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Scalable quantum computing with qudits on a graph
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We show a significant reduction of the number of quantum operations and the improvement of the circuit depth
for the realization of the Toffoli gate by using qudits. This is done by establishing a general relation between the
dimensionality of qudits and their topology of connections for a scalable multiqudit processor, where higher qudit
levels are used for substituting ancillas. The suggested model is of importance for the realization of quantum
algorithms and as a method of quantum error correction codes for single-qubit operations.
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I. INTRODUCTION

Remarkable progress in realizing controllable quantum
systems of an intermediate scale [1-5] makes it realistic
to study properties of strongly correlated quantum matter
[6-9] and to implement various quantum algorithms [10-14].
However, existing quantum computing systems lack either
coherence or controllable interactions between qubits, and
this limits their capabilities. A serious obstacle in realizing
quantum algorithms is a large number of two-qubit gates,
which requires programmable interqubit interactions and can
cause decoherence. The situation becomes even more chal-
lenging in the case of multiqubit gates, such as an N-qubit
Toffoli gate, which is a basic building block for quantum
algorithms like Shor’s algorithm [15] and for quantum er-
ror correction schemes [16—18]. Its implementation requires
12N — 23 two-qubit gates with N — 2 ancilla qubits or O(N?)
gates without them [19], which is of high cost for near-
term noisy intermediate-scale quantum devices. Therefore,
the reduction of the number of operations that are required for
the realization of multiqubit gates remains a crucial problem.

One of the possible ways to reduce the number of re-
quired operations is to use additional degrees of freedom of
quantum systems. This idea has stimulated an extended ac-
tivity [20,21] in theoretical [22-38] and experimental studies
[39-46] of quantum computing models with qudits, which are
d-dimensional (d > 2) quantum systems. In particular, qudits
can be used for substituting ancillas [30,37-39], which allows
the reduction of the required number of interactions between
information carriers for the realization of multiqubit gates. In
experiments with photonic quantum circuits [39], for a system
of an N-dimensional qudit connected with N — 1 qubits, the
N-qubit Toffoli gate was realized with 2N — 3 qubit-qudit
gates. However, it is hard to expect scalability for such a
system with increasing N, although qudits with d up to 10
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have been realized [45]. Alternative schemes allow further re-
duction in the number of operations [38] or circuit depth [37].
However, they require either additional measurement-based
feedforward corrections or specific topology with (almost) all-
to-all connectivity. It should be noted that qudits can be also
used for optimizing the resources in quantum communications
[47-49].

In this work, we study a scalable quantum computing
model based on qudits, which uses higher qudit levels as
ancillas. For this model we establish a general relation be-
tween the dimensionality of qudits and the topology of qudit
connectivity: for a given qudit one should have d > k + 1,
where k is the number of links of this qudit with the others. We
then demonstrate that this is the key relation for achieving the
best-known performance in the number of operations with-
out additional measurement-based corrections. The obtained
results are useful for ongoing experiments with quantum
computing systems of various nature, such as Rydberg atom
arrays [1,3], trapped ions [2,5,9,13], integrated optics [39,45],
and superconducting circuits [4,40-44].

The paper is organized as follows. In Sec. II, we describe
a model of qudit-based processor and formulate the necessary
condition for efficient implementation of the N-qubit Toffoli
gate. In Sec. III, we consider a circuit construction for the
implementation of the N-qubit Toffoli gate. In Sec. IV, we
generalize our results for multiqubit controlled unitary gates.
In Sec. V, we briefly discuss possible experimental realization
of our scheme. We summarize our results and provide outlook
in Sec. VL.

II. QUDIT PROCESSOR: OPTIMAL RELATION BETWEEN
DIMENSIONALITY AND TOPOLOGY

Consider a system of N qudits denoted as Q;, i€
{1, ..., N}. Let each qudit Q; have dimensionality d; > 2. In
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our setup we consider the first two levels |0),, and [1),, as
qubit levels and higher levels |n),, with n > 2 as auxiliary
levels.

We assume that the initial state of our N-qudit system can
be considered as an N-qubit state, i.e., the system Q1 ...Qy
is in a pure or mixed state with zero population of auxiliary
levels for each of the qudits Q;. We then determine the
set of operations that can be performed within the system.
In analogy with the idea of qubit-based universal quantum
computations, we assume that we are able to perform any
desirable unitary operation on a two-level subspace spanned
by the qubit level states |0),, and [1),,. Meanwhile, these
single-qubit operations act as identity operators in the spaces
of auxiliary levels. At the same time, we assume an ability to
perform two-qubit CZ gates corresponding to certain topol-
ogy of physical connections between qudits. To determine this
topology we introduce a set E of ordered pairs (i, j), such that
i,jel{l,...,N},i < j. We assume that if (i, j) € E, then
one is able to perform the operation,

Cz|l I)Qi,Q,f == |1]>Qti/ ’
Cz |Xy)Q,<,Qj = |Xy)Q,,Qf forxy # 1, (L

with x € {0,...,d; — 1} and y € {0,...,d; — 1}. We also
assume that E corresponds to the N-vertex-connected graph,
i.e., there is a path between any pair of qudits.

We note that the CZ gate can be easily transformed to the
more common controlled-not CX gate using two Hadamard
gates. Finally, we consider the ability to manipulate the auxil-
iary levels. We assume that one is able to apply a generalized
inverting gate

X 10)g, = Im)g,
Xn 1Y) o, = 9o

X Im)g, = 10)g,
fory # 0, m (2)

to every qudit Q;. We note that X is actually the standard qubit
X gate and X, is the only operation engaging auxiliary qudit
levels in our setup.

Let E C E define an N-vertex connected acyclic graph
known as a tree. We note that E can be always obtained from
E by eliminating connections in the case of cycles in the
original graph defined by E. This can be done, e.g., by keeping
all edges explored by the depth-first search (DFS) algorithm
[50] and removing unexplored ones during E traversal. We
note that the complexity of the DFS algorithm is known to be
O(L), where L = N + % vazl k; is the total number of nodes
and edges of the graph.

Our main result is the demonstration that a strong reduction
in the number of operations required for the realization of
the N-qubit Toffoli gate is possible if the following relation
between the dimensionality of a qudit ¢; and the number k; of
its connections to other qudits within E is satisfied:

di > ki +1. 3)

In what follows we show that if this condition is fulfilled, then
it is possible to realize the N-qubit Toffoli gate by employing
2N — 3 two-qudit CZ gates (1).

This result gives a general picture of simplifying quantum
logical operations on qudit-based processors. Let condition
(3) be satisfied with k; replaced with a number of connections

O———®

FIG. 1. Illustration of various multiqudit and qubit-qudit
schemes for quantum computing that provides reduction in the num-
ber of operations for the realization of the Toffoli gate and reduces
the depth of the corresponding circuit. We note that if condition
(3) holds for a whole system, then it is also fulfilled for any of its
acyclic-connected subsystem (highlighted).

of Q; to other qudits within the full connection set E instead
of acyclic subset E. In this case, condition (3) is automatically
satisfied for any connected acyclic subgraph consisting of
M < N nodes. This means that the M-qubit Toffoli gate can be
efficiently implemented for any connected subset of M qudits
from {Q;}. Then the condition (3) opens a way to formulate a
desirable relation between the dimension of employed qudits
and topology of their connections. Let us illustrate this rela-
tion for specific cases: it is preferable to employ qutrits (d; =
3) for the linear topology, ququarts (d; = 4) for honeycomb
topology, qukwints (d; = 5) for a 2D rectangular lattice, and
so on (see Fig. 1).

III. TOFFOLI GATE IMPLEMENTATION

The generalized N-qubit Toffoli gate CN=1X® flips a
particular target qubit state of O, if and only if all other N — 1
control qubits are in the state 1. The main operation behind
CN=1X® gate is the following CV~!Z operation:

CV'ZIl... 1)y oy =—11...1)o o
CY'ZIxi . cxw)g, 00 = X1 W) 0,00+ 4)

for [, x; # 1 [see Fig. 2(a)]. This operation does not depend
on ¢. The choice of the target qubit ¢ can be made by adding
single-qubit Hadamard gates.

The generalized N-qubit Toffoli gate costs 2N — 3 two-
qudit CZ gates. To demonstrate this fact we use the N-vertex
acyclic graph E C E [see Fig. 2(b)], which satisfies condition
(3). We note that in the particular example in Fig. 2(b)
condition (3) is satisfied for £ but not for E.

We start with representing E as a tree that is always
possible for any acyclic connected graph. As we show below,
the optimal node to choose as a root in the tree representation
is a node that provides the minimal height of the resulting tree,
i.e., in this case the number of edges between the root and the
farthest node is minimal. In order to find an optimal node for
the root one can consistently apply a leaves-reduction opera-
tion that removes nodes of unit degree (nodes with only one
edge) from an input graph. After a number of such operations,
a graph consisting of either one or two connected nodes is
obtained. Each of the nodes of the final graph can be chosen
as an optimal root for the original graph. The complexity of
this algorithm is O(NV) since each node is accessed only once.
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FIG. 2. In (a) we present the decomposition of N-qubit Toffoli gate C¥~'1X® in CV~!Z and Hadamard gates. In (b) an example of the
connection topology of an eight-qudit system is shown. Here E C E is a subset of connections, which correspond to the connected acyclic
graph. Numbers in the nodes correspond to minimal dimensions of qudits determined by the general condition (3). In (c) the action of three
general steps in the tree representation is presented. The first step is the folding operation, which wraps the original tree to the single-level
form. The second step is the basic operation, which does not change the tree. The third step is the unfolding operation that returns the tree to
its original form. In (d) the elementary folding operation with the corresponding circuit is shown. In (e) the circuit corresponding to the basic

operation for the C¥~!Z gate is presented.

We use the following rules for tree node notations. We
mark each node with a string consisting of integer numbers:
the root is denoted with 1; the siblings of node s are denoted
as sl,s2, ..., sn(s), where n(s) is the total number of node s
siblings [see an example in Fig. 2(c)].

The realization of the C¥~!Z operation is related to opera-
tions with the tree and consists of three main steps: (i) folding
operation, (ii) basic operation, and (iii) unfolding operation
[see Fig. 2(c)]. First, we realize the folding operation in order
to bring the original tree into a single-level form, where
the root siblings do not have any siblings themselves. This
is achieved by applying the sequence of elementary folding
operations [see Fig. 2(d)]. Together with each of these opera-
tions, we perform a sequence of gates on qudits corresponding
to the nodes involved in this particular elementary folding
operation. The sequence of gates is depicted in the bottom
part of Fig. 2(d). For each of the leaves si (i € {1, ..., n(s)}),
we implement the following sequence of three gates: (i) the
X gate of the parent node qudit s; (i) the CX gate with si
being a control and s being a target; (iii) the additional X gate
on s. This sequence of gates leaves qudit s in the state |1) if
and only if s and si initially were in the state |11), ;. Finally,
the elementary folding operation on a subtree s, s1, . . ., sn(s)
keeps the qudit s in the state |1), if and only if all qudits
s, s1,...,sn(s) are in the state 1 before its start. Otherwise,
the qudit s turns into the state zero or into a state related to
auxiliary levels. We note that the elementary folding operation
preserves computational basis states, and requirement (3)
guarantees that the number of additional levels is sufficient
to perform all required X,, operations. By considering the

evolution of the arbitrary N-qubit computational basis state
during the whole folding operation we obtain that the root
siblings 11, ..., 1n(1) turn into the state |1... 1)y, if
and only if all the qudits except the root are initialized in the
state 1.

At the second step, we implement an operation that only
performs a sequence of gates on qudits, which correspond to
the root and its leaves [Fig. 2(e)]. We note that this operation
does not modify the tree structure. This is achieved by imple-
menting sequences of gates similar to the elementary folding
operations on the leaves 11,..., I[n(1) — 1] and applying
the CZ gate to the root and to the last leaf 1n(l). Finally,
we perform the previous sequence of gates in the reverse
order. The resulting sequence of gates then corresponds to the
following transformation of the computational basis states:

|11...1>1’11

|yx1 .. ~xn(l)>1,1]

my = — 111Dy 11 1aq
mny

,,,,,

iy = X X))y gy

.....

yeeey

for y]_[;’il]) x; # 1. In other words, the computational basis
state of the whole N-qudit state after the folding operation
accumulates an additional phase factor —1, if all the qudits
after the basic operation were in the state 1, and remains
unchanged otherwise.

Eventually, we perform the unfolding operation, which
is the folding operation in the reverse order. It transfers
computational basis states after the folding operation back
to their initial form. We note that as a result we obtain an
N-qubit state. However, due to the basic operation, the state
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FIG. 3. In (a) the decomposition of C¥N~1U® operation using the spectral decomposition of U is shown. In (b) the CNU®1~Rn) gate is
shown. In (c) the circuit corresponding to the basic operation for the CVU gate is shown.

[1...1)p, .o, accumulates the additional phase factor —1
after all three steps. This is exactly the desired operation (4).

One can see that the number of employed two-qubit CZ
gates is 2N — 3. Each of the qudits corresponding to tree
nodes, except for the root and the root last sibling 1n(1),
serves as a control qubit in CX operations twice (in the
folding and unfolding steps). Besides that, there is a single
CZ operation between the root and 1n(1) node qudit.

We note that elementary (un)folding operations can be
performed in parallel, whereas realizing quantum gates inside
these operations cannot be parallelized. Thereby the depth of
the resulting circuit is determined by the height of the tree
and the number of elements in each of its levels. Thus it
is preferable to choose the root such that the height of the
tree is minimal. We also note that the depth of the resulting
circuit is highly dependent on the particular topology of the
underlying tree. This fact makes it difficult to compare directly
a circuit depth resulting from our approach with the one
proposed in Ref. [39], where the same number of nonlocal
gates 2N — 3 is employed. However, we can conclude that
the depth of the circuit constructed for a complete «-ary tree,
with a fixed parameter «, belongs to O(log N). It is achieved
by parallelizing (un)folding operations for x subtrees for all
levels except the top. In contrast, the depth of the circuit
constructed according to the approach of Ref. [39], which
considers a root connected to N — 1 leaves, belongs to O(N)
since no parallelizing can be applied.

IV. MULTIQUDIT GENERALIZATION

Our approach can be further generalized for the imple-
mentation of multiqubit controlled unitary gate CN~'U®,
where the target qubit state O, goes through a single-qubit
unitary operation U if all control qubits are in the state 1 [see
Fig. 3(a)]. It can be realized using a spectral decomposition of
U inthe form U = VZ,VT, where V is a certain unitary opera-
tor and Z, = |0) (0] + ¢ |1) (1] for some value of 6. Then the
implementation of CVN~'UU® reduces to the implementation of
CN~—1Z, and single qubit V and VT operations [see Fig. 3(a)].
CN~1Zy can be implemented in the same way as C¥~!Z with
the only difference being that in the basic operation given in
Fig. 2(e) the central CZ gate has to be replaced with the CZ,
gate. Depending on the concrete physical realization of the
computing platform, CZ, can be performed either directly or
be decomposed into two CZ gates and local operations [19].

Thus one needs either (2N — 4) CZ gates plus a single CZ,
gate or (2N — 2) CZ gates.

We also consider a realization of CNU®Ru) operation
[Fig. 3(b)], which performs an M-qubit unitary operator U
on qubits (or qudits) Ry, ..., Ry if all qudits Oy, ..., On
are in the unit state. This gate can be implemented with the
same scheme as the CV~'Z gate with a modification in the
basic operation depicted in Fig. 3(c). Here the central gate
is CU®--Rw) with a control on the tree root, and we apply
triples X,,, CX, X on all the leaves 11, ..., 1n(1). We note that
in this scheme the tree is constructed in the space of control
qudits Qy, ..., Oy and the dimension of the root qudit space
has to be at least 2 + n(1). One can see that the whole scheme
requires 2N — 2 4+ Ngy two-qudit operations, where Ngy is
the number of two-qudit operations required for performing
the CUR-Ru) gate,

V. EXPERIMENTAL REALIZATIONS

Qudit ensembles can be created and controlled in ex-
periments with quantum systems of various nature. The
qudits’ systems have already been demonstrated in super-
conducting systems [42—44], integrated optics [39,45], and
NMR setups [46]. Other promising setups can be arrays
of neutral atoms in optical tweezers and ions in linear
traps. In these systems, one can encode qudits in differ-
ent Zeeman states of the ground hyperfine state [S1]. In
particular, for the case of one-dimensional atomic array
one can use qutrits in the following sequence of states:
F=2mp==2), F=1Lmp=-1), (F=2mp=0),
(F =1;mp=1),(F =2,mp =2), where F is the total an-
gular momentum vector and my is its z-axis projection. The
single qudit operations can be done with microwave pulses or
Raman transitions, such as in the case of '*’Ba™ ions, where
for five-level qudits the estimated single-qudit fidelity is on the
level of 99% [36]. Specifically, '*’Ba™ ions have a long-lived
state Ds/», and do not require an octupole transition during
qudit-state measurements. The high fidelity two-qudit entan-
gling gates can be realized with the qudit Molmer-Sorensen
gate [36] in trapped ion systems and with Rydberg blockade
in atomic arrays [52,53].

VI. CONCLUSION AND OUTLOOK

We have demonstrated that a strong reduction in the
number of operations and in the depth of quantum circuits
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can be achieved by using qudit systems satisfying a certain
relation between their dimensionality and topology. This is of
importance for an efficient implementation of a generalized
Toffoli gate as part of the algorithms. A clear example is the
diffusion operator in Grover’s algorithm [54], i.e., an operator
acting after each appeal to an oracle. It requires an n-qubit
Toffoli gate, where n is the length of input for the oracle.
Another example is the employment of the generalized Toffoli
gate in the recently proposed artificial neuron quantum circuit
[55]. There are also proposals for employing generalized
Toffoli gates in an increment circuit, which can be used for
efficient implementation of Shor’s algorithm [37]. With the
reduced number of operations in the case of using qudits, one
can expect a significant speed-up in the realization of these
algorithms.

Toffoli gates are also key ingredients for the realization
of quantum error-correction codes [16—18]. Qutrits are al-

ready being used for efficient realization of Toffoli gates in
superconducting qubit systems [17]. In this direction, our
method paves a way for the reduction of the cost of the
error-correction procedure and the implementation of more
complicated codes [56].
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