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Nonlocality claims are inconsistent with Hilbert-space quantum mechanics
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It is shown that when properly analyzed using principles consistent with the use of a Hilbert space to describe
microscopic properties, quantum mechanics is a local theory: one system cannot influence another system with
which it does not interact. Claims to the contrary based on quantum violations of Bell inequalities are argued
to be incorrect. A specific example traces a violation of the CHSH Bell inequality in the case of a spin-3/2
particle to the noncommutation of certain quantum operators in a situation where (non)locality is not an issue. A
consistent histories analysis of what quantum measurements measure, in terms of quantum properties, is used to
identify the basic problem with derivations of Bell inequalities: the use of classical concepts (hidden variables)
rather than a probabilistic structure appropriate to the quantum domain. A difficulty with the original Einstein-
Podolsky-Rosen (EPR) argument for the incompleteness of quantum mechanics is the use of a counterfactual
argument which is not valid if one assumes that Hilbert-space quantum mechanics is complete; locality is not an
issue. The quantum correlations that violate Bell inequalities can be understood using local quantum common
causes. Wave-function collapse and Schrödinger steering are calculational procedures, not physical processes.
A general Principle of Einstein Locality rules out nonlocal influences between noninteracting quantum systems.
Some suggestions are made for changes in terminology that could clarify discussions of quantum foundations
and be less confusing to students.
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I. INTRODUCTION

The notion is widespread in popular articles, but also
in many technical papers, review articles, and books, that
quantum mechanics is “nonlocal,” in some way that con-
trasts with the locality of classical physics. Here are a few
almost random selections from this vast literature [1–7]. In
particular, quantum mechanics is, we are told, inconsistent
with “local realism” [8,9] because it predicts, and numerous
experiments confirm, a violation of Bell inequalities, and this
means that if the quantum-mechanical world is real there exist
nonlocal influences which act instantaneously over arbitrarily
large distances. And if two distant systems are in a suitable
entangled quantum state, a measurement on one of them can
instantaneously influence the other through a process known
as “steering” [10–13].

To be sure, such claims have not gone unchallenged.
Notable among more recent discussions is an interchange
between a proponent of nonlocality, Tim Maudlin [14,15], and
an advocate of quantum locality, Reinhard Werner [16,17],
that appeared in a special issue of the Journal of Physics A
published on the fiftieth anniversary of a famous paper [18] by
John Bell; there was also a follow-up preprint [19] by Werner.
It is of interest that neither protagonist in this debate actually
applied quantum theory to properties and processes taking
place in a microscopic quantum system. Instead, both used
what might be called a “black box” approach: A macroscopic
preparation of the quantum system is followed later by a mea-
surement with a macroscopic output (“pointer position” in the
antique but picturesque terminology of quantum foundations),
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with the discussion based upon quantum predictions of the
relationship of input and output, without reference to what
might be going on at the microscopic quantum level at an
intermediate time. In Maudlin’s case no reference to such
goings on was needed for his arguments, whereas Werner
employed an operational approach to quantum theory in
which microscopic concepts are deliberately omitted. While
a black box approach can sometimes be useful in this as
in other areas of science, the claim of the present paper is
that the locality issue is best addressed by opening the black
box and examining what happens inside it, using consistent
quantum principles. In particular, it is important to understand
how quantum measurements can reveal microscopic quantum
properties; something often assumed by experimenters who
design and build apparatus, but not properly discussed in
introductory (or advanced) quantum textbooks.

One source of the nonlocality idea is the widespread belief
that measurements “collapse” quantum wave functions. If one
of two (or more) separated quantum systems described by
an entangled wave function is measured, then it is indeed
possible to discuss the post-measurement situation using a
“collapsed” wave function, and this no doubt contributes
to the belief that there must be nonlocal influences in the
quantum world. However, in this situation the wave function
is merely a convenient tool for obtaining certain conditional
probabilities that can be calculated by other methods that do
not suggest any sort of nonlocal influence, as explained in
Sec. VI.

To be sure, those who claim that instantaneous nonlocal
influences are present in the quantum world will generally
admit that they cannot be used to transmit information; this
is known as the “no-signaling” principle, widely assumed in
quantum information theory. This means that such influences
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(including wave-function collapse) cannot be directly detected
in any experiment. The simplest explanation for their lack of
influence is that such influences do not exist.

In classical physics two systems far apart can exhibit statis-
tical correlations that allow a measurement on one of them to
reveal some property of the other. No instantaneous nonlocal
influences need be invoked if such correlations result from a
local common cause at some time in the past. As explained in
Sec. V C, an analogous kind of quantum common cause can
be used to understand quantum correlations that violate Bell
inequalities, thus removing any need for nonlocal influences.

The arguments that support these conclusions are carried
out in several steps. First, in Sec. II the CHSH Bell inequality
[20] is shown to be violated in a purely local situation where
nonlocality plays no role. The key point is that the CHSH
inequality employs classical hidden variables in a situation
where a proper quantum description requires the use of non-
commuting operators to represent physical quantities. That
classical physics fails in the quantum domain is not at all
surprising. What is surprising is that this fact [21] has been
overlooked in much of the literature that claims quantum
mechanics is nonlocal.

Next, Sec. III is devoted to an elementary discussion of
projective quantum measurements and what they reveal about
properties of measured systems before a measurement takes
place. This is an essential part of opening the black box,
and fills in a serious lacuna in textbooks. It justifies the
belief of many experimental physicists that the apparatus
they have carefully constructed and tested actually measures
what it was designed to measure. A proper understanding of
measurements disposes of another type of supposed quan-
tum nonlocality: that quantum particles can simultaneously
be in two different locations. The tools that allow quantum
measurements to be understood in a rational manner are then
applied in Sec. IV to a serious defect that enters many if not all
derivations of Bell inequalities: a key factorization assumption
that is supposed to represent the absence of nonlocal effects
employs classical hidden variables that are inconsistent with
Hilbert space quantum theory.

The much-discussed Einstein-Podolsky-Rosen (EPR) ar-
gument is examined in Sec. V, beginning in Sec. V A with
Bohm’s formulation in terms of two spin-half particles. If
one assumes, contrary to EPR, that Hilbert space quantum
mechanics is complete, this undermines a key counterfactual
assumption about quantum measurements implicit in their
work, an assumption that has nothing to do with locality.
Following this, in Sec. V C it is shown that the experimentally
observed correlations which violate Bell inequalities can be
understood as arising from local quantum common causes,
and hence in no need of explanations based upon instan-
taneous nonlocal influences. An analogy from the classical
world helps understand why Alice’s measurement of one of a
pair of spin-half articles has not the slightest influence on the
other particle, located far away in Bob’s possession, though
she is able to infer something about its properties. In no sense
can she control or influence or “steer” Bob’s particle.

In Sec. VI it is argued that wave-function collapse, while it
can be used to calculate correlations, is simply a mathematical
tool, and should not be understood as a nonlocal physical
process. Indeed, a quite general Principle of Einstein Locality

states that noninteracting systems cannot influence each other,
whether or not they are in an entangled state. So in this
respect discussions, as in [12,13], of Schrödinger steering are
misleading.

A summary of the results of the paper are given in
Sec. VII A. This is followed in Sec. VII B with suggestions for
changes in terminology which might help clear up the confu-
sion associated with long-standing, but unsupportable, claims
of quantum nonlocality, thus making quantum theory less of
an ordeal for students, and allowing more rapid progress in
the study of quantum foundations.

The present paper incorporates, but also extends, material
from some of the author’s earlier publications [22–25]. The
aim is to present a unified and comprehensive critique of quan-
tum nonlocality claims, based in large part on a consistent
analysis of quantum measurements. In order to understand
in physical terms what is going on in the quantum world,
measurements themselves must be described as physical pro-
cesses governed by general quantum principles that apply to
all processes. In particular, macroscopic measurement out-
comes must be connected with the prior quantum properties,
represented by Hilbert subspaces (as in Sec. III.5 of [26]),
the apparatus was designed to reveal. The consistent histories
(CH) approach1 provides the precise rules needed to do this,
and is the foundation of the discussions in Secs. III–VI.

In this paper a quantum physical property is represented by
a Hilbert subspace or its projector, as distinct from a physical
variable represented by a Hermitian operator; see Sec. III A.
For the most part standard Dirac notation is employed, with
the addition that [ψ] = |ψ〉〈ψ | denotes the projector onto a
normalized pure state |ψ〉.

II. BELL INEQUALITIES

A common route to the belief that the world is nonlocal
comes from the following sort of reasoning:

B1. Bell (and others) derived inequalities involving cor-
relations of separated quantum systems, inequalities which
will always be satisfied if a certain locality condition (local
causality or local realism) is satisfied.

B2. Starting with the work of Freedman and Clauser [29],
numerous experiments, among them [8,30–32], have shown,
with ever increasing precision and control for errors and
experimental loopholes, that experimentally measured corre-
lations agree with the predictions of quantum mechanics and
violate Bell inequalities.

B3. Therefore quantum mechanics, and the world it de-
scribes, must be nonlocal.

A. The Clauser, Horne, Shimony, and Holt inequality

To see what is wrong with this argument, consider the
Clauser, Horne, Shimony, and Holt (CHSH) inequality [20],

1For an overview of consistent histories see [27]; a detailed treat-
ment will be found in [28]. The material in [25] is of particular
relevance to the present article.
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one of the simplest Bell inequalities. It involves a quantity

S = A0B0 + A0B1 + A1B0 − A1B1

= (A0 + A1)B0 + (A0 − A1)B1, (1)

where the Aj and Bk on the right-hand side are either classical
random variables taking the values +1 and −1, or quantum
observables (Hermitian operators) whose eigenvalues are +1
and −1, subject to the condition that each Aj commutes with
every Bk .

In the classical case it is easy to see that because either
A0 + A1 or A0 − A1 must be zero, S will lie between the limits

−2 � S � 2, (2)

so its average 〈S〉 must fall in the same interval, whence the
CHSH inequality:

|〈S〉| � 2. (3)

By contrast, if the Aj and Bk are quantum Hermitian
operators with eigenvalues ±1 subject to the requirement that
[Aj, Bk] = 0 for every j and k, it is easy to construct an exam-
ple, see below, in which S has eigenvalues of ±2

√
2, 0, 0, and

thus using the eigenstate for the largest eigenvalue to compute
the average of S will yield 〈S〉 = 2

√
2, in obvious violation

of the inequality (3). A key feature of this example is that A0

does not commute A1, nor B0 with B1, and none of the four
summands in (1) commute with the other three. There is no
reason to expect the eigenvalues of a sum of noncommuting
operators to bear any simple relationship with those of the
summands, so the violation of (3) in the quantum case is
not surprising. Nonlocality is irrelevant, as is shown by the
following example.

B. Neon

The 21Ne nucleus has a spin of 3/2, which is also the
spin of a neutral neon atom of this isotope; it has a low
but nonzero natural abundance. Thus the ground state of a
21Ne atom is fourfold degenerate, and its quantum mechanical
description uses a four-dimensional Hilbert space H. Choose
any orthonormal basis for this space, and let the basis vectors
carry binary labels, thus |00〉, |01〉, |10〉, |11〉. These could,
for example, be states in which the z component of angular
momentum Sz for some (arbitrary) direction z takes on the
values +3/2, +1/2, −1/2, −3/2 in units of h̄, but any other
choice would be equally good.

Next, as a matter of convenience, write H as a tensor
product Ha ⊗ Hb of two two-dimensional spaces with or-
thonormal bases |0〉a, |1〉a, and |0〉b, |1〉b, respectively, related
to the previously chosen basis of H through

| j, k〉 = | j〉a ⊗ |k〉b. (4)

Finally, using this tensor product structure, define four opera-
tors

A0 = Z ⊗ I, A1 = X ⊗ I, B0 = I ⊗ X, B1 = I ⊗ Z,

(5)

where I is a 2 × 2 identify matrix, while X , and Z are the Pauli
x and z matrices. Define the products Mjk = AjBk :

M00 = Z ⊗ X, M01 = Z ⊗ Z,

M10 = X ⊗ X, M11 = X ⊗ Z (6)

(where the subscripts label different operators, not matrix
elements), and a quantum version of (1) takes the form

S = M00 + M01 + M10 − M11. (7)

Each Mjk has eigenvalues +1 and −1, both doubly degener-
ate, and each does not commute with any of the other three,
even though each Aj commutes with each Bk .

Now imagine that a skilled experimenter is able to produce
a beam consisting of neon atoms of this isotope, each in
the same (pure) hyperfine state |ψ〉, and then, using a large
number of runs, measures each Mjk and finds its average
value. Note that four separate runs of the experiment are
needed, since each Mjk does not commute with the others.
Adding up the averages provides the average of S. Since the
eigenvalues of the operator in (7) are ±2

√
2, 0, 0, if |ψ〉 is

the eigenstate with the largest eigenvalue, the average 〈S〉 of S
will be 2

√
2, well outside the range (3).

In the case of this hypothetical 21Ne experiment all the
atoms belong to a single beam, and while the four different
measurements require different apparatus settings, they can
all be carried out in the same physical location in the same
laboratory. Thus the violation of the CHSH inequality in
this case has nothing to do with nonlocality. Instead it has
everything to do with the fact that in quantum mechanics,
unlike classical mechanics, physical properties and variables
are represented by noncommuting operators. To be sure, doing
the A and B measurements of photon polarizations at different
locations, as in the usual Bell tests, guarantees that the Aj

operators commute with the Bk operators, but this same re-
quirement has simply been built into the protocol of the neon
experiment.

Performing such an experiment would be difficult and
expensive, and there is no reason to attempt it, since by now
there is vast amount of experimental evidence that demon-
strates, with high precision, the correctness of quantum me-
chanics. This includes the widely publicized experiments on
correlated photon pairs, e.g., [8,31,32], which have confirmed
that quantum theory violates Bell inequalities in the same way
one would expect to be the case were the neon experiment
actually carried out.

III. QUANTUM MEASUREMENTS

Quantum measurements of the sort we are interested in
involve an amplification of a microscopic quantum property in
such a way to produce a macroscopic result, the measurement
outcome, a pointer position in the archaic but picturesque
language of quantum foundations. Measurements of a beam
of 21Ne atoms could in principle be carried out in a similar
way to the famous Stern-Gerlach experiment: use magnetic
(perhaps assisted with electric) field gradients to separate the
initial beam of particles into separate beams having different
properties, each identified by quantum numbers referring to
some observable. When far enough apart these beams would
enter separate detectors where individual atoms are ionized
and the electron fed to an electron multiplier resulting in a
macroscopic current. Note that such a measurement deter-
mines the property of each atom before it is measured, not
afterwards when the measurement is over and the detector has
destroyed the atom.
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A. Observables and properties

This simplest sort of projective measurement can be dis-
cussed in quantum mechanical terms as follows. Let F =
F † be the Hermitian operator corresponding to the physical
variable (quantum observable) to be measured, and write it in
the spectral form

F =
∑

j

f jP
j, (8)

where the f j are eigenvalues—we assume that f j �= fk for j �=
k—and the P j projectors onto the corresponding eigenspaces.
Here the j superscript of P j is a label, not an exponent; this
should cause no confusion, because a projector is equal to its
square. These projectors satisfy the conditions

P j = (P j )† = (P j )2, P jPk = δ jkP j, I =
∑

j

P j . (9)

The first two equalities define a projector (orthogonal projec-
tion operator), while the last two define the collection {P j} to
be a projective decomposition of the identity I (PDI). A mea-
surement of F consists in determining which P j represents
the quantum property of the particle being measured at a time
just before the measurement takes place. The term “property,”
following von Neumann, Sec. III.5 of [26], corresponds to a
(closed) subspace of the Hilbert space, or its corresponding
projector, and thus refers to something which can, at least
potentially, be true or false. One should distinguish F , an
observable or physical variable, from the property that F
takes on a particular value or a range of values.2 Thus a
projector is the quantum counterpart of a set of points in the
classical phase space, and a PDI is the quantum analog of a
probabilistic sample space: a collection of mutually exclusive
properties, one and only one of which can occur in any given
run of an experiment. (For more details about measurement
processes and their quantum description, see [25] and Chaps.
17 and 18 of [28].)

Suppose another observable G = G† has the spectral form

G =
∑

k

gkQk, (10)

where the gk are its eigenvalues, and the properties {Qk}
form a PDI. If F and G commute, FG = GF , then every
Qk commutes with every P j and it is possible to measure F
and G at the same time, using the PDI which is the common
refinement of {P j} and {Qk}, the collection of nonzero prod-
ucts P jQk . However, if F and G are incompatible, FG �= GF ,
then there will be some j and k such that P jQk �= QkP j , and
there is no common refinement of the two PDIs, so these
observables cannot be measured in a single experiment; they
must be determined in separate experimental runs. Note that if
P jQk = QkP j the product is itself a projector that represents
the property “P j AND Qk ,” whereas if P jQk �= QkP j neither
product is a projector, so the property P j AND Qk is not

2In this usage “the energy of a harmonic oscillator is no greater
than (3/2)h̄ω” is a property corresponding to a projector on a
two-dimensional subspace, whereas “energy” by itself is a physical
variable, not a property.

defined.3 Textbooks tell us that two incompatible observables
or properties cannot be measured simultaneously, and for this
there is a simple explanation (not always given in textbooks):
the simultaneous property is not represented by a projector,
and thus does not exist. Even skilled experimenters cannot
measure what is not there.

In the case of 21Ne, none of the four operators in (6)
commutes with any of the other three, which means that
determining their averages requires four separate experiments.
For example, M01 has eigenvalues +1 and −1, both doubly
degenerate, so the PDI contains two projectors. To find the av-
erage 〈M01〉 = 〈ψ |M01|ψ〉 the apparatus needs to separate the
particles into two beams corresponding to these two eigenval-
ues, and after a large number of runs the experimental average
will be (N+ − N−)/(N+ + N−) if N+ particles arrive in the +1
beam and N− in the −1 beam. A separate experiment, which
is to say a different arrangement for separating the incoming
beams into separate beams, must be carried out for each of
the Mjk in order to measure its average. And since S in (7)
does not commute with any of the Mjk , an experimental check
of this equality in the sense of equating the average 〈S〉 of
S, as computed using quantum principles, with the sum of the
experimental averages of the quantities on the right side would
be a rather stringent test of the correctness of standard Hilbert
space quantum mechanics.

B. Quantum measurement model

What follows is a simple quantum mechanical model of
a projective measurement of an observable F , Eq. (8). Ad-
ditional details will be found in Chaps. 17 and 18 of [28],
and in [24,25]. In what follows we assume that F refers to
a system, hereafter referred to as a “particle,” with Hilbert
space Hs, while a much large Hilbert space Hm represents
the measuring apparatus; together they constitute a closed
system with Hilbert space H = Hs ⊗ Hm. At an initial time
t0 the particle is in a superposition of eigenstates of F—for
simplicity assume the eigenvalues are nondegenerate—

|ψ0〉 =
∑

j

c j |φ j〉, P j = [φ j] = |φ j〉〈φ j |, (11)

and the apparatus is in the “ready-for-measurement” state
|�0〉, so that the combined system is in the state

|�0〉 = |ψ0〉 ⊗ |�0〉 =
∑

j

c j |φ j〉 ⊗ |�0〉. (12)

Let t1 be a time slightly later than t0 during which there is
negligible change under unitary time evolution, so at t1 |�1〉
is the same as |�0〉. Next assume that during the time interval
from t1 to t2 the particle and apparatus interact with each other
in such a way that a measurement process takes place, so that
by t2 the macroscopic quantity representing the measurement

3The quantum logic of Birkhoff and von Neumann [33] does assign
a property “P j AND Qk” when the projectors do not commute, but no
one has yet turned their quantum logic into a useful tool for reasoning
in physical terms about microscopic quantum properties. See Sec. 4.6
of [28] for a very simple example of one of the difficulties one runs
into.
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outcome, the “pointer position,” has reached its final value.
Let T be the unitary time development operator from t1 to
t2 (T = exp[−i(t2 − t1)H] in the case of a time-independent
Hamiltonian H), and let∣∣� j

2

〉 = T (|φ j〉 ⊗ |�0〉), |�2〉 =
∑

j

c j

∣∣� j
2

〉 = T |�1〉.

(13)
Next assume there is a PDI {Mk} on H, whose significance is
that the property or projector Mk corresponds to the pointer
(or whatever macroscopic variable indicates the measurement
outcome) being in position k, and that

Mk
∣∣� j

2

〉 = δ jk

∣∣� j
2

〉
. (14)

Thus if the particle is initially in the state |ψ j〉 at t1, its
interaction with the apparatus will result in the pointer being
in position j, i.e., possessing the property M j , at time t2, as
one might expect in the case of a projective measurement.
(Note that each Mk , since it represents a macroscopic quantum
property, will project onto a subspace of very high dimension,
compared to which 10 raised to the power 1010 is a relatively
small number.)

To discuss the time dependence of the measuring process
when the initial |ψ0〉 is in a superposition—at least two of the
c j in (11) are nonzero—requires the use of quantum histories,
sequences of quantum properties, represented by projectors,
at successive times.4 For our purposes it suffices to consider
histories of the form

Y jk = E0 � E j
1 � Ek

2 , (15)

interpreted as meaning that the system at time t0 has the
property E0, at time t1 the property E j

1 , and at time t2 the
property Ek

2 . (The symbol � denotes a tensor product, a
form of ⊗ used to separate properties at successive times.
There is no assumption that events at successive times are
related by a unitary time transformation.) Here j and k are
labels, and the {E j

1 } and {Ek
2 } are PDIs. The collection {Y jk}

constitutes a family of histories or framework. Each history
begins with the same property E0 at time t0, and different
histories correspond to different events at later times. A family
of histories constitutes a quantum sample space (analogous to
a collection of random walks in classical physics) to which
probabilities can be assigned using an extension of the Born
rule, provided certain consistency conditions are satisfied. In
our case the initial property is

E0 = [�0] = [ψ0] ⊗ [�0], (16)

and we shall consider three different families or frameworks
based on different choices for the PDIs at t1 and t2.

The unitary framework Fu contains but a single history

Fu : Y = [�0] � [�0] � [�2], (17)

with the projectors at t1 and t2 corresponding to a unitary time
development of the initial state. (Strictly speaking we should
introduce a PDI {[�0], I − [�0]}, I the identity operator, at

4See Sec. III of [25] for more details, and Chaps. 8 through 11 of
[28] for an extended discussion of histories and their probabilities.

t1, but the extended Born rule assigns zero probability to the
second of these possibilities, so it can be ignored; similarly a
PDI {[�2], I − [�2]} at time t2.) The trouble with the family
Fu is that when two or more of the c j are nonzero, the state
|�2〉 is a coherent superposition of states that correspond
to different pointer positions, and hence the corresponding
property [�2] does not commute with projectors representing
different positions of the pointer; the two are incompatible,
and trying to combine them will give a meaningless result,
as noted earlier in the case of incompatible observable F and
G. We have arrived at the infamous measurement problem of
quantum foundations, or, in popular parlance, Schrödinger’s
cat.

This difficulty can be avoided by using in place of Fu a
family

F1 : Y k = [�0] � [ψ0] � Mk, (18)

where by physicists’ convention [ψ0] at t1 stands for [ψ0] ⊗
Im on the full Hilbert space, and histories with I − [ψ0] at t1
have been omitted since they have zero probability. The use
of [ψ0] rather than [�0] as in (17) serves to focus attention on
the particle at time t1. The kth history Y k ends in the pointer
position Mk at time t2, and the extended Born rule assigns to
this outcome a probability

Pr(Y k ) = 〈�2|Mk|�2〉 = |ck|2 = 〈ψ0|Pk|ψ0〉 = |〈φk|ψ0〉|2.
(19)

The final expression on the right is the formula students learn
in an introductory course.

One can go a step further in opening the black box by using
the framework

F2 : Y jk = [�0] � [φ j] � Mk, (20)

where [φ j] (i.e., [φ j] ⊗ Im) at t1 means the particle has the
property [φ j], while nothing is said about the state of the
apparatus. It is easily shown that the consistency conditions
for this family are satisfied, and the extended Born’s rule
assigns probabilities

Pr(Y jk ) = δ jk|ck|2 = |〈φk|ψ0〉|2. (21)

This agrees with (19), but provides additional information,
namely the conditional probabilities (where subscripts 1 and
2 identify the time):

Pr([φ j]1 | [Mk]2) = δ jk = Pr([M j]2 | [φk]1), (22)

assuming ck �= 0. The first says that if the measurement
outcome (pointer position) is k at t2, then at the earlier time
t1, before the measurement took place, the particle had the
corresponding microscopic property [φk]. In other words, a
projective measurement of this sort reveals a prior property of
the measured system when one uses an appropriate quantum
description that allows for this possibility. Herein lies the key
difference between F2, in which the different [φk] make sense
at t1, and F1, where they do not, since [ψ0], assuming at least
two of the c j in (13) are nonzero, does not commute with the
relevant [φk].

In addition, since in F2 [φk] occurs at an earlier time than
the measurement outcome Mk , the second equality in (22)
allows one to identify the earlier [φk] as the cause of the
later Mk . This is the way an experimenter will normally think
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about the operation of a measurement apparatus; e.g., it is the
arrival of a photon which caused the photodetector to produce
a click, not vice versa. Note that the superposition state |ψ0〉,
whereas it does not appear at time t1 in F2, can nonetheless
be used, as in (21), for calculating the probabilities assigned
to the different properties [φk] at this time. A wave function
or ket used in this manner is referred to as a “preprobability”
in Sec. 9.4 of [28]. This role as a calculational tool should be
carefully distinguished from its use as a quantum property, as
in (18).

A careful experimenter will want to check that the mea-
surement apparatus built to measure a particular observable is
functioning properly. One check is calibration: if the device
has been built to measure F in (8), then for each j send in a
stream of particles known to have the property P j and check
that the pointer always ends up at position j. Once the device
has been calibrated, the experimenter will normally assume
that if a particle whose property is unknown arrives at the
detector and the pointer points at j, then the particle earlier
had the property P j . Thus the earlier property can be inferred
or retrodicted from the measurement outcome.

But what if the particle was initially prepared in a su-
perposition |ψ0〉 of states corresponding to different values
of j? The use of the framework F2 shows that such an
inference remains valid. If the same initial state is used in
a successive runs of the experiment, the outcomes will be
different, with probabilities given by the usual formula (19).
It is not meaningful to ask, “Did the particle have the property
[ψ0] or the property [φk] prior to the measurement?,” because
the projectors do not commute. But if the question is: “Which
among the [φ j] was the property possessed by the particle just
before it reached the apparatus,” then the answer is given by
using the framework F2 leading to the formula (22). Infer-
ences of this sort are made all the time by experimenters, and
it is to be regretted that this “common sense” understanding of
quantum measuring processes is not explained in introductory
textbooks.

We have employed three distinct frameworks or families
of histories, Fu, F1, and F2, in order to describe what goes on
in a projective measurement. Which is the right framework?
That depends on the question one wishes to address. If one is
interested in relating the measurement outcome to the quantity
it was designed to measure, F2 is the right framework, be-
cause it contains the corresponding microscopic events. These
events are not simply absent from Fu and F1; in those families
they have no meaning, because the [φ j] are incompatible with
the projectors used in Fu and F1 at time t1. On the other hand,
were one interested in whether the particle was perturbed on
its way from an initial preparation to the time t1 just before
the measurement took place, a PDI at t1 that included the state
that evolved unitarily from the initial preparation would be
appropriate. It is always a mistake to try and answer a question
about a quantum property using a framework in which it is
meaningless.

Different incompatible frameworks are used in quantum
mechanics for answering different questions, and it is impor-
tant to note that when a particular setup allows for several
alternative incompatible frameworks, the answer provided by
one of them to a question properly posed (in quantum terms)
is not invalidated by the existence of alternative frameworks.

Instead, there is a general consistency argument, see Chap. 16
of [28], that using alternative frameworks will never lead to
contradictory results, i.e., some property P is true (probability
1) in one framework and false (probability 0) in another
framework. Numerous quantum paradoxes represent apparent
violations of this, but when examined they always involve
some combination of arguments carried out by combining
results from incompatible frameworks. Thus a central prin-
ciple of CH is the single framework rule: valid quantum
reasoning requires that different parts of an argument can all
be embedded in, or expressed using, a single overall frame-
work. The choice of which framework to use will depend
upon which questions one wishes to answer. If one wants to
assign probabilities to measurement outcomes it is necessary
to employ a quantum description or framework in which the
different macroscopic outcomes make sense: thus F1 or F2,
rather than Fu, for the example discussed above. If one wants
to relate the measurement outcome to the corresponding prior
microscopic property that was measured, the framework must
be one in which those properties make sense, F2 rather than
Fu or F1.

C. Quantum particle in different locations?

Can a quantum particle be in two different locations at the
same time? To address this we first need to say what it means
for a quantum particle to have the property that it is in some
region of space R. That property is represented by a projector
R̂ whose action on the position-space wave function ψ (r) is
given by

R̂ψ (r) =
{
ψ (r) if r ∈ R,

0 otherwise.
(23)

That is, it sets ψ (r) to zero when r is not in R, but otherwise
leaves it unchanged. The projector for the particle to be
simultaneously in two regions R1 and R2 is R̂1R̂2 = R̂2R̂1. If
the regions R1 and R2 do not overlap, this product is zero,
which means the corresponding property cannot occur. Thus
if “two places” is understood as two regions in space that do
not overlap, the particle cannot be in both of them at the same
time.

Once one understands that projective quantum measure-
ments can be understood as measuring prior properties, the
same conclusion follows from the textbook statement that
even if a particle has a spread-out wave function, a mea-
surement of position will find it in only one place. Thus if
the support of the particle wave function is in the union R =
R1 ∪ R2 of two nonoverlapping regions R1 and R2, a position
measurement will reveal its presence in one but not in the
other, and its position just prior to measurement will be in
the region indicated by the measurement outcome. Note that
the property [ψ], the Hilbert space projector that corresponds
to the wave function ψ (r), will not commute with either of
projectors R̂1 or R̂2 associated with these two regions. assum-
ing the support of ψ (r) is not confined to one or the other.
Thus in calculating the probabilities that the particle will be in
(thus measured to be in) R1 or R2 one must understand ψ (r) to
be a preprobability; assuming it is normalized, ρ(r) = |ψ (r)|2
is a probability density which can be integrated over R1 or
R2 to find the probability that the particle is in one of these
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regions, or that an appropriate measurement will find it there.
Thus implicit in our discussion is a framework analogous to
F2 in (20).

As a particular application one can think of the case of a
double-slit experiment, and let R1 and R2 be nonoverlapping
regions, where R1 includes the first slit and its vicinity, but
not the second slit, while R2 is the vicinity of the second slit,
but excludes the first. Suppose that at a particular time the
wave representing the particle is in the union of R1 and R2. If
detectors are placed immediately behind each slit, detection
will show that the particle was in one of these regions, not
both. If, on the other hand, the particle or wave emerging from
the slits is undisturbed as it proceeds towards the distant inter-
ference region where there are a large number of detectors
which detect its position at a later time, then it is correct to
say that at the earlier time the particle was in the region R, but
introducing the separate regions R1 and R2 into the quantum
description at this time will violate the consistency conditions
required to assign probabilities, making “Which slit did it
pass through?” a meaningless question.5 For more details see
Chap. 13 of [28].

But, the reader may ask, if the particle was in R = R1 ∪ R2,
does that not immediately imply that it was either in R1

or else it was in R2? That would represent good classical
reasoning, but it need not hold in the quantum world. To
see why it can fail, consider a different situation: a quantum
harmonic oscillator in which the possible energies are (n +
1/2)h̄ω with corresponding (orthogonal) eigenstates |n〉, n =
0, 1, . . . . Consider the two-dimensional subspace spanned by
|0〉 and |1〉 whose projector is P = [0] + [1]. If the oscillator is
in either of the two energy eigenstates |0〉 or |1〉, it possesses
the property P. However, a superposition state |χ〉 = (|0〉 +
|1〉)/

√
2 also lies in this two-dimensional subspace, but does

not possess either property [0] or [1], as it does not have
a well-defined energy. Similarly, a quantum particle passing
through a double-slit system cannot, in general, be said to pass
through a particular slit.

IV. CLASSICAL HIDDEN VARIABLES

There are a large number of published derivations of Bell
inequalities, and it has even been claimed [6,7,34] that any
local theory of the world, present or future, must lead to
inequalities of this sort. That is, the experimental violations
of Bell inequalities not only imply that the quantum world is
nonlocal, but any future theory that gives results in agreement
with these experiments will involve the same nonlocality. It is
therefore useful to say a few words about what is wrong (from
the perspective of Hilbert-space quantum mechanics) with the
assumptions made in typical derivations of Bell inequalities,
and why the aforementioned claim is false.

It will suffice to focus on the factorization condition, which
always appears in some form or another in a derivation of the

5There is an alternative framework in which the particle passes
through a definite slit, but the detectors in the later interference region
end up in a macroscopic quantum superposition (Schrödinger cat)
state. One can understand why this framework has little appeal for
understanding real experiments!

CHSH or other Bell inequalities:

Pr(A, B|a, b) =
∑

λ

Pr(A|a, λ) Pr(B|b, λ) Pr(λ). (24)

The symbols entering this expression have the following sig-
nificance. Alice and Bob, who are far away from each other,
are measuring pairs of particles produced at a common source.
The outcome (pointer position) of Alice’s measurement is A
given the setting a of her apparatus, which determines the
type of measurement being performed. Likewise, B and b refer
to the outcome and setting for Bob’s measurement. On the
right side of (24) the “hidden variable” λ determines, in a
probabilistic sense, the dependence of A on a and of B on b.
(One can replace the sum over λ with an integral; it makes no
difference.). Equation (24) expresses locality in the sense that
if Alice and Bob are far from each other, the choice of a and
the resulting outcome A should not influence B, nor the choice
of b influence A, as long as λ, a “common cause,” is held fixed.

To better understand the connection of such hidden vari-
ables with Hilbert space quantum mechanics, consider ap-
plying (24) to just one of the terms on the right side of (7),
say M00 = A0B0, whose average in the state |ψ〉 we wish to
evaluate using a proper quantum-mechanical calculation. Let
us set a = 0, b = 0, and since they are fixed, drop them from
both sides of (24), which becomes

Pr(A0, B0) =
∑

λ

Pr(A0|λ) Pr(B0|λ) Pr(λ). (25)

Here A0 and B0 are defined in (5), with eigenvalues ±1, so can
be written in the form, see (8):

A0 = P+ − P−, B0 = Q+ − Q−, (26)

using the two commuting PDIs {P+, P−} and {Q+, Q−}. One
can think of the arguments of Pr(A0, B0) as the eigenvalues of
these operators, and thus (25) as the set of four equations, one
for each p and q,

Pr(PpQq) =
∑

λ

Pr(Pp|λ) Pr(Qq|λ) Pr(λ), (27)

which assigns probabilities to the projectors PpQq that to-
gether constitute the quantum sample space that is the com-
mon refinement of the PDIs used in (26). Identifying (24)
with (25) is not completely trivial, since in the former A and B
represent scalar quantities, measurement outcomes of +1 and
−1, whereas in (25) A0 and B0 refer to the eigenvalues +1
and −1 of quantum operators, and (27) to the corresponding
eigenspaces. This identification is correct provided projec-
tive measurements reveal pre-existing values, as explained in
Sec. III.

The two sides of (27) will be equal if we let the hidden
variable λ take on one of the four values ++, +−, −+, −−,
given by the pair pq, and use conditional probabilities

Pr(Pp|p′q) = δpp′ , Pr(Qq|pq′) = δqq′ (28)

together with

Pr(λ = pq) = 〈ψ |PpQq|ψ〉. (29)

Inserting these in the right side of (27) makes it equal to
〈ψ |PpQq|ψ〉, the Born rule for Pr(PpQq). Thus we have a
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particular quantum application of (24) in the case a = 0,

b = 0.
What works for a = 0, b = 0, the M00 term in (7), will

work equally well for any of the other terms; one simply has
to use appropriate choices for the PDIs {Pp} and {Qq}. But
we know that the quantum average of the quantum S in (7)
can exceed the classical CHSH bound in (3). Why is this?
The trouble arises because if, for example, we consider M10

in place of M00 we will need a different choice for P+ and P−
when A0 in (26) is replaced with A1, with which it does not
commute, and this means changing the definition, or at least
the physical meaning, of λ. But derivations of Bell inequalities
always assume that λ, which is supposed to represent an
earlier state of the measured particles, does not depend on the
choices of a and b made by Alice and Bob, so changing it is
not allowed.

Might there be some different choice for λ that evades
this difficulty? Not likely, given the large number of careful
analyses that show that (24), with λ independent of a and b,
leads inexorably to the CHSH inequality, which is not satisfied
by the correct quantum average of S in (7). What the foregoing
analysis suggests is that the fundamental problem with such
derivations is that they do not take proper account of the possi-
ble noncommutativity of quantum projectors representing the
quantum properties of interest. And since this failure applies
to 21Ne, locality cannot be an issue.

To summarize, the fundamental difficulty with the factor-
ization condition (24) is that it assumes a single sample space
of mutually exclusive possibilities, independent of a and b,
with elements labeled by λ. This would be quite appropriate
for a classical system where there is a single phase space
and the sample space employs nonoverlapping subsets of this
phase space. But a quantum Hilbert space allows incompatible
samples spaces, different PDIs with projectors that do not
commute, and therefore lack a common refinement. Thus the
usual derivations of CHSH and other Bell inequalities employ
classical physics to discuss quantum systems, so it is not
surprising when these inequalities fail to agree with quantum
predictions, or the experiments that confirm these predictions.

V. EINSTEIN-PODOLSKY-ROSEN ARGUMENT

A. Bohm version of EPR

While the mistake associated with the claim that the vio-
lation of Bell inequalities implies nonlocality in the quantum
world should be evident from the neon example of Sec. II B,
and from the use of classical hidden variables for deriv-
ing these inequalities, Sec. IV, there are useful lessons to
be learned from considering the original Einstein-Podolsky-
Rosen (EPR) argument [35], where locality was simply as-
sumed, using the simplified version introduced by Bohm,
Chap. 22 of [36]. Two spin-half particles, a and b, are prepared
in the spin-singlet state

|ψs〉 = (|0〉a ⊗ |1〉b − |1〉a ⊗ |0〉b)/
√

2, (30)

with |0〉 and |1〉 the +1/2 and −1/2 (in units of h̄) eigenstates
of Sz. Particle 1 is sent to Alice and 2 to Bob, who can
then carry out measurements of the same or different com-
ponents of spin angular momentum. If they measure the same

component, say Sw, where w could be x or z or any other di-
rection in space, the results will be opposite: if Alice observes
+1/2 Bob will find −1/2, or +1/2 if Alice observes −1/2.

Recall that the Hilbert space of a spin-half particle is
two dimensional, and thus the PDI associated with any spin
component Sw consists of two projectors onto pure states.
Neither projector associated with Sx commutes with either
of the projectors associated with Sz, and consequently there
is no subspace of the Hilbert space which can represent
simultaneous values of both Sx and Sz. Hence expressions
like “Sx = +1/2 AND Sz = −1/2” are meaningless,6 and
the same holds for any two distinct components of angular
momentum.

B. The counterfactual argument

While, for reasons given above, Sx and Sz for a spin-half
particle cannot be measured simultaneously, it is possible in
principle to design an apparatus to measure either Sx or Sz,
with the choice between the two made just before the particle
enters the measuring device. (For example, a small region with
a uniform magnetic field in the y direction placed just in front
of the apparatus can cause Sx = ±1/2 to precess into Sz =
±1/2, turning an Sz into an Sx measurement; this field can be
switched on or off just before the arrival of the particle.)

Suppose that with the Sz setting Alice finds Sz = +1/2
during a particular run. One can imagine that Alice could have
chosen the Sx setting, and in that case would have obtained
either Sx = +1/2 or −1/2, we do not know which. Does it not
follow that the particle had both a definite Sz value revealed
by the later measurement and a specific Sx component, the
one that Alice would have learned had she measured Sx rather
than Sz, a choice which she could have made at the very last
instant before the particle reached the apparatus? The itali-
cized words indicate that this is a counterfactual argument:
it combines what actually happened with what would have
happened in a similar but different situation. (For a discussion
of consistent ways to discuss counterfactuals within quantum
mechanics, see [37] or Chap. 19 of [28], and for an application
to (non)locality issues, the interchange in [38,39].) Doesn’t
this prove that the quantum Hilbert space provides but an
incomplete description of physical reality? The reader familiar
with their original paper will notice the similarity with EPR’s
argument, which also contains the (implicit) assumption that
if one measured one observable, one could very well have
measured a different, incompatible observable.

However, one can just as well run the EPR argument
in reverse. Given a classical situation where all observables
(by definition) commute, or a quantum situation with two
commuting observables, FG = GF , it makes perfectly good
sense to ask: Suppose F , Eq. (8) was measured with the result
indicating, say, the property P2, what would have happened
in this instance if instead G, Eq. (10) had been measured,
i.e., what is the probability that the measurement would
have revealed a property Qk? Given some initial state the
joint probability distribution corresponding to the common

6In quantum logic such a conjunction is a property that is always
false (the zero-dimensional subspace).
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refinement, the PDI composed of the nonzero PjQk , can be
computed, and from it a conditional probability Pr(Qk | P2),
which is then a sensible (in general, probabilistic) answer to
the counterfactual question. But when the projectors do not
commute this cannot be done, and then, as noted earlier, F
and G must be measured in separate experiments, and there
is no reason to suppose that the value of F revealed in one
experiment has anything to do with the value of G obtained
in a different, independent experiment. In other words, the
completeness of Hilbert space quantum mechanics, which
makes impossible the simultaneous measurement of Sx and
Sz, as there is nothing in the Hilbert space that corresponds
to a joint property, undermines the counterfactual assumption
that when Alice measured Sz she could have measured Sx in
the same run. Were Sx to have been measured, it would have
to have been in a different run, and there is no reason why the
value of Sz measured in one run will somehow be related to
the value of Sx measured in a different run.

Hence the counterfactual notion which enters, at least
implicitly, the EPR argument is blocked as soon as one
assumes, contrary to EPR, that Hilbert space quantum theory
is complete, and there are no additional hidden variables.
Given that attempts to supplement the quantum Hilbert space
with hidden variables have thus far failed—as shown most
clearly by experiments confirming the (Hilbert space) quan-
tum violations of Bell inequalities [8,30–32], it would seem
that the original EPR argument, that (Hilbert space) quantum
mechanics is incomplete, fails. Locality, or its absence, has
nothing to do with the matter: the issue is what measurements
carried out on a single particle in a single location can tell one
about the properties of that particle.

C. Quantum common cause

As noted in Sec. I, one reason for the belief in instanta-
neous nonlocal quantum influences is that quantum theory
predicts, and experiment confirms, the existence of corre-
lations which violate Bell inequalities, and thus cannot be
explained by a common cause based on classical hidden
variables. However, opening the black box and applying
consistent quantum principles provides an explanation for
the correlations in terms of local quantum common causes.
Experiments that test Bell inequalities using entangled photon
pairs already assume a common cause in the sense that pairs
of photons produced at the source in the same, rather than
a different, down conversion event are identified using their
arrival times. All that is needed in addition is an argument that
the polarizations measured later were also created in the same
(local) event.

Here we employ the principle discussed in Sec. III that
measurements of a suitable sort can be interpreted, by using
a suitable framework, as revealing prior properties of the
measured system. Reverting to spin-half language, if Alice’s
apparatus is set to measure Sz for particle a and the outcome
corresponds to, say, Sz = −1/2, she can conclude that particle
a possessed this property just before the measurement took
place, and, assuming it was not perturbed on its way to her ap-
paratus, at all previous times following the initial preparation.
The same applies to Bob’s measurement of Sz for particle b.
Thus by applying the Born rule right after the two particles are

prepared in the singlet state (30), one sees that the probability
that particles 1 and 2 have the same z component of spin is
zero, and the two possibilities for opposite Sz values each has
a probability of 1/2. A similar argument using an appropriate
framework applies to the case where Bob measures Sw for an
arbitrary direction w. The probabilities for the correlations
predicted by using what might be called a “measurement”
framework, in which both measurement outcomes are traced
all the way back to the source, are exactly the same as those
predicted by textbook quantum theory using wave-function
collapse in a “collapse” framework, Sec. VI, in which the
entangled singlet state persists right up to the instant before
one of the measurements. There is no reason that the Born
rule can only be applied when a measurement takes place;
this mistaken notion has been one of the reasons for the lack
of progress in quantum foundations in resolving its infamous
“measurement problem.”

As noted in Sec. III B, inferences obtained in one frame-
work are not invalidated by the existence of alternative frame-
works. The collapse framework, which treats the entangled
state as a property right up until the measurement takes place,
precludes any discussion during that time period of spin states
of the individual particles—see the comments in Sec. VI—
thus concealing the fact made obvious in the “measurement
framework,” in which measurements reveal prior properties,
that the quantum correlations between measurement outcomes
have an explanation in terms of a (quantum) common cause.
The reader may also find it helpful to consider the discussion
of the measurement of M00 in Sec. IV, where proper use
was made of a genuinely quantum “hidden variable” λ, as
an example of a “quantum cause,” in the same sense as that
employed here.

Alice’s choice of measurement on particle a has no influ-
ence at all on Bob’s particle b and whatever measurements
may be carried out on it. However, her knowledge of the
outcome of a measurement of a particular component of
angular momentum allows her to infer a property possessed by
particle a before the measurement took place. Combined with
what she knows about the preparations protocol, in particular
the initial state |ψs〉, this allows her to infer something about
particle b, from which she can also infer the probability of the
outcome of a measurement of particle b. Thus if particle a is
measured to have Sz = −1/2, Alice can assign an Sz = +1/2
property to particle b and predict with certainty the outcome
of Bob’s measurement of Sz, or assign a probability to the
outcome if Bob instead measures some other component of
spin angular momentum.

The following classical analogy may help in understanding
this. Charlie inserts red and green slips of paper into two
identical, opaque envelopes; then chooses one at random and
mails it to Alice in Atlanta, and the other to Bob in Boston.
From her knowledge of the preparation protocol Alice, upon
opening her envelope and seeing the color of the slip of paper
it contains, can immediately infer the color of the paper in
Bob’s envelope, whether or not he has already opened it or
will open it at a later time. No magic or mysterious long-range
influence is needed to understand how this works, and the
same is true of its quantum analog.

Granted, this classical analogy does not cover all possibil-
ities present in the quantum case; in particular the situation
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in which Alice measures one component of spin angular
momentum and Bob a different component. However, it is still
correct to say that from the Sz outcome of her measurement
and her knowledge of the initial preparation, Alice can assign
(conditional) probabilities to the outcomes of a measurement
by Bob in the Sx or any other basis, and this possibility has
nothing to do with her measurement having some mysterious
effect upon Bob’s particle.

VI. WAVE-FUNCTION COLLAPSE AND EINSTEIN
LOCALITY

Spin-spin correlations in the Bohm version of EPR are
usually calculated by one of two closely related methods. Let
us suppose that Alice and Bob carry our measurements in the
orthonormal bases {|a0〉, |a1〉} and {|b0〉, |b1〉}, respectively.
The joint probability distribution for an initial state |ψs〉 can
be computed using the standard formula

Pr(a j, bk ) = 〈ψs| [a j] ⊗ [bk] |ψs〉. (31)

The discussion in Sec. III B justifies thinking of |ψs〉 as a
preprobability, and identifying [a j] and [bk] as properties of
the a and b particles prior to the measurement, the point of
view adopted in the common cause discussion in Sec. V C.

An alternative approach which yields the same joint proba-
bilities employs wave-function collapse. Assume that Alice’s
measurement is carried out first, and the outcome corresponds
to [a0]. This is thought of as “collapsing” the wave function
|ψs〉 to a new state∣∣ψ0

c

〉 = [a0] |ψs〉/
√

〈ψs| [a0] |ψs〉 (32)

(where [a0] stands for [a0] ⊗ Ib). The (conditional) probability
that Bob’s measurement outcome will correspond to [bk] is
then computed using the collapsed state:

Pr(bk | a0) = 〈
ψ0

c

∣∣ [bk]
∣∣ψ0

c

〉
. (33)

When multiplied by Pr(a0) = 〈ψs| [a0] |ψs〉 this gives the
result in (31).

There is nothing wrong with this collapse procedure for
obtaining the result in (31). However, as noted earlier in
Sec. V C, Alice’s measurement has no effect upon Bob’s
particle. Thus treating the collapse process in which |ψs〉 is
replaced by |ψ0

c 〉, as an actual physical process in which Al-
ice’s measurement has somehow altered a property of particle
b, is incorrect, and this error has given rise to a great deal of
confusion, starting with EPR and extending up to more recent
discussions of steering, e.g., [11–13], a term originating with
Schrödinger [10] and expressing the idea that if Alice and Bob
share an entangled state, Alice’s measurement may be able to
alter Bob’s particle.

The mistake arises from a misunderstanding of the collapse
framework. When |ψs〉 is employed as a preprobability, as in
(31), it cannot be identified with a physical property of either
particle a or b, since the corresponding projector [ψs] does
not commute with any nontrivial property of either particle.
(The trivial properties are the identity projector I , always true,
and the zero projector, always false.) Therefore its collapse
to |ψ0

c 〉 in (32) cannot by itself indicate a change in some
property of particle b. To discuss whether a measurement by

Alice has a physical effect upon Bob’s particle requires the use
of a framework in which properties of the latter make sense,
both before and after Alice’s measurement takes place. This
matter was studied in Chap. 23 of [28] for the Bohm version
of EPR, showing that there is no such nonlocal effect as long
as Alice’s measurement apparatus does not directly interact
with Bob’s particle. This is a particular instance of a quite
general Principle of Einstein Locality:

Objective properties of isolated individual systems do not
change when something is done to another noninteracting
system.

Its proof will be found in [22]. Here “noninteracting”
means that the two systems have independent dynamics: the
unitary time-development operator for the combined systems
is the tensor product of the individual time-development op-
erators of the separate systems. Whether or not the systems
are initially in an entangled state is irrelevant; entanglement
should never be thought of as a mechanism by which one sys-
tem can “influence” another. This result is hardly surprising
given the widespread acceptance of the no-signaling principle,
since if, contrary to Einstein locality, there were a change in
some objective property, that change could be used to convey
information, or at least this is how a physicist would tend to
view the matter.7

VII. CONCLUSION

A. Summary

The central conclusion of this paper is the complete ab-
sence of nonlocal influences between quantum systems which
are spatially separated and not interacting with each other:
doing something to one system has no effect, instantaneous
or otherwise, upon the other system. Experiments show no
evidence of such effects, and the “no-signaling” principle,
widely accepted in discussions of quantum information, as-
sumes their absence. In brief, if physical reality is quantum
mechanical, then quantum nonlocality, in the sense of nonlo-
cal influences, is a myth.

Why, then, the widespread assumption, which often seems
taken for granted without any need to defend it, that quan-
tum mechanics is somehow “nonlocal” in a way in which
classical physics is not? Wave-function collapse, produced by
measurements when applied to a system in an entangled state
with a distant system, is one source of the nonlocality notion,
and this reflects the inadequate treatment of measurements in
textbooks and much of the quantum foundations literature. As
shown in Sec. VI, wave-function collapse is simply a method
of computing a conditional probability, as in classical physics
when two particles are statistically correlated. While this
method of calculation might sometimes be useful in terms of
intuitive insight, it does not correspond to a physical process.

The principal source of the current widespread belief in
quantum nonlocality is undoubtedly the claim by Bell and

7For an alternative perspective by a philosopher, including a very
clever construction of an influence that carries no information, see
Chap. 4 of [6].
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his successors that in a local world certain statistical corre-
lations must satisfy some type of Bell inequality. The CHSH
inequality, which belongs to this category, was studied in
Sec. II where it was shown that it is violated by quantum
correlations which have nothing to do with spatial separation,
but are already exhibited by states associated with the spin-
3/2 ground state of a 21Ne atom. This was followed in Sec. IV
with a discussion of the factorization formula which is central
to derivations of Bell inequalities, and makes reference to a
hidden variable or variables, typically denoted by λ. Such
hidden variables are always assumed to be classical; they lack
the structure of noncommuting projectors which are central
to Hilbert space quantum mechanics. It is regrettable that
so much attention has been paid to the locality assumptions
involved in the derivation of Bell inequalities, and so little
to the equally or more important assumption that quantum
probabilities can be discussed using a classical sample space:
in essence, assuming the microscopic world is not quantum
mechanical but classical.

Much of the confusion surrounding discussions of nonlo-
cality has to do with the absence from standard quantum me-
chanics, understood as what is found in textbooks, of a proper
discussion of quantum measurements, and for this reason the
essential principles have been summarized in Sec. III. The
key to resolving what is generally referred to as the measure-
ment problem, the possible appearance of superpositions of
macroscopic “pointer” states (Schrödinger cats), is to use the
consistent histories formulation of quantum theory in which
time development is represented by stochastic histories rather
than restricted to the unitary time development of a wave func-
tion. Using a framework (family of histories) with projectors
for the pointer states gets rid of this measurement problem.
Using a framework in which these macroscopic measurement
outcomes are correlated with microscopic properties of the
measured system at a time just before the measurement took
place, resolves a second measurement problem: how the
macroscopic outcomes can be used to infer (retrodict) the
prior microscopic property that resulted in (caused) a particu-
lar outcome. Consistent reasoning using frameworks requires
paying attention to the (possible) noncommutativity of quan-
tum projectors as embodied in the single framework rule.

The tools used to analyze measurements in a fully quantum
mechanical fashion made it possible to identify, in Sec. IV,
the fundamental error, from the perspective of a consistent
quantum theory, in derivations of the CHSH and other Bell
inequalities. It is the assumption that the factorization condi-
tion (24) for probabilities can use classical hidden variables
(parametrized by the symbol λ) associated with a single
sample space, rather than appropriate quantum sample spaces,
projective decompositions of the identity (PDIs).

Bell’s work was motivated by the Einstein-Podolsky-Rosen
(EPR) paper, in which locality was simply assumed, and the
claim was made that quantum mechanics is incomplete. Their
work was based on an inadequate understanding of quantum
measurements, which at that time were assumed to simply
collapse wave functions. In addition, their argument employs
a counterfactual assumption which, translated into the Bohm
version of the EPR paradox, is that while Alice actually mea-
sured (say) Sz, she could instead have measured and obtained
a value for Sx during this particular run. But if one assumes,

contrary to EPR, that Hilbert space quantum mechanics is
complete, such a counterfactual assumption is misleading,
since a spin-half particle cannot simultaneously possess an
Sx and an Sz property. That has nothing to do, at least in
any direct sense, with the EPR locality assumption. On the
other hand, Einstein’s belief that there are no ghostly nonlocal
influences (“spukhafte Fernwirkungen”) is fully justified, as
noted in Sec. VI, by a consistent analysis employing Hilbert
subspaces resulting in a Principle of Einstein Locality.

An additional argument, Sec. V C, undermines claims for
quantum nonlocality based on correlations that violate Bell
inequalities by showing that the relevant quantum correlations
can be understood as arising from a local quantum common
cause, something which, in the case of the polarization of
down-converted photons, occurs at the source where they
were created. This understanding makes use of the analysis of
quantum measurements in Sec. III, in particular the fact that
measurement outcomes reflect earlier microscopic properties
of the measured system when analyzed using an appropriate
framework.

B. Terminology: Some suggestions

Even the reader who agrees with the arguments presented
in this paper may nonetheless, and with some justification,
take the attitude that scientific terminology often acquires a
technical meaning that is different from the way in which it
was first used, and hence there is no difficulty if “local” and
“nonlocal” continue to be used in the same way as in much
of the current literature on quantum foundations and quantum
information. After all, there are other examples: the term “heat
capacity” is in common use in thermodynamics, and no one,
except perhaps beginning students, is confused by the fact that
“heat” is no longer regarded as a fluid, and heat capacities are
typically measured by doing work on the system of interest,
rather than connecting it to a thermal reservoir.

However, in the case of heat capacity there are at least
some circumstances in which heat can, indeed, be treated as a
conserved fluid, whereas in quantum mechanics “nonlocality”
seems in almost every respect a misleading and confusing
term. Granted, students who are setting up apparatus in the
laboratory are, at least after a while, not likely to worry that
an experiment setup at some distant location might suddenly
make a photon disappear while on its way through an optical
fiber to a detector, or perhaps suddenly appear out of nowhere.
Theoreticians are more likely to be confused by nonlocality
claims, and the appearance of such claims in textbooks and
the popular literature can only add to the confusion felt by
students learning quantum theory for the first time.

Those who agree with the author that clear thinking is a
key part of good physics, and using appropriate terms is an
aid to clear thinking, might at least wish to consider some
alterations and/or clarifications in the use of various terms.
Replacing nonlocal with “Bell nonlocal,” a term already used
in some publications, would be a useful clarification, and
certainly appropriate, in that Bell himself believed (incor-
rectly) that violations of his inequalities indicated nonlocality.
Similarly, replacing “steering” with “Schrödinger steering”
would be a step in the right direction. However, in both
cases adding a comment that the quantum world is in reality
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local—there are no instantaneous long-range influences—
would help counter a widespread, but mistaken, belief to the
contrary.

Replacing, or at least supplementing, “local” with “classi-
cal” in certain phrases would also be an improvement. Thus
claims, e.g. [8,9], that recent experiments show that quantum
mechanics is inconsistent with “local realism” lead to the
strange conclusion that if quantum mechanics is local (as
argued here) it must be unreal. But we have ample evidence

that the real world is best described by quantum, not classical,
mechanics, and so it is “classical realism” that is ruled out by
experiments. Similarly, replacing “local causality” as used in
[40,41] with “classical local causality” as a key ingredient in
the derivation of Bell inequalities would help clarify their true
nature.

These are simply offered as suggestions. The goal should
be to use terms, including technical terms, which aid clear
thinking rather than creating confusion.
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