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It is well known that the Schmidt decomposition exists for all pure states of a two-party quantum system.
We demonstrate that there are two ways to obtain an analogous decomposition for arbitrary rank-1 operators
acting on states of a bipartite finite-dimensional Hilbert space. These methods amount to joint Schmidt-type
decompositions of two pure states where the two sets of coefficients and local bases depend on the properties of
either state, however, at the expense of the local bases not all being orthonormal and in one case the complex-
valuedness of the coefficients. With these results we derive several generally valid purity-type formulas for
one-party reductions of rank-1 operators, and we point out relevant relations between the Schmidt decomposition
and the Bloch representation of bipartite pure states.
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I. INTRODUCTION

The Schmidt decomposition theorem states that any pure
state of a bipartite quantum system of finite dimension can
be written as the superposition of a minimum number of
states, where the coefficients are real and the superposed states
are tensor products of the elements of two preferred local
orthonormal bases. There are only a few tools in quantum
information theory comparable in the power of the method
and the ubiquity of their applicability with the Schmidt de-
composition. While Schmidt’s original work [1] investigates
kernels of integral equations, the decomposition for finite-
dimensional systems—as it is mostly applied in quantum
physics nowadays—was given by Everett III [2,3].

There are several routes toward generalization of the
method. There is a mixed-state analog [4,5], which is not
as frequently used as the pure-state decomposition [6], but
has important applications, e.g., in decomposition of quantum
gates and entanglement theory [7,8]. Further, it would be
desirable to have a similar method for multipartite states,
e.g., [9–12]. While for three qubits this question has lead to
important results [13], to date there is no generally accepted
counterpart for the Schmidt decomposition in multipartite
systems.

A third option is to ask whether there exists a simultaneous
Schmidt-type decomposition for several pure bipartite states.
In Ref. [14], the conditions for simultaneous applicability
of a (slightly generalized) standard Schmidt decomposition
were studied; mixtures of such jointly Schmidt-decomposable
states (that is, Schmidt-decomposable in one and the same
pair of local bases) were then called maximally correlated.
However, beyond this restrictive concept nothing seems to
be known regarding simultaneous Schmidt decomposability
of two or more bipartite states. The reason for this is that
in general the reduced states have nonvanishing overlap and
therefore it is not obvious which basis one has to choose in
the subspace of their joint support. Our present work fills this

gap by analyzing the question of how two pairs of correlated
local bases can be found that allow for Schmidt-like decom-
positions of two arbitrary finite-dimensional bipartite states.
We show that in general there are two options for such de-
composability and that those generalized Schmidt bases differ
from the standard—“single-state”—Schmidt bases whenever
the reduced states have nonvanishing overlap. As a direct
consequence of these results we derive several interesting re-
lations for the reductions of rank-1 operators. As the Schmidt
decomposition, the existence of relations for one-party re-
ductions, and the Bloch representation [15–22] of bipartite
quantum states are intimately related concepts [19,21,23],
we conclude our discussion by analyzing the most salient of
these mathematical connections.

II. THE USUAL SCHMIDT DECOMPOSITION

We start with a brief reminder of how the Schmidt de-
composition is obtained following Preskill [24]. Consider the
generic normalized state |ψAB〉 of a bipartite Hilbert space,
|ψAB〉 ∈ HA ⊗ HB, 〈ψAB|ψAB〉 = 1. We write it with respect
to some orthonormal product bases as

|ψAB〉 =
d∑

j,k=1

a jk| j〉A ⊗ |k〉B ≡
∑

j

| j〉A ⊗ | j̃〉B, (1)

where the states | j̃〉B in general are neither normalized nor
orthogonal. If we choose, however, for {| j〉A} the basis in
which the reduced state

ρA = TrB |ψAB〉〈ψAB| =
∑

jk

〈k̃| j̃〉| j〉A〈k|

is diagonal, the states {| j̃〉B} do become orthogonal, and by
introducing | j′〉B = λ

−1/2
j | j̃〉B for λ j = 〈 j̃| j̃〉 > 0, we get the
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Schmidt decomposition of |ψAB〉:

|ψAB〉 =
d∑

j,k=1

√
λ j | j〉A ⊗ | j′〉B,

∑
j

λ j = 1. (2)

It is an immediate consequence that with this choice of local
bases also ρB = TrA |ψAB〉〈ψAB| is diagonal and has the same
set of nonzero eigenvalues {λ j} as ρA, so that one finds for the
purities of the local states the well-known relation

Tr ρ2
A = Tr ρ2

B =
∑

j

λ2
j . (3)

III. DECOMPOSITION OF RANK-1 OPERATORS

A. Decomposition based on singular value decomposition

The Schmidt decomposition, Eq. (2), for a projector
|ψAB〉〈ψAB| reads

|ψAB〉〈ψAB| =
∑

jk

√
λ jλk|a j〉A〈ak| ⊗ |b j〉B〈bk|, (4)

with the Schmidt basis {|aj〉A ⊗ |bk〉B}. This way of writing
the decomposition imposes the following question: What
happens if, in the expression |ψAB〉〈ψAB|, we do not choose
both sides equal; that is, is there an analogous expansion
for the—non-Hermitian—rank-1 operator |ψAB〉〈φAB| with
|φAB〉 �= |ψAB〉? An obvious idea would be to resort to the
operator-level Schmidt decompositon; however, this way one
simply retrieves the usual Schmidt decompsition of the indi-
vidual states (cf. Ref. [6]).

In order to find a new answer we assume that
|ψAB〉, |φAB〉 ∈ HA ⊗ HB are normalized and make an ansatz
similar to what we had in Eq. (1):

|ψAB〉 =
∑

j

|u j〉A| j̃ψ 〉B, (5a)

|φAB〉 =
∑

k

|vk〉A|k̃φ〉B, (5b)

where {|u j〉A} and {|vk〉A} are orthonormal bases (from now on
we drop the tensor product signs and the lower indices for the
partitions A and B). If we choose the bases {|u j〉} and {|vk〉}
such that they belong to the singular value decomposition
(SVD) of TrB |ψ〉〈φ| with singular values qj � 0, the marginal
operator for party A reads

TrB |ψ〉〈φ| =
∑

jk

|u j〉〈vk|〈k̃φ| j̃ψ 〉 =
∑

j

q j |u j〉〈v j |, (6)

with 〈k̃φ| j̃ψ 〉 = q jδ jk . That is, we find that {| j̃ψ 〉} and {|k̃φ〉}
are dual bases. If we normalize as before∣∣dψ

j

〉 ≡ | j̃ψ 〉√
μ

ψ
j

,
∣∣dφ

k

〉 ≡ |k̃φ〉√
ν

φ

k

,

we can finally write the following for the decomposition of
|ψ〉 and |φ〉:

|ψ〉 =
∑

j

√
μ

ψ
j |u j〉

∣∣dψ
j

〉
, (7a)

|φ〉 =
∑

k

√
ν

φ

k |vk〉
∣∣dφ

k

〉
. (7b)

One can term this the SVD-based simultaneous Schmidt-
like decomposition of |ψ〉 and |φ〉. We recognize the analogy
of Eqs. 7(a) and 7(b) with the usual Schmidt decomposition
Eq. (2). Note that, while the generalized “Schmidt coeffi-
cients” μ

ψ
j and ν

φ

k are still real, only the bases {|u j〉} and {|vk〉}
are orthonormal. The normalized bases {|dψ

j 〉} and {|dφ

k 〉} are

dual with
√

μ
ψ
j ν

φ

k 〈dψ
j |dφ

k 〉 = q jδ jk , but not orthogonal. It is
worthwhile noting that in general the orthonormal bases {|uj〉}
and {|vk〉} bear no special relation with one another. Again,
Eqs. (7) represent superpositions with the minimum number
of components, which equals the rank of the reduced operator
TrB |ψ〉〈φ|. As the “Schmidt vectors” in Eqs. (7) are still
orthogonal we have

∑
j μ

ψ
j = ∑

k ν
φ

k = 1. Moreover, there
is the condition

∑
j q j〈v j |u j〉 = 〈φ|ψ〉. Clearly, one finds an

analogous decomposition with exchanged roles of parties A
and B by considering the reduced operator TrA |ψ〉〈φ| and
modifying Eqs. (5) correspondingly.

The decompositions, Eqs. (7), may be viewed as the result
of selecting preferred local bases for |ψ〉 and |φ〉 depending
on the overlap of these bipartite states on party B only. This
dependence does not exist if TrB |ψ〉〈φ| = 0. We discuss this
case below.

B. Decomposition based on diagonalization

Interestingly, Eqs. (7) are not the only way to obtain a joint
Schmidt-like decomposition of two pure states. To see this,
we start with an ansatz similar to Eqs. (5) where we drop the
assumption that the bases on party A be orthonormal:

|ψ〉 =
∑

j

|x j〉| j̃ψ 〉, (8a)

|φ〉 =
∑

k

|yk〉|k̃φ〉. (8b)

The trick that led to the decomposition was to find a
diagonal form of the reduced operator TrB |ψ〉〈φ|, which was
achieved via the singular value decomposition. There is an
alternative to this approach, namely to diagonalize TrB |ψ〉〈φ|.
Note that diagonalizability of non-Hermitian matrices is not
guaranteed. A sufficient condition is that TrB |ψ〉〈φ| has the
maximum number of nonzero eigenvalues, which all have to
be different [25].

Hence we assume that a matrix representation M of
TrB |ψ〉〈φ| is similar to a diagonal matrix D

M = S · D · S−1,

where S is an invertible matrix. The columns of S are the
right eigenvectors of M, whereas the rows of S−1 are the
left eigenvectors. Correspondingly we can write the reduced
operator

TrB |ψ〉〈φ| =
∑

j

� je
iϕ j |s j〉

〈
s−1

j

∣∣, (9)

where {|s j〉} and |s−1
k 〉} are (nonorthogonal) dual bases of HA,

i.e., 〈s j |s−1
k 〉 = δ jk . Note that (〈s−1

j |)† �= |s j〉. Moreover, we
have explicitly written the phases of the eigenvalues implying
that � j � 0.
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In analogy with the discussion following Eq. (6), we then
find that | j̃ψ 〉 and |k̃φ〉 are proportional to the vectors of the
two dual bases {|t j〉} and {|t−1

k 〉}, with 〈t j |t−1
k 〉 = δ jk , so that

we arrive at

|ψ〉 =
∑

j

√
ξ j |s j〉|t j〉, (10a)

|φ〉 =
∑

k

√
ηke−iϕk

∣∣s−1
k

〉∣∣t−1
k

〉
, (10b)

with ξ j, ηk � 0 and
√

ξ jη j = � j . Equations (10) represent the
second simultaneous Schmidt-like decomposition of |ψ〉 and
|φ〉, which now is diagonalization based. Here, the “Schmidt
coefficients” have complex phases, but there is a freedom to
distribute each of the phases at will among the two states. In-
terestingly, both reduced operators TrA |ψ〉〈φ| and TrB |ψ〉〈φ|
have the same nonzero (now complex) eigenvalues {� jeiϕ},
analogously to the usual Schmidt decomposition of a single
state. Since the “Schmidt vectors” are not orthogonal, there
is no normalization condition for ξ j and ηk . In contrast to
the decomposition in Eqs. (7), both of the local bases of |ψ〉
are strongly related with the corresponding basis in |φ〉; how-
ever, none of them are necessarily orthogonal or normalized.
We stress again that the decomposition in Eqs. (10) may not
exist, while the decomposition in Eqs. (7) can always be
found; hence the latter is the stronger statement.

C. Remarks and special cases

The obvious special case for the decompositions in Eqs. (7)
and (10) is equality, |ψ〉 = |φ〉. Here we get back the known
result, Eq. (2), because the dual bases become self-dual and
therefore also orthonormal. For Hermitian matrices the singu-
lar value decomposition coincides with diagonalization; this
ensures the usual Schmidt decomposition also for the first
generalization option.

One might expect that also the orthogonality 〈φ|ψ〉 = 0
represents a special case, but as long as the reduced operators
TrA |ψ〉〈φ| and TrB |ψ〉〈φ| do not vanish, the resulting bases
do not display special properties.

However, there is a case related to orthogonality 〈φ|ψ〉 = 0
that needs to be discussed: the possibility that TrA |ψ〉〈φ| = 0
or/and TrB |ψ〉〈φ| = 0. Any of these conditions imply global
orthogonality, because, e.g., 〈φ|ψ〉 = Tr ( TrB |ψ〉〈φ|) = 0.
With the latter condition, for example, our approach to derive
Eqs. (7) or Eqs. (10), respectively, does not lead to the
selection of preferred bases on party A. For TrB |ψ〉〈φ| = 0,
the states |ψ〉 and |φ〉 have disjoint support in HB, imply-
ing also that none of them has full (usual) Schmidt rank.
Another consequence is orthogonality of the local states,
Tr [ TrA |ψ〉〈ψ | TrA |φ〉〈φ|] = 0.

In the case of disjoint support on HB one can try to
check TrA |ψ〉〈φ|; if it is nonzero the simultaneous Schmidt
decomposition can be found as shown before, that is, with dual
bases in HA and singular value decomposition (or diagonal-
ization) in HB. If, however, also TrA |ψ〉〈φ| = TrB |ψ〉〈φ| = 0,
the states have disjoint support on the entire composite Hilbert
space HA ⊗ HB, and it is not possible (but also not necessary)
to select preferred local bases whose properties depend on
both |ψ〉 and |φ〉. It suffices then to diagonalize the local states

of |ψ〉 and |φ〉 separately and to use their standard Schmidt
decomposition.

IV. GENERALIZED PURITY RELATIONS

As an immediate application of the decomposition equa-
tions, Eqs. (7) and (10), we derive several formulas that
may be regarded as the generalizations of the purity relation,
Eq. (3).

Consider first the squares of the reduced rank-1
operators. By using Eq. (6) we find Tr ( TrB |ψ〉〈φ|)2 =∑

jk q jqk〈v j |uk〉〈vk|u j〉. On the other hand, TrA |ψ〉〈φ| =∑
jk (μψ

j ν
φ

k )1/2〈vk|u j〉|dψ
j 〉〈dφ

k |. Because of (μψ
j ν

φ

k )1/2

〈dφ

k |dψ
j 〉 = q jδ jk , it follows that

Tr(TrA |ψ〉〈φ|)2 =
∑
jklm

√
μ

ψ
j ν

φ

k

√
μ

ψ

l ν
φ
m

×〈vk|u j〉〈vm|ul〉
〈
dφ

k |dψ

l

〉〈
dφ

m|dψ
j

〉
=

∑
jk

q jqk〈v j |uk〉〈vk|u j〉,

so that we conclude

Tr(TrA |ψ〉〈φ|)2 = Tr(TrB |ψ〉〈φ|)2. (11)

If the reduced operators are diagonalizable, Eq. (11) fol-
lows practically without calculation, because TrA |ψ〉〈φ| and
TrB |ψ〉〈φ| have the same (in general, complex) eigenvalues.

Alternatively, one can read Eq. (3) as Hilbert-Schmidt
scalar products. Then, we derive in a completely analogous
manner the second generalized purity relation:

Tr[TrB |ψ〉〈φ| TrB |φ〉〈ψ |] =
∑

j

q2
j

= Tr[TrA |ψ〉〈ψ | TrA |φ〉〈φ|]. (12)

We can go one step further and turn Eqs. (11) and (12) into
a single equality linking the reductions of four bipartite states
ψ, φ, χ, ζ ∈ HA ⊗ HB:

Tr[TrA |ψ〉〈χ | TrA |φ〉〈ζ |] = Tr[TrB |ψ〉〈ζ | TrB |φ〉〈χ |]. (13)

The relations Eqs. (11)–(13) constitute the second central
result of our article. They are directly connected with the
Bloch representation of quantum states; therefore they are
highly useful in calculations within that formalism, as will
be demonstrated in forthcoming work. We highlight some of
the links to the Bloch representation in the last part of our
discussion.

V. SCHMIDT DECOMPOSITION AND BLOCH
REPRESENTATION

Our main point in generalizing the Schmidt decomposition
was to consider rank-1 operators such as |ψ〉〈φ| and |ψ〉〈ψ |
rather than state vectors like |ψ〉. Moreover, we have seen
in the preceding sections that a discussion of the Schmidt
decomposition (both the usual version and the joint version)
is closely related to analyzing the properties of the marginals.
Thus one is led to associate the entire discussion with yet
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another topic where operators and their marginals are in-
trinsically tied together, namely the Bloch representation of
quantum states. This link is rarely emphasized; therefore we
use this section to work out some of its details. We restrict
this analysis mainly to properties of the usual (single-state)
Schmidt decompostion (cf. Sec. II): however, some of the
results we derived earlier turn out to be useful. In our con-
siderations we assume Hilbert spaces of equal dimension,
dim HA = dim HB = d (this can always be achieved by ex-
tending the Hilbert space of lower dimension), because it
makes the expressions more transparent.

The Bloch representation of bipartite states is defined as
follows (cf., e.g., Refs. [15–22]): Given an orthonormal basis
of trace-free Hermitian matrices {h j} [with normalization
Tr (h jhk ) = d δ jk and h0 ≡ 1] we can expand any density
operator ρ acting on HA ⊗ HB

ρ = 1

d2

⎡
⎣(Tr ρ)1 ⊗ 1 +

d2−1∑
j=1

r j0h j ⊗ 1 +
d2−1∑
k=1

r0k1 ⊗ hk

+
d2−1∑
l,m=1

rlmhl ⊗ hm

⎤
⎦. (14)

With the simplifying choice of Hermitian matrices h j the
coefficients r j0, r0k , and rlm are real. We call the sum of terms
with one summation index “1-sector,” and the one with two
indices “2-sector.” The first term on the right-hand side of
Eq. (14) can be denoted the “0-sector,” accordingly. The purity
condition for the state ρ translates into the Bloch vector length
as the sum of sector lengths [19–22]:

d2 Tr ρ2 = (Tr ρ)2 +
d2−1∑
j=1

r2
j0 +

d2−1∑
k=1

r2
0k +

d2−1∑
l,m=1

r2
lm. (15)

Each of the sums in Eq. (15) is invariant under local unitary
transformations [26]. The purity condition (3) for the reduced
states corresponds to the equality of the normalized 1-sector
lengths

∑
j r2

j0 = ∑
k r2

0k . Moreover, we note that for normal-

ized states
∑d2−1

j,k=0 r2
jk � d2.

Consider now the Bloch representation of the rank-1 oper-
ator |ψ〉〈φ|,

|ψ〉〈φ| = 1

d2

∑
lm

xlmhl ⊗ hm.

The coefficients x jk in general are complex. For normalized
|ψ〉 and |φ〉, it follows that Tr [(|ψ〉〈φ|)†|ψ〉〈φ|] = 1; hence
the total length of this rank-1 operator is

d2−1∑
j,k=0

|x jk|2 = d2. (16)

With our discussion above and Eq. (12) we find that in
general

∑
j |x j0|2 �= ∑

k |x0k|2. For example, it is well pos-

sible that
∑d2−1

j=0 |x j0|2 = 0 while still
∑d2−1

k=0 |x0k|2 �= 0. As
we discussed, TrB |ψ〉〈φ| = 0 implies 〈ψ |φ〉 = 0; hence in
this case the Bloch representation consists only of the
1-sector corresponding to party B and the 2-sector. If both

TrA |ψ〉〈φ| = TrB |ψ〉〈φ| = 0, only the 2-sector has nonvan-
ishing components.

The Schmidt decomposition in a way captures the
essence of superposition for bipartite states. On the other
hand, for density operators—as described by the Bloch
representation—superposition is not a concept as obvious as
for state vectors. Let us therefore elaborate further on the
properties of superpositions in the Bloch formalism. Consider
the superposition of several normalized orthogonal states
|φ j〉 ∈ HA ⊗ HB, 1 � j � d2

|�〉 =
∑

j

a j |φ j〉. (17)

The projector onto |�〉 naturally splits up into a diagonal and
an off-diagonal part, |�〉〈�| = diag + offdiag,

diag =
∑

j

|a j |2|φ j〉〈φ j |, (18a)

offdiag =
∑
j<k

a ja
∗
k |φ j〉〈φk| + a∗

j ak|φk〉〈φ j |, (18b)

which are orthogonal Tr (diag†offdiag) = 0. Hence, for
the Bloch vector length of |�〉〈�| divided by d2 we have
1 = Tr (diag†diag) + Tr (offdiag†offdiag) = ∑

j |a j |4 +
2

∑
j<k |a j |2|ak|2.

For bipartite systems one commonly chooses |φ j〉 in
Eq. (17) as tensor products of local basis states in order
to distinguish local from nonlocal physics. It is then conve-
nient to use two summation indices |�〉 = ∑

kl akl |ek fl〉 with
local orthonormal bases {|ek〉} and {| fl〉} (k, l = 1, . . . , d ).
The matrices {h j} (e.g., the generalized Gell-Mann matrices
[22]) refer to the same local bases. Among all the possible
local bases the (usual) Schmidt basis of |�〉 is peculiar:
|ek fk〉 become the Schmidt vectors and akl −→ √

λk δkl the
Schmidt coefficients. As then TrA |�〉〈�| and TrB |�〉〈�| are
diagonal, the Bloch representation of |�〉〈�| contains only
diagonal matrix terms in the 1-sector. Remarkably, the length
Tr (offdiag†offdiag) = 2

∑
j<k λ jλk equals half the squared

concurrence of |�〉 [27].
In Eq. (18) we can recognize the importance of the second

generalized purity relation, Eq. (12): If one wants to describe
the parts of a superposition in terms of the Bloch vector
coefficients of the superposed states |φ j〉〈φ j |, this is obvious
for the diagonal part. In contrast, it is not clear whether there
is any simple relation between the rank-1 operators in offidag
[cf. Eq. (18a)] and the Bloch coefficients. Here, Eq. (12)
provides an answer.

We may ask what the contributions of diag and offdiag
to the sectors of the Bloch representation are. Both 1- and
2-sector lengths are invariant under local unitaries; there-
fore a local basis change leads to a redistribution of the
parts that diag and offdiag contribute to the 1-sector or the
2-sector, respectively. The Schmidt decomposition is special,
because TrA (|ek fk〉〈el fl |) = TrB (|ek fk〉〈el fl |) = 0 (for k �= l);
that is, offdiag does not contribute to the 1-sector at all, while
(trivially) the diag contribution to the 1-sector is maximum.
However, a nontrivial fact is that the diag contribution to the
2-sector also has its maximum in the Schmidt basis (for the
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(a)

(c)

(b)

2−sector

diagoffdiag

offdiag diag

1

d
2

x0 1−sector

diag

diag

1
2
C2(Ψ)

FIG. 1. Schematic of the diag/offdiag contributions to the
1-sector/2-sector of |�〉〈�| for different choices of local bases.
The 0-sector per definition belongs to diag. (a) The lengths of the
0-sector, the 1-sector, and the 2-sector are invariant under local basis
changes. (b) Generic local bases: diag and offdiag contribute to both
the 1-sector and the 2-sector. (c) Schmidt basis: offdiag does not
contribute to the 1-sector and has minimum length, which equals
half the squared concurrence 1

2C2(�). The diag contribution to the
2-sector is maximum. Correspondingly, also the total length of diag
is maximum. The total length of all contributions in this figure
is 1 [note that the sum of sector lengths, Eq. (15), per definition
equals d2].

proof, see Appendix),

Tr[(2-sector)diag] −→
Schmidt decomp.

max, (19a)

Tr[(2-sector)offdiag] −→
Schmidt decomp.

min, (19b)

where “2-sector” = ∑
jk r jkh j ⊗ hk , as defined as before in

Eq. (14), so that the entire diag length is maximum in the
Schmidt basis, whereas the offdiag length is minimum and
equals half of the squared concurrence (cf. Fig. 1).

This illustrates an archetypical situation for the Bloch
formalism: In a parametrically interesting regime (here, the
special choice of the Schmidt bases), various relevant quan-
tities assume extreme values, such as the total diag length
and the 1-sector diag contribution. However, intriguingly, also
the difference of these maximum values, the 2-sector diag
part, is maximum. We mention that this fact was observed
independently by Huber [28].

VI. CONCLUSIONS

We have devised two ways to obtain a simultaneous
Schmidt-type decomposition of two arbitrary bipartite pure
states in finite dimensions, Eqs. (7) and (10), based on singular
value decomposition of the reduced rank-1 operator, on the
one hand, and on diagonalization thereof, on the other. The
corresponding “Schmidt bases” depend on the overlap of
the reduced states in the local Hilbert spaces; consequently,
if there is no overlap one can simply use the standard Schmidt
decomposition. It is surprising that the simultaneous Schmidt
decompositions maintain the simplicity and many of the
important properties of the single-state Schmidt decomposi-
tion, such as a minimum number of (real) coefficients that
equals the rank of the reduced operator. As an immediate
consequence, from these decompositions we have derived

several interesting purity-type relations for the reductions of
bipartite pure states, Eqs. (11)–(13). Moreover we have used
these results to analyze the mathematical relations between
the Bloch representation and the Schmidt decomposition. To
this end, we introduced the diagonal and offdiagonal operator
parts diag and offdiag of a projector which make explicit
the extreme properties of the Schmidt bases regarding their
contribution to the sector lengths of the Bloch vector.
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APPENDIX

Here we prove Eq. (19) in the main text, i.e., the statement
that the contribution of diag to the 2-sector of the Bloch rep-
resentation of a pure bipartite state |�〉 = ∑

jk a jk| jk〉, 1 �
j, k � d , assumes its maximum for the Schmidt basis and,
correspondingly, the offdiag has its minimum contribution to
the 2-sector, where {| j〉} and {|k〉} are orthonormal bases of
HA and HB, respectively, and

∑
jk |a jk|2 = 1. What we show,

in fact, is the second statement, Eq. (19b). The maximum of
the diag contribution to the 2-sector follows immediately by
recalling that the total length of the 2-sector is invariant under
local unitaries. Note that it would not be sufficient for the
proof of Eq. (19) to show that the full offdiag part is minimum
for the Schmidt basis.

Consider the reduced state of party A,

ρA = TrB |�〉〈�| =
∑

jk

(∑
l

a jl a
∗
kl

)
| j〉〈k|, (A1)

with the diagonal elements

h j =
∑

l

|a jl |2. (A2)

Assume that the Schmidt basis of |�〉 on party A is

|em〉 =
∑

n

Umn|n〉, (A3)

where Umn is a unitary matrix. In this basis ρA is diagonal,

ρA =
∑

j

λ j |e j〉〈e j |, (A4)

with the Schmidt coefficients λ j of |�〉. One readily obtains

h j =
∑

k

|Ujk|2λk ≡
∑

k

Mjkλk, (A5)

where the matrix M is doubly stochastic because of
|Ujk|2 � 0 and

∑
k Mjk = ∑

j Mjk = 1. According to the
Hardy-Littlewood-Pólya theorem [29] this means that the
vector of Schmidt coefficients, λ, majorizes the vector h =
Mλ of diagonal entries of ρA written in the basis {| j〉},

λ � h. (A6)

022302-5



CHRISTOPHER ELTSCHKA AND JENS SIEWERT PHYSICAL REVIEW A 101, 022302 (2020)

For a Schur concave function f (h1, h2, . . . , hd ), Eq. (A6)
implies

f (λ1, λ2, . . . , λd ) � f (h1, h2, . . . , hd ). (A7)

Now it is known that the elementary symmetric functions
are Schur concave [29]. Here we are interested in the second
elementary symmetric function

S2(h1, h2, . . . , hd ) =
∑
j<k

h jhk = S2(h). (A8)

If we substitute Eq. (A2) and apply Eq. (A7) we obtain

2
∑
j<l

h jhl =
∑
j �=l

∑
km

|a jk|2|alm|2

�
∑
j �=l

λ jλl (A9)

=1

2
C2(�).

Note that the summation in the first line of this equation has
to be understood as

d∑
k,l,m=1

d∑
j = 1
j �= l

,

that is, the three indices k, l , and m are summed with-
out restriction, while the fourth index j must be different
from l .

Finally we symmetrize Eq. (A9) with respect to the parties
A and B (the entire discussion up to this point considered party
A, but since the vector of eigenvalues is the same for ρB, it is
equally valid for party B):

2
∑
j<l

h jhl = 1

2

⎛
⎝ ∑

j �=l,km

|a jk|2|alm|2 +
∑

k �=m, jl

|a jk|2|alm|2
⎞
⎠

�
∑
j �=l

λ jλl (A10)

= 1

2
C2(�). (A11)

In order to finish the proof of Eq. (19b) we need to explain
the relation of the expression in the first line of Eq. (A10)

with the offdiag part in the 2-sector of |�〉〈�|. The complete
offdiag part is given by

offdiag(�) =
∑

( jk)�=(lm)

a jka∗
lm| jk〉〈lm|, (A12)

and, hence, its length

Tr
[
offdiag(�)†offdiag(�)

] =
∑

( jk)�=(lm)

|a jk|2|alm|2. (A13)

In this sum, the index pair ( jk) must not coincide with the pair
(lm). This is achieved by

d∑
k,l,m=1

d∑
j = 1

j �= l if k = m

=
d∑

k,l,m=1

d∑
j = 1
j �= l

+
d∑

j,k,l=1

d∑
m = 1
m �= k

δ jl . (A14)

In order to obtain the length �2
off,2-sec of the offdiag contribu-

tion to the 2-sector we need to subtract the offdiag parts of the
1-sector:

�2
off,2-sec =

∑
( jk)�=(lm)

|a jk|2|alm|2 − 1

d

∑
j �=l,k

|a jk|2|alk|2

− 1

d

∑
j,k �=l

|a jk|2|a jl |2. (A15)

By symmetrizing the summation rule (A14) with respect to
parties A and B and applying it to Eq. (A15), we find

�2
off,2-sec =1

2

⎛
⎝ ∑

j �=l,km

|a jk|2|alm|2 +
∑

k �=m, jl

|a jk|2|alm|2
⎞
⎠

+
(

1

2
− 1

d

) ∑
j �=l,k

|a jk|2|alk|2

+
(

1

2
− 1

d

) ∑
j,k �=l

|a jk|2|a jl |2. (A16)

Thus, since d � 2, the sum in Eq. (A16) contains more (non-
negative) terms than the one in Eq. (A10), so that

�off,2-sec � 2
∑
j<l

h jhl � 2
∑
j �=l

λ jλl = 1

2
C2(�). (A17)

This inequality is tight, as �off,2-sec = 1
2C2(�) in the Schmidt

basis. Thus our proof is complete. �
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