bias toward the simpler models. When the
number of measured copies is very large, i.e., N = 100 000,
results based on BIC are most accurate whereas results based
on AIC have a slight bias to the more complex models. RBR
also performs well in this regime.

Another aspect that we can check easily with our sampling
procedure is the bias in the prior. This is particularly important
for model selection based on the RBR criterion, to be sure
that the probability of drawing a wrong conclusion is low.
For example, for data that are typical for a unital channel, if
we were to conclude regularly that there is evidence in favor
of the general CPTP model and evidence against the unital
model, there is bias in favor of the general CPTP model and
bias against the unital model. To check for the bias, we draw
1000 random channels from each of the channel families and
simulate data based on these true channels. The number of
instances where the simulated data provide evidence against
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TABLE IV. Comparison of results based on AIC, BIC, and RBR criteria, with different number of measured copies N . Candidate models
are nested channel families (see main text). Each row below collects the counts for each family of true channels; each column collects the
counts for the model that a criterion selects as the best fit for the data.

isof modelbest-fitthewherecasesNo. ofNo.True True
GeneralUnitalSUnitalPauliDephasingfamily

001043947Dephasing

009408583Pauli

0052319629SUnital

0231405562Unital

0230372596General

00017983Dephasing

000279721Pauli

005200795SUnital

003256741Unital

003235762General

77569362712Dephasing

192140173271224Pauli

178117315151239SUnital

196234215164191Unital

N
 =

 2
0

R
B

R
B

IC
A

IC

334164180156166General

022142935

0645644305

213213429343

457148534257

4333115531278

Dephasing

Pauli

SUnital

Unital

General

0014995Dephasing

000461539Pauli

0026328646SUnital

006393601Unital

0010404586General

35226852823Dephasing

170129139404158Pauli

132140376197155SUnital

15934322218591Unital

N
 =

 5
0

R
B

R
B

IC
A

IC

43217613917875General

211841938Dephasing

61672733173Pauli

630455368141SUnital

2521526440987Unital

2409314744278General

0002998Dephasing

002631367Pauli

00102471427SUnital

0842593357Unital

0226609363General

8113343905Dephasing

9494105578129Pauli

8212650621076SUnital

13239422319655Unital

N
 =

 1
0
0

R
B

R
B

IC
A

IC

52619011813234General

ismodelbest-fitthewherecases
GeneralUnitalSUnitalPauliDephasingfamily

271840933Dephasing

7267986622Pauli

3187818640SUnital

9481185100Unital

94847320General

00001000Dephasing

00092377Pauli

0074223127SUnital

05682501793Unital

6681121051132General

00112987Dephasing

082093636Pauli

835864921SUnital

23837122180Unital

N
 =

 1
0
0
0

R
B

R
B

IC
A

IC

883106740General

562949911Dephasing

1934998462Pauli

379486810SUnital

108889300Unital

9991000General

00001000Dephasing

00098911Pauli

00989110SUnital

09633700Unital

98317000General

0001999Dephasing

0019936Pauli

0898570SUnital

199196020Unital

N
 =

 1
0
0
0
0

R
B

R
B

IC
A

IC

90786700General

262744921Dephasing

1737978481Pauli

3310286500SUnital

102898000Unital

10000000General

00001000Dephasing

0009982Pauli

0099910SUnital

0999100Unital

9991000General

00001000Dephasing

0009991Pauli

0299440SUnital

89246800Unital

N
 =

 1
0
0
0
0
0

R
B

R
B

IC
A

IC

91380700General

each of the four candidate models are calculated. The results
are shown in Table V. As can be seen from the table, there
is no significant bias in the prior when N � 100, and the bias
decreases as the number of measured copies increases.

V. CONCLUSIONS

In this work, we constructed one exact parametrization
for the space of CPTP channels. This parametrization has
no superfluous parameters, and requires no imposition of
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TABLE V. A check for bias in the prior. 1000 random channels
from each of the channel families are drawn, and data for different
number of measured copies N are simulated for each true channel.
The table shows the fraction of instances with evidence against each
of the channel families.

againstevidencewithFractionTrue
GeneralUnitalSUnitalPauliDephasingfamily

0.8100.7980.7460.8120.233Dephasing

0.4950.4010.5310.4130.724Pauli

0.5150.4550.3980.5580.687SUnital

0.4060.3160.5080.5180.767UnitalN
 =

 2
0

0.3500.3840.5520.5240.779General

0.9160.9110.8270.8020.127Dephasing

0.6380.5110.5880.3220.786Pauli

0.6420.4540.3260.5780.785SUnital

0.4880.2760.5030.5610.876UnitalN
 =

 5
0

0.3110.4480.6580.6100.892General

0.9780.9640.9110.8440.042Dephasing

0.7800.6720.6230.2280.826Pauli

0.7930.5080.2490.6130.874SUnital

0.5960.2600.5730.6580.925UnitalN
 =

 1
0
0

0.2660.5760.7310.7150.948General

110.9980.9660.003Dephasing

0.9990.9810.9300.0280.946Pauli

0.9830.8680.0880.8780.992SUnital

0.9130.0880.8210.9741UnitalN
 =

 1
0
0
0

0.0770.8680.9830.9951General

1110.9960.001Dephasing

110.9960.0060.992Pauli

10.9890.0110.9921SUnital

0.9810.0730.9300.9981Unital

N
 =

 1
0
0
0
0

0.0920.9070.99111General

1110.9990Dephasing

1110.0010.999Pauli

10.9980.0060.9961SUnital

0.9920.0760.93211Unital

N
 =

 1
0
0
0
0
0

0.0860.9200.99311General

any added constraints. These features make it possible to
use the parametrization in a HMC algorithm, for producing
high-quality—in terms of low correlations—samples of CPTP
channels from a user-specified distribution. We demonstrated
the usefulness of our parametrization in sampling applications
taken from quantum process tomography. The method applies
to general quantum channel sampling problems.

While our parametrization serves the purpose, it is, of
course, just one of the many parametrizations that could be
used in a HMC algorithm for sampling from the quantum
channel space. For example, it is conceivable that a useful
parametrization of a channel can be given in terms of the
marginals and the copula of the respective Choi state [31].
This is unexplored territory.

A useful extension of this work will be to discover also
an exact parametrization for the case of CPTP and unital

channels. As discussed above, this additional requirement
of unitality presents difficulties that can be easily overcome
only in the qubit situation. The parametrization for the space
of CPTP, unital channels beyond the qubit case, remains an
open problem. Note that such a parametrization will give
also a possibly useful description of the space of all bipartite
mixed quantum states with completely mixed states on both
the single-party states; our current parametrization gives the
larger space of states where only one of the two single-party
states is completely mixed.
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APPENDIX A: HAMILTONIAN MONTE CARLO (HMC)

HMC makes use of pseudo-Hamiltonian dynamics in a
mock phase space. The parameters of interest are identified
as the position variables θ and fictitious momentum variables
ϑ are introduced. The Hamiltonian is defined as

H (θ, ϑ ) = 1

2

∑
j

ϑ2
j − ln w(θ ), (A1)

where w(θ ) is the target distribution. Any reasonable target
distribution is permitted and, therefore, one can sample in
accordance with any w(θ ).

The HMC algorithm generates a set of sample points which
follows the target distribution w(θ ). The HMC algorithm is
stated as follows [2]:

HMC algorithm
(1) Set j = 1 and choose an arbitrary starting point θ (1).
(2) Generate ϑ ( j) from a multivariate Gaussian distribu-

tion with mean zero and unit variance.
(3) Solve the Hamiltonian equations of motion

d

dt
θi = ∂

∂ϑi
H,

d

dt
ϑi = − ∂

∂θi
H (A2)

with the initial conditions (θ, ϑ )|t=0 = (θ ( j), ϑ ( j) ) to obtain
(θ∗, ϑ∗) = (θ,−ϑ )|t=T .

(4) Calculate the acceptance ratio

a = min
{
1, eH (θ ( j),ϑ ( j) )−H (θ∗,ϑ∗ )

}
. (A3)

(5) Draw a random number b uniformly from [0,1]. If b <

a, set θ ( j+1) = θ∗; otherwise, set θ ( j+1) = θ ( j).
(6) Set j = j + 1. If j equals the desired number of sam-

ples, escape the loop; otherwise, return to step 2.
Note that the ϑ distribution in step 2 is proportional to the

kinetic-energy factor in e−H (θ,ϑ ); the HMC algorithm enforces
a θ distribution proportional to the potential-energy factor in
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e−H (θ,ϑ ), which is eln w(θ ) = w(θ ), the target distribution. If
the differential equations in (A2) can be solved exactly, then
the acceptance ratio a = 1. In practice, the differential equa-
tions must be discretized. This is done by the leapfrog method.
Due to the discretization error, the acceptance ratio will not
be 1 generally. The leapfrog method should be implemented
such that the acceptance ratio is around the optimal value
of 65% [18].

APPENDIX B: PARAMETRIZING QUTRIT CHANNELS

Here, we report an explicit application of the parameteri-
zation of Sec. III, for the case of qutrit channels. We start with
the permutation matrix P that reshuffles ϕi’s into ψi’s, with the
identically zero entries located below the generically nonzero
ones. A P that can accomplish this is one such that

P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
10
11
19
20
21
2
3
4

12
13
14
22
23
24
5
6
7

15
16
17
25
26
27
8
9

18

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

After the permutation, we have

ψ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψ1,1
...

ψ1,6

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ψ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψ2,1
...

ψ2,15

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ψ3 =

⎛⎜⎜⎜⎜⎜⎜⎝

ψ3,1
...

ψ3,24

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠. (B2)

To parametrize the ψi’s such that they are orthonormal, we
first parametrize ψ3, of unit length,

ψ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiφ1 sin θ1 sin θ2 . . . sin θ22 sin θ23

eiφ2 cos θ1 sin θ2 . . . sin θ22 sin θ23
...

eiφ23 cos θ22 sin θ23

eiφ24 cos θ23

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B3)

Recalling that ϕ33 [see Eq. (12)] is a d2-entry real column, and
with the P given above, ψ3,4, ψ3,5, ψ3,6, ψ3,13, ψ3,14, ψ3,15,
ψ3,22, ψ3,23, ψ3,24 are real. Thus, φ4, φ5, φ6, φ13, φ14, φ15, φ22,
φ23, φ24 are set to zero. Then, we define {vn}14

n=1 which lie in
the orthogonal subspace of ψ3 as follows:

v1 =

⎛⎜⎜⎜⎜⎝
eiφ1 cos θ1

−eiφ2 sin θ1

0
...
0

⎞⎟⎟⎟⎟⎠, v2 =

⎛⎜⎜⎜⎜⎜⎜⎝

eiφ1 sin θ1 cos θ2

eiφ2 cos θ1 cos θ2

−eiφ3 sin θ2

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎠, . . . ,

v14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiφ1 sin θ1 sin θ2 . . . sin θ13 cos θ14

eiφ2 cos θ1 sin θ2 . . . sin θ13 cos θ14
...

eiφ14 cos θ13 cos θ14

−eiφ15 sin θ14

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B4)

To make ψ1 and ψ2 orthogonal to ψ3, we set them to be in the
span of {vn}:

⎛⎝ | |
ψ1 ψ2

| |

⎞⎠ ≡ V 
̃ =
⎛⎝ | | |

v1 v2 . . . v14

| | |

⎞⎠⎛⎝ | |
ψ̃1 ψ̃2

| |

⎞⎠.

(B5)

The orthonormality of ψ1 and ψ2 is equivalent to the orthonor-
mality of ψ̃1 and ψ̃2. We simply need to repeat the previous
procedure. We parametrize ψ̃2 to be of unit length

ψ̃2 =

⎛⎜⎜⎜⎜⎜⎜⎝
eiφ̃1 sin θ̃1 sin θ̃2 . . . sin θ̃12 sin θ̃13

eiφ̃2 cos θ̃1 sin θ̃2 . . . sin θ̃12 sin θ̃13
...

eiφ̃13 cos θ̃12 sin θ̃13

eiφ̃14 cos θ̃13

⎞⎟⎟⎟⎟⎟⎟⎠. (B6)
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Next, we define {un}4
n=1, each orthogonal to ψ2:

u1 =

⎛⎜⎜⎜⎜⎜⎝
eiφ̃1 cos θ̃1

−eiφ̃2 sin θ̃1

0
...
0

⎞⎟⎟⎟⎟⎟⎠, u2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

eiφ̃1 sin θ̃1 cos θ̃2

eiφ̃2 cos θ̃1 cos θ̃2

−eiφ̃3 sin θ̃2

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, . . . ,

u4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiφ̃1 sin θ̃1 sin θ̃2 sin θ̃3 cos θ̃4

eiφ̃2 cos θ̃1 sin θ̃2 sin θ̃3 cos θ̃4

eiφ̃4 cos θ̃2 sin θ̃3 cos θ̃4

eiφ̃4 cos θ̃3 cos θ̃4

−eiφ̃5 sin θ̃4

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B7)

Finally, to have ψ̃1 normalized and orthogonal to ψ̃2, we set

ψ̃1 ≡ U ψ̄1 =
⎛⎝ | | |

u1 u2 . . . u4

| | |

⎞⎠ψ̄1, (B8)

where

ψ̄1 =

⎛⎜⎜⎝
eiφ̄1 sin θ̄1 sin θ̄2 sin θ̄3

eiφ̄2 cos θ̄1 sin θ̄2 sin θ̄3

eiφ̄3 cos θ̄2 sin θ̄3

eiφ̄4 cos θ̄3

⎞⎟⎟⎠. (B9)

We check that we have the right number of parameters. The
parameters used above are θ1, . . . , θ23, φ1, . . . , φ24 (nine of
these are set identically to zero), θ̃1, . . . , θ̃13, φ̃1, . . . , φ̃14,
θ̄1, θ̄2, θ̄3, and φ̄1, . . . , φ̄4, giving a total of 72 = 32(32 − 1)
parameters, as needed for specifying qutrit channels.

APPENDIX C: ITERATIVE ALGORITHM FOR
ESTIMATING THE MARGINAL LIKELIHOOD

To estimate the marginal likelihood reliably, we follow
the procedure in Ref. [25]. For the following discussion, we
assume

0 � f (p) � 1 (C1)

for the sake of simplicity. First, we note that the integrands in
(41) are ill suited for MC integration due to the presence of
the Dirac delta factors. We consider the antiderivatives

Pr,0(F ) =
∫

(d p) wr (p)η(F − f (p)) (C2)

and

Pr,D(F ) = 1

L(D)

∫
(d p) wr (p)η(F − f (p))L(D|p). (C3)

With a sample of wr (p) and wr (p)L(D|p)
L(D) , we can evaluate the

antiderivatives for various values of F and fit them with
several-parameters functions. From the fitted functions, we
can then calculate the derivatives

Wr,0(F ) = ∂

∂F
Pr,0(F ) =

∫
(d p) wr (p)δ(F − f (p)) (C4)
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1 0.0248 0.8322 0.0000

2 0.5664 0.8673 2.6619

FIG. 6. Average gate fidelity. (a) The green dots depict the MC
values of Pr,0(Favg), and the black curve is fitted to them; the inset
table reports the fitting parameters. The values of P̃r,0(Favg) are traced
out by the blue dots. (b) The blue dots show the MC values of
P̃r,0(Favg) after subtracting the straight line 3

2 (Favg − 1
3 ). The blue

curve, a truncated Fourier series, is fitted to the dots. (c) Fourier
amplitudes for P̃r,0(Favg). The high-frequency noise is removed from
the fit in (b) by discarding the red amplitudes whose magnitude is
less than 2% of that of largest amplitude.

and

Wr,D(F ) = ∂

∂F
Pr,D(F )

= 1

L(D)

∫
(d p) wr (p)δ(F − f (p))L(D|p) (C5)
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FIG. 7. Minimum gate fidelity. (a) The green dots depict the MC
values of Pr,0(Fmin ), and the black curve is fitted to them; the inset
table reports the fitting parameters. The values of P̃r,0(Fmin ) are traced
out by the blue dots. (b) The blue dots show the MC values of
P̃r,0(Fmin ) after subtracting the straight line Fmin. The blue curve, a
truncated Fourier series, is fitted to the dots. (c) Fourier amplitudes
for P̃r,0(Fmin ). The high-frequency noise is removed from the fit in
(b) by discarding the red amplitudes whose magnitude is less than
2% of that of largest amplitude.

and obtain the marginal likelihood by

L(D|F ) = Wr,D(F )

Wr,0(F )
. (C6)

A problem arises when Pr,0(F ) is very close to a constant
over some range of values of F . The common situation is that
Pr,0(F ) is very close to zero for a range of values near F = 0
and very close to one for a range of values near F = 1. MC
integration is not precise enough to distinguish Pr,0(F ) � 0
from Pr,0(F ) = 0 and Pr,0(F ) � 1 from Pr,0(F ) = 1. As a
result, the estimated value of Wr,0(F ) will be equal to zero
over those range of values. We cannot get a reliable estimation
of L(D|F ) in this situation since Wr,0(F ) is the denominator in
Eq. (C6). To overcome this problem, we note that we can do
the replacement

wr (p) → wr (p)g( f (p)) (C7)

with an arbitrary function g(F ) > 0 without changing the
value of L(D|F ).

The procedure for obtaining a reliable estimation of
L(D|F ) is as follows:

(1) Sample according to wr (p). Use this sample to calcu-
late Pr,0(F ). Fit a several-parameters function to Pr,0(F ) and
obtain Wr,0(F ) by differentiating the fitted function.

(2) Sample according to w̃r (p) = wr (p)
Wr,0 ( f (p)) . Use this sam-

ple to calculate

P̃r,0(F ) =
∫

(d p) w̃r (p)η(F − f (p)). (C8)

Fit a several-parameters function to P̃r,0(F ) and obtain W̃r,0(F )
by differentiating the fitted function.

(3) Sample according to w̃r (p)L(D|p)
L(D) = wr (p)L(D|p)

Wr,0 ( f (p))L(D) . Use
this sample to calculate

P̃r,D(F ) =
∫

(d p)w̃r (p)η(F − f (p))L(D|p). (C9)

Fit a several-parameters function to P̃r,D(F ) and obtain
W̃r,D(F ) by differentiating the fitted function.

(4) Obtain the marginal likelihood from

L(D|F ) = W̃r,D(F )

W̃r,0(F )
. (C10)

The reason that we can have a reliable estimation of
L(D|F ) using W̃r,0(F ) obtained in step 2 is as follows. Sup-
pose the exact value of Wr,0(F ) is known, W̃r,0(F ) will be
equal to 1 and P̃r,0(F ) will be equal to F . If the exact values of
Wr,0(F ) are not known, but we have a good approximation for
Wr,0(F ) from step 1 and use it for the calculation of P̃r,0(F ) in
step 2, the P̃r,0(F ) that we obtain will still be quite close to F
and W̃r,0(F ) will be nonzero for all range of F values.

In step 1, Pr,0(F ) can be fitted with a linear combination of
regularized incomplete beta functions

Ia,b(x) =
∫ x

0 t a−1(1 − t )b−1dt∫ 1
0 t a−1(1 − t )b−1dt

, (C11)
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that is,

Pr,0(F ) = w1Iamin,b1 (F ) + w2Ia1,bmin (F ) + w3Ia2,b2 (F )

+ · · · +
(

1 −
N−1∑
i=1

wi

)
IaN−1,bN−1 (F ), (C12)

with the fitting parameters a1, . . . , aN−1, b1, . . . , bN−1,w1,

. . . ,wN−1. amin and bmin are fixed by the power laws satisfied
by Pr,0(F ) near F = 0 and 1:

Pr,0(F ) ∝ F amin for F � 0 (C13)

and

1 − Pr,0(F ) ∝ (1 − F )bmin for F � 1. (C14)

In step 2, a truncated Fourier series of the form

P̃r,0(F ) � F + c1 sin(πF ) + c2 sin(2πF )

+ c3 sin(3πF ) + · · · (C15)

is usually a good fitting function. In step 3, P̃r,D(F ) can be
fitted with a smoothing spline.

APPENDIX D: INTERMEDIATE RESULTS FOR THE
ESTIMATION OF THE MARGINAL LIKELIHOOD

1. Average gate fidelity

The green dots in Fig. 6(a) show the values of Pr,0(Favg)
obtained by a MC integration with 1 000 000 sample points.
The MC integration is not precise enough to distinguish
Pr,0(Favg) � 0 from Pr,0(Favg) = 0 near Favg = 1

3 and to distin-
guish Pr,0(Favg) � 1 from Pr,0(Favg) = 1 near Favg = 1. There-
fore, a reliable approximation for Wr,0(Favg) = ∂

∂Favg
Pr,0(Favg)

cannot be obtained. To overcome this problem, we follow the
procedure stated in Appendix C. First, we fit the green dots
with a three-term fitting function of the form of Eq. (C12) with
F = 3

2 (Favg − 1
3 ), amin = 3, and bmin = 21

2 . The black curve is
the fitted curve of Pr,0(Favg). The fitting parameters are shown

in the inset table. P̃r,0(Favg) is obtained from a MC integration
with 1 500 000 sample points and shown as the blue dots in
Fig. 6(a).

The P̃r,0(Favg) is quite close to the straight line 3
2 (Favg − 1

3 ).
The P̃r,0(Favg) after subtracting the straight line 3

2 (Favg − 1
3 ) is

shown as the blue dots in Fig. 6(b). The blue curve shows
the fitting curve, a truncated Fourier series whose Fourier
amplitudes are reported in Fig. 6(c).

P̃r,D(Favg) is evaluated by a MC integration with 1 500 000
sample points and it can be fitted with a smoothing spline. The
marginal likelihood shown in Fig. 2 is obtained from the ratio
of W̃r,D(Favg) and W̃r,0(Favg).

2. Worst-case fidelity of a unital qubit channel

The green dots in Fig. 7(a) show the values of Pr,0(Fmin)
from a MC integration with 1 000 000 sample points. The MC
integration is not precise enough to distinguish Pr,0(Fmin) � 0
from Pr,0(Fmin) = 0 near Fmin = 0 and to distinguish
Pr,0(Fmin) � 1 from Pr,0(Fmin) = 1 near Fmin = 1. Therefore, a
reliable approximation for Wr,0(Fmin) = ∂

∂Fmin
Pr,0(Fmin) cannot

be obtained. To overcome this problem, we follow the proce-
dure stated in Appendix C. First, we fit the green dots with
a three-term fitting function of the form in Eq. (C12) with
F = Fmin, amin = 4, and bmin = 15

2 . The black curve is fitted
to the numerical values for Pr,0(Fmin). The fitting parameters
are shown in the inset table. P̃r,0(Fmin) is obtained by a MC
integration with 1 500 000 sample points and shown as the
blue dots in Fig. 7(a).

The values of P̃r,0(Fmin) are quite close to the straight line
Fmin. The corresponding values after subtracting this straight
line make up the blue dots in Fig. 7(b). The blue fitting curve
is a truncated Fourier series with the Fourier amplitudes of
Fig. 7(c).

P̃r,D(Fmin) is evaluated by a MC integration with 1 500 000
sample points and it can be fitted with a smoothing spline. The
marginal likelihood shown in Fig. 4 is the ratio of W̃r,D(Fmin)
and W̃r,0(Fmin).
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tion with random unitary operators, J. Opt. B: Quantum
Semiclassical Opt. 7, S347 (2005).

[27] H. Akaike, Information theory and an extension of the max-
imum likelihood principle, in Proceedings of the 2nd Interna-
tional Symposium on Information Theory, edited by B. N. Petrov
and F. Cáski (Akadémiai Kiadó, Budapest, 1973).

[28] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6,
461 (1978).

[29] M. Evans and Y. Guo, Measuring and controlling bias for
some Bayesian inferences and the relation to frequentist criteria,
arXiv:1903.01696.

[30] S. Hill and W. K. Wootters, Entanglement of a Pair of Quantum
Bits, Phys. Rev. Lett. 78, 5022 (1997).

[31] A. Lovas and A. Andai, On the notion of quantum copulas,
arXiv:1902.08460.

022307-17

https://doi.org/10.1103/PhysRevE.81.066209
https://doi.org/10.1103/PhysRevE.81.066209
https://doi.org/10.1103/PhysRevE.81.066209
https://doi.org/10.1103/PhysRevE.81.066209
https://doi.org/10.1103/PhysRevD.75.083525
https://doi.org/10.1103/PhysRevD.75.083525
https://doi.org/10.1103/PhysRevD.75.083525
https://doi.org/10.1103/PhysRevD.75.083525
https://doi.org/10.1088/0264-9381/31/14/145004
https://doi.org/10.1088/0264-9381/31/14/145004
https://doi.org/10.1088/0264-9381/31/14/145004
https://doi.org/10.1088/0264-9381/31/14/145004
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1103/PhysRevA.94.062112
https://doi.org/10.1103/PhysRevA.94.062112
https://doi.org/10.1103/PhysRevA.94.062112
https://doi.org/10.1103/PhysRevA.94.062112
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
http://arxiv.org/abs/arXiv:1903.01696
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
http://arxiv.org/abs/arXiv:1902.08460

