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Semilocalization transition driven by a single asymmetrical tunneling

P. Wang , K. L. Zhang , and Z. Song *

School of Physics, Nankai University, Tianjin 300071, China

(Received 13 September 2019; revised manuscript received 22 December 2019; accepted 14 January 2020;
published 21 February 2020)

A quantum phase transition (QPT) in Hermitian systems is independent of the boundary condition in the
thermodynamic limit. However, it may happen for a non-Hermitian system, that the QPT strongly depends on
the boundary condition. We investigate the many-body ground-state property of a one-dimensional tight-binding
ring with an embedded single asymmetrical dimer based on exact solutions. We employ a semilocalization state
to describe a quantum phase that is a crossover from extended to localized state. The peculiar feature is that the
decay length is of the order of the system size rather than fixed as a usual localized state. In addition, the spectral
statistics is nonanalytic as asymmetrical hopping strengths vary, resulting a sudden charge of the ground state.
The distinguishing feature of such a QPT is that the density of the ground-state energy varies smoothly due to
unbroken symmetry. However, there are other observables, such as the ground-state center of mass and average
current, which exhibit the behavior of second-order QPT. This behavior stems from time-reversal symmetry
breaking of a macroscopic number of single-particle eigenstates.
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I. INTRODUCTION

Understanding quantum phase transitions (QPTs) is of
central significance to both condensed-matter physics and
quantum information science. QPTs occur only at zero tem-
perature due to the competition between different parame-
ters describing the interactions of the system. A quantitative
characterization of a QPT is that a certain quantity, such as
an order parameter or Chern number, undergoes qualitative
changes when some parameters pass through quantum critical
points. So far almost all the investigations about QPT focus on
systems with translational symmetry, in aid of which the local
order parameter and topological invariant can be well defined.
In both cases, the ground-state property is encoded in com-
plete set of single-particle eigenstates, forming a Bogoliubov
quasiparticle band or Bloch band. A conventional symmetry-
breaking QPT concerns all the single-particle eigenstates
independently, regardless of the connection between them,
while a topological QPT captures global features of the
symmetry-respecting single-particle eigenstate sets. There are
two prototypical exactly solvable models—the transverse-
field Ising model [1] and the Qi-Wu-Zhang model [2]—based
on which the concepts and characteristics of conventional
and topological QPTs can be well demonstrated. In general,
the order parameters and topological index are based on the
translational symmetry, which also indicates that the QPT is
driven by a global parameter such as external field or uniform
coupling constant.

Intuitively, translational symmetry is not necessary for
the onset of a QPT; a material in practice usually has an
open boundary condition. Theoretically, within the Hermitian
regime, a local parameter that controls the boundary usually
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strongly affects only a few single-particle energy levels and
thus cannot affect the onset of a QPT, or any macroscopic
quantum phenomena in a many-body system. This contradic-
tion disappears when an infinite system is considered, where
the translational symmetry still remains in the bulk. A funda-
mental question is whether all kinds of QPTs are independent
of boundary conditions, including a non-Hermitian system. It
is well known that a non-Hermitian system may make many
things possible, including a quantum phase transition that
induces in a finite system [3–22] unidirectional propagation
and anomalous transport [6,23–30], invisible defects [31–33],
coherent absorption [34] and self-sustained emission [35–39],
loss-induced revival of lasing [40], as well as laser-mode
selection [41–43]. Such kinds of novel phenomena can be
traced to the existence of an exceptional point, which is a
transition point of symmetry breaking for a pair of energy
levels. Exploring the novel quantum phase or QPT [44–60]
in non-Hermitian systems becomes an attractive topic. And
topological features in non-Hermitian fermionic systems have
attracted extensive studies [61–66]. Motivated by the recent
development of non-Hermitian quantum mechanics [67], both
in theoretical and experimental aspects [26,28,67–78], in
this paper we investigate the QPTs in the non-Hermitian
regime. The purpose of the present work is to present a
simple non-Hermitian model to demonstrate alternative types
of QPTs which are driven by a local parameter. We study a
phenomenon that we dub semilocalization, which is induced
by a single asymmetrical tunneling embedded in a uniform
tight-binding ring. A semilocalization state is a crossover from
extended to localized states, possessing a truncated exponen-
tial decay probability distribution. The peculiar feature is that
the decay length is of the order of the size of the system
rather than fixed as a usual localized state. The single-particle
solution of the model shows that the spectral statistics, such
as the number and distribution of the complex energy levels,
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is controlled by the asymmetrical hopping strength. The
eigenstate is a semilocalized state for a complex level while an
extended state for a real level. Particularly, a real (complex)-
level wave function possesses symmetric (asymmetric) proba-
bility distributions and steady (nonsteady) with zero (nonzero)
current due to the unbroken (broken) time-reversal symme-
try. Although the system is non-Hermitian with a complex
single-particle spectrum, the many-body ground-state energy
is always real due to the protection of time-reversal sym-
metry. It exhibits a unconventional QPT arising from the
sudden changes of the single-particle spectral statistics: the
density of many-body ground-state energy is analytic, while
the center of mass and average staggered current of the ground
state, as macroscopic quantities, are nonanalytic functions of
the asymmetric hopping strength. Accordingly, the transition
from a fully real to complex spectrum is associated with the
transition from extension to semilocalization.

This paper is organized as follows. In Sec. II we present
a non-Hermitian time-reversal symmetric model with asym-
metric dimer and the Bethe ansatz solution. In Sec. III, we
provide the phase diagram by analyzing the properties of
eigenstates with real and complex energy levels, such as the
proportion of complex level, the ground-state center of mass,
and the ground-state average staggered current. In Sec. IV, we
demonstrate the characteristics of second-order QPT. Finally,
we give a summary in Sec. V.

II. MODEL AND SOLUTION

Considering a simple uniform tight-binding ring, it is well
known that the spectrum is cosine type and cannot be changed
largely by a local impurity in general. An additional Hermitian
hopping term or even non-Hermitian local on-site complex
potential can only alter several energy levels, introducing
localized states. However, we will see that another type of
non-Hermitian impurity may have an affect on macroscopic
energy levels, which plays the key role in the present work.

The Hamiltonian has the form

H =
N−1∑
j=1

c†
j c j+1 + H.c. + μc†

N c1 + νc†
1cN , (1)

with odd N/2, where c j is the annihilation operator of the
fermion at site j. It depicts a uniform tight-binding ring
with only a non-Hermitian impurity embedded. A schematic
illustration of the model is presented in Fig. 1(a). The non-
Hermiticity arises from an asymmetric tunneling between
sites 1 and N , represented by hopping strength μ and ν

(in this paper, we consider only the case with μ, ν > 0 for
simplicity). This model is investigated in the previous work
[79] in the special case with μν = 1. It has been shown that
an asymmetric dimer can be realized by the combination of
imaginary potential and magnetic flux [80]. Experiments on
the asymmetric dimer have been proposed [63,81,82], and
an experimental realization of the non-Hermitian Hamiltonian
for fermionic systems is also discussed in Ref. [55].

Unlike the usual many-body non-Hermitian tight-binding
model, the Hamiltonian H does not have parity-time symme-
try and translational symmetry. Owing to the reality of the
coupling μ and ν, it possesses time reversal symmetry, i.e.,
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I

FIG. 1. (a) Schematic of the model, which depicts a uniform
tight-binding ring with unitary hopping strength, embedded by a
single non-Hermitian dimer. It is an asymmetric tunneling with
hopping strength μ and ν. (b) Phase diagram of the system, which
is consisted of six regions. In regions (I) and (II), the system has a
full real spectrum, while in (III), (IV), (V), and (VI) the spectra are
mixed with real and complex energy levels. At curve μν = 1, all the
energy levels are complex. The inset circle is described by parameter
equations ν = 1 + r cos(θ ); μ = 1 + r sin(θ ) goes through all six
regions and will be used in the following figures.

[T , H] = 0, where T is an antiunitary operator with action
T −1iT = −i. Fortunately, the solution of H can be exactly
obtained by the Bethe ansatz technique (see Appendix).

The Hamiltonian can be diagonalized as the form

H =
N∑

n=1

εnγ nγn, (2)

where the fermion operators γ n and γn have the form

γ n =
N∑

l=1

f l
nc†

l , γn =
N∑

l=1

f l
ncl (3)

and satisfy the canonical commutative relation

{γm, γ n} = δmn.

Here the canonical conjugate operator can be constructed by
the relation

f l
n (μ, ν) = [

f l
n (ν, μ)

]∗
, (4)

and the explicit expression of the wave function is

f l
n = 1√

�
sin (knl + αn), (2 < l < N − 1)

f 1
n = 1√

�
, f N

n = e−ikn − μeikn (N−1)

ν − eiknN
f1, (5)
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where αn is obtained by tan αn = cn/sn, and

sn = ν2 + 1 − ν cos (knN ) + ν cos [kn(N + 2)]

− pn cos kn, (6)

cn = ν sin (knN ) − ν sin [kn(N + 2)] + pn sin kn, (7)

pn = cos [kn(N + 1)] − μν cos [kn(N − 1)]

+ (μ + ν) cos kn. (8)

The coefficient �n is determined by the biorthonormal inner
product. In the rest of the paper we focus on the Dirac
probability, since it can be measured directly in experiments.
Then we take the Dirac normalization factor which is obtained
from

∑N
l=1 | f l

n |2 = 1. The single-particle spectrum has the
form

εn = eikn + e−ikn , (9)

where kn can be real and complex. The quasi–wave vector kn

for 1 � n � N has the form

kn = 2nπ

N
+ θn, (10)

where θn is determined by the transcendental equation (see
Appendix). The transcendental equation is reduced to

tan θn = (1 − μν) sin (θnN )

μ + ν − (1 + μν) cos (θnN )
, (11)

for n = N or N/2, and

sin(φn + θnN ) = (μ + ν) sin nπ
N√

1 + μ2ν2 − 2μν cos 2nπ
N

tan φn = 1 + μν

1 − μν
tan

nπ

N
(12)

otherwise. Obviously, the reality of kn (1 � n � N) depends
on the values of μ and ν, which will be discussed in detail in
the next section.

III. PHASE DIAGRAM

In this section, we analyze the property of the solution
and the corresponding implications. At first, we determine
the phase diagram from the perspective of spectral statistics,
which is characterized by the proportion of the complex lev-
els. Second, we introduce a concept, the semilocalized state,
to describe the feature of the eigenstates of complex energy
levels. Furthermore, we reveal another exclusive property of
the complex-level eigenstates, the nonsteady state, which can
be seen only from an evolved (nonequilibrium) state in a
Hermitian system.

A. Spectral statistics

According to the solutions obtained in the Appendix, the
reality of energy levels obeys the following rules: (i) For
μ, ν > 1, or μ, ν < 1, all the quasi–wave vectors kn are
either real or imaginary, corresponding to real energy levels.
All the eigenstates are nondegenerate except the trivial case
with μ = ν = 1, which reduces the system to be a uniform

Hermitian ring. We denote the (nondegenerate) real-energy
single-particle eigenstate as |ψn

R〉, barring the energy levels
n = N and N/2. (ii) For μ > 1 > ν, or μ < 1 < ν, some com-
plex quasi–wave vectors kn appear, corresponding to complex
energy levels which come in pairs with conjugate eigenenergy.
We denote the complex-energy single-particle eigenstate as
|ψn

±〉. (iii) Among them, especially in the case of μν = 1, all
kn becomes complex. Obviously, as one of the characteristics
of the spectral statistics, the proportion of the complex level is
defined as a function of μ and ν,

g(μ, ν) = NC(μ, ν)

N
, (13)

which is the ratio of the number of complex levels NC to the
total number of levels. In the large-N limit, we have

g(μ, ν) =
⎧⎨
⎩

0, μ, ν � 1, or μ, ν � 1
(π − 2kc)/π, μ > 1 > ν, or μ < 1 < ν

1, μν = 1
,

(14)

where kc = | arcsin[(1 − μν)/(ν − μ)]| is the critical wave
vector separating the real and complex levels. A schematic
of the three kinds of regions, which will be shown as a phase
diagram, is plotted in Fig. 1(b). To demonstrate the properties
of the ratio, 3D profiles of g(μ, ν) and the corresponding
energy-level structure are plotted in Figs. 2(a)–2(c) and Fig. 3.
In Fig. 2(d), we plot the ratios as a function of θ ∈ [0, π ]
for a system with finite size N . It indicates that g(μ, ν) has
many nonanalytic points for small N , and there are only three
nonanalytic points on the circle across the lines μ = 1, ν = 1,
and μν = 1 in the thermodynamic limit. We will show that
such curves are phase boundaries for many-body ground states
due to the sudden change of the spectral statistics.

B. Semilocalized state

Unlike a linear operator such as parity, the time-reversal
operator T is an antilinear operator. The T symmetry break-
ing is always associated with the appearance of complex
levels. The exact solution in the Appendix shows that the
single-particle eigenfunction can always be expressed to obey
the relations

T
∣∣ψn

R

〉 = ∣∣ψn
R

〉
, T |ψn

±〉 = |ψn
∓〉. (15)

Owing to the value of kn, there are three types of wave
functions: extended, localized, and semilocalized states. Here
the last one is exclusive for non-Hermitian systems. Unlike the
localized one, the imaginary part of kn of semilocalized states
θn is inversely proportional to N , leading to an incomplete
decay distribution (with a truncated tail). Nevertheless, it still
supports an imbalanced probability distribution as a crossover
from extended to localized states. We employ the center of
mass (CoM), which is the expectation value of the CoM
operator

rc = 1

N

N∑
l=1

lc†
l cl . (16)

Straightforward derivation shows that (i) 〈rc〉 ≈ 1/2 for an
extended state; (ii) 〈rc〉 ≈ 0 (1) for a localized state at the
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FIG. 2. Plots of the ratio g(μ, ν ) in νμ plane from Eq. (14) as one perspective of the spectral statistics. (a) Color contour plot. The
dished lines indicate the curve νμ = 1. The nonanalytic behavior of g(μ, ν ) at lines μν = 1 are obvious. (b) 3D plot. The nonanalytic
behavior of g(μ, ν ) at curve μν = 1 is highlighted. (c) Plots of the ratio at the loop ν = 1 + 0.5 cos(θ ); μ = 1 + 0.5 sin(θ ). The nonanalytic
behaviors at the phase boundaries are clearly indicated by the sharp peaks and right-angle turns. (d) Plots of the ratio obtained from numerical
diagonalization for systems with finite N . The curves are steplike functions and become smooth as N increases. However, three points across
the boundaries μ = 1, ν = 1, and μν = 1 remain nonanalytic.

case ν > μ (μ > ν); and (iii) for a semilocalized state 〈rc〉
is a number ranging from 0 to 1. Here we give an example:
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FIG. 3. Plots of energy-level structures for understanding the
connection between the spectral statistics and QPTs. Energy levels
for the system on the loop ν = 1 + 0.9 cos(θ ); μ = 1 + 0.9 sin(θ )
are plotted. Black and red lines represent the real and complex energy
levels, respectively. There are two types of QPTs with the boundaries
indicated by A and B, respectively. We see that the A-type boundary
always corresponds to the appearance of complex levels, while the B
-type boundary is located at the maximal number of complex levels.
The size of the system is N = 42.

when μν = 1 and ν > 1 > μ, we have

〈rc〉 ≈ 1

( N
√

ν2 − 1)N
+ 1

1 − ν2
, (17)

in the large-N limit. It is easy to check that limν→1 〈rc〉 = 1/2,
which accords with the above analysis. To demonstrate the
above conclusions, profiles of such three types of states and
the corresponding 〈rc〉 are plotted in Fig. 4(a). We can see that
the difference among the three types of eigenstates is obvious.

C. Nonsteady eigenstate

We note that the T -symmetry breaking of |ψn
±〉 indicates

that |ψn
±〉 can have nonzero local current, which is defined as

Jl = −i〈(c†
l cl+1 − H.c.)〉n, (18)

at the position l . Here 〈...〉n denotes the expectation value
for an eigenstate of n level. It is usual that for a Hermitian
system, for instance, taking μ = ν = 1, each eigenstate with
nonzero momentum has zero local current. Remarkably, an
intriguing feature is that |ψn

±〉 is a nonsteady state, since Jl

is position dependent, violating the conservation of current.
A nonsteady state can exist in a Hermitian system, such as
a moving wave packet in a tight-binding ring. However, it
cannot be an eigenstate of a Hermitian system. If μ � ν, the
current changes the sign. In Fig. 4(b), profiles of the current
distributions for three types of eigenstates are plotted.

As a temporary summary, we can conclude that a semilo-
calized eigenstate has a distinguishing feature from an ex-
tended one (the localized eigenstate can be negligible, since
there are only two such eigenstates at most): it is a nonsteady
state, possessing current and a decay distribution with a size-
dependent decay length. Although we refer it to as a “semilo-
calized state,” it exhibits the characteristic of an extended
state since it has zero inverse participation ratio (IPR) in
the thermodynamic limit. These features should result in a
macroscopic property for a many-body ground state.

IV. PHASE TRANSITION

Now we consider the many-body effect of the single-
particle spectral statistics. We focus on the ground state for
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FIG. 4. Schematic illustrations for the concept of semilocalized
state. (a) Plots of the profiles of three kinds of wave functions:
localized state (the dotted black line), extended state (the solid yellow
line), and semilocalized state (the dash-dotted red line). The decay
length of the semilocalized state has the same order of the lattice
length. The vertical dashed lines represent the value of center of
mass for each state. We see that a semilocalized state is a crossover
between localized and extended states. (b) Plots of the probability
current distributions for three kinds of states. The currents for the
extended state and local state are both zero. The current distribution
of a semilocalized state exhibits a nonsteady behavior, violating the
probability conservation, which is exclusive for the eigenstate of a
non-Hermitian system. The size of the system is N = 150. Other
parameters are ν = 5, μ = 10 for the dotted black lines, ν = 5,
μ = 0.1 for dash-dotted red lines, and ν = 4, μ = 2 for the solid
yellow lines.

a half-filled case where all the negative real parts of energy
levels are filled by fermions. It is expected that the nonanalyt-
icity of g(μ, ν) can result in macroscopic phenomena.

First of all, we consider the density of ground-state energy,
which is expressed as

Eg = 2

N

N/2∑
n=1

εn = 2

N

N/2∑
n=1

Re(εn). (19)

Here the term “ground state” is somehow controversial: (i)
It takes only the real part of the energy into account but
disregards the imaginary part. (ii) Although eigenenergy of
the ground state is always real due to the conjugation-pair
levels, the excited states may be unstable. Nevertheless, if
the perturbation is restricted to conjugation-pair excitation,
the ground state can be stable. In this context, we consider
such a state as a ground state in this work. From the exact
result in the Appendix, Eg is always analytical at all ranges of
{μ, ν}, which seems to indicate that there is no occurrence of
conventional QPT.

Second, we investigate the average CoM, which is defined
as

Rc = 2

N

N/2∑
n=1

〈rc〉n. (20)

From the exact result in the Appendix, we have

Rc =
{

1/2, μ, ν > 1, or μ, ν < 1
1/2 + η(μ, ν), otherwise , (21)

where η(μ, ν) is a nonzero function. On the other hand, it is
presumable that the nonanalyticity of g(μ, ν) at μν = 1 can
result in the nonanalyticity of Rc. Third, we investigate the
average staggered current, which is defined as

J = −2i

N

N/2∑
n=1

(−1)n

〈
N∑

l=2

(c†
l cl+1 − H.c.)

〉
n

. (22)

The feature of nonsteady eigenstates may also lead to non-
analyticity of J (μ, ν) at the nonanalytical point of g(μ, ν).
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FIG. 5. Plots of three quantities (a) density of ground-state energy, (b) average CoM. (c) average staggered current, and the corresponding
first-, second-order derivatives as a function of θ . This indicates that the density of the ground-state energy does not display any critical
behaviors, while the other two exhibit the characteristics of second-order QPT; first-order derivatives are nonanalytical and second-order
derivatives are divergent. The parameters are ν = 1 + 0.9 cos(θ ); μ = 1 + 0.9 sin(θ ). The size of the system is N = 750.

022111-5



P. WANG, K. L. ZHANG, AND Z. SONG PHYSICAL REVIEW A 101, 022111 (2020)

Actually we have

J =
⎧⎨
⎩

0, μ, ν � 1, or μ, ν � 1

= 0, otherwise
4/π, μν = 1

. (23)

To demonstrate this point, we compute the quantities
∂nEg/∂θn, ∂nRc/∂θn, and ∂nJ /∂θn along the circle,

ν = 1 + 0.9 cos(θ ), μ = 1 + 0.9 sin(θ ) (24)

with n = 1, 2. In Fig. 5 we plot these quantities from ex-
act diagonalization results for a finite-size system. We find
that the density of ground-state energy does not display
any critical behaviors as we predicted. It is different from
a conventional QPT. It is understandable since the ground
state does not experience a symmetry breaking as a whole,
although a single-particle eigenstate has time-reversal sym-
metry breaking. However, the other two quantities exhibit
the characteristics of second-order QPT: first-order derivatives
are nonanalytical and second-order derivatives are divergent
in the thermodynamic limit. Finally, we would like to stress
that the QPT presented in this work is a many-particle effect.
Then the behavior of the ratio g(μ, ν) plays a crucial role to
determine the phase diagram, which is a different topic from
that in Ref. [79].

V. CONCLUSION

In summary, we have proposed a type of QPT beyond
conventional symmetry-breaking and topological QPTs. It is
based on the concept of a semilocalization state, which is a
crossover from an extended to a localized state, possessing
an exponential decay probability distribution. The peculiar
feature is that the decay length is of the order of the size of
the system, rather than fixed as a usual localized state. We
have shown that such a semilocalized state can be induced
by an asymmetrical dimer in a ring system. Remarkably, we
found that a single dimer can result in a macroscopic amount
of complex energy levels with semilocalized states, which
determines the value of some macroscopic observables, such
as the CoM and staggered current of the many-body ground
state. Furthermore, the spectral statistics is nonanalytical as
asymmetrical hopping strengths vary, resulting in a sudden
charge of the ground state, i.e., QPT. Another distinguishing
feature of such a QPT is the ground-state energy is analytical
at the phase boundary. The symmetry of the many-body
ground state remains unchanged, while the single-particle
eigenstate breaks the time-reversal symmetry, resulting in
the formation of a semilocalized state. It seems that such a
quantum phase is exclusive for non-Hermitian systems.
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APPENDIX

In this Appendix, we present a detailed derivation and
analysis for the Bethe ansatz solution of the Hamiltonian H .

1. Wave function

We consider the single-particle eigenstate

|ψn〉 = 1√
�n

N∑
l=1

f l
n |l〉, (A1)

following a Bethe ansatz form,

f l
n =

⎧⎨
⎩

1, l = 1
Aneiknl + Bne−iknl , l ∈ [2, N − 1]

f N
n l = N

, (A2)

where the normalization factor �n = ∑N
n=1 | f l

n |2 is de-
termined by the Dirac inner product 〈ψk|ψk〉 = 1. The
Schrödinger equation

H |ψn〉 = εn|ψn〉, (A3)

with eigenenergy εn, can be expressed in explicit form as

f l−1
n + f l+1

n = εn f l
n (A4)

within the uniform region, and

f 3
n + f 1

n = εn f 2
n

f 2
n + ν f N

n = εn f 1
n

f N−1
n + μ f 1

n = εn f N
n

f N−2
n + f N

n = εn f N−1
n (A5)

around the asymmetric dimer. Substituting Eq. (A2) into
Eqs. (A4) and (A5), we have

εn = 2 cos kn (A6)

and

Aneikn + Bne−ikn = f 1
n

Ane2ikn + Bne−2ikn = εn f 1
n − ν f N

n

Aneikn (N−1) + Bne−ikn (N−1) = εn fN − μ f1

AkeiknN + Bke−iknN = fN , (A7)

and the solution of Eq. (A7) is

An = 1 − νe−ikn f N
n

2i sin kn
= μ − e−ikn f N

n

2i sin kneiknN

Bn = ν f N
n eikn − 1

2i sin kn
= eikn f N

n − μ

2i sin kne−iknN
. (A8)

We would like to point out that the argument in the sine
function can be a complex number. We note that An = (Bn)∗
if kn is real, which indicates the reality of the wave function,
f l
n = ( f l

n )
∗
, obeying the time-reversal symmetry. The exis-

tence of a nontrivial solution (An, Bn) requires

(μ + ν) sin kn = sin [kn(1 + N )] + μν sin [kn(1 − N )].
(A9)

And the solution of the wave function can be obtained from

An = ν − eiknN − νe−2ikn + μνeikn (N−2)

2i sin kn(ν − eiknN )

Bn = 1 − μν

2i sin kn(νe−iknN − 1)
(A10)
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and

f N
n = e−ikn − μeikn (N−1)

ν − eiknN
f1. (A11)

In the following discussion, we use the normalized wave
function

f l
n = sin (knl + αn), l ∈ [1, N] (A12)

by replacing f l
n by

√
�n f l

n , where the coefficients are

tan αn = cn

sn
, (A13)

sn = ν2 + 1 − ν cos (knN ) + ν cos [kn(N + 2)]

− pn cos kn,

cn = ν sin (knN ) − ν sin [kn(N + 2)] + pn sin kn, (A14)

with

pn = cos [kn(N + 1)] − μν cos [kn(N − 1)]

+ (μ + ν) cos kn. (A15)

Similarly, the solution of H† can be obtained as the form

f l
n (μ, ν) = [

f l
n (ν, μ)

]∗
(A16)

and obey the biorthonormal relation∑
l

f l
m f l

n = δmn (A17)

if a biorthogonal inner product normalization factor is im-
posed.

Specifically, in the case with μν = 1 and μ > 1 > ν (or
μ < 1 < ν), Eq. (A9) reduces to

sin [kn(1 + N )] + sin [kn(1 − N )] − (μ + ν) sin kn = 0
(A18)

and furthermore becomes

cos (Nkn) = μ + ν

2
. (A19)

Since (μ + ν)/2 � 1, we have

kn = 2nπ

N
+ iφ, (A20)

where φ = (ln ν)/N . Equation (A10) gives

Ak = e−ikn

Bk = 0, (A21)

so we have the wave function

fl = ei 2nπ
N l e−φl , l ∈ [1, N] (A22)

and the Dirac normalization factor

�n =
N∑

l=1

| fl |2 = 1 − e−2φN

e2φ − 1
. (A23)

2. Spectral statistics and phase diagram

Now we focus on the solution kn of the transcendental
equation, Eq. (A9). Without loss of generality, we have

kn = 2nπ

N
+ θn. (A24)

For the general case (n 
= N and N/2), Eq. (A9) becomes

sin (φn + θnN ) = sin �n, (A25)

where

tan φn = 1 + μν

1 − μν
tan

2nπ

N
, (A26)

and we define

�n = arcsin
(μ + ν) sin 2nπ

N√
(1 + μ2ν2) − 2μν cos 4nπ

N

. (A27)

We notice that φn is always real. Then the complex kn arises
from the complex θn, leading to∣∣∣∣∣∣

(μ + ν) sin 2nπ
N√

(1 + μ2ν2) − 2μν cos 4nπ
N

∣∣∣∣∣∣ > 1, (A28)

which is reduced to

sin2 2nπ

N
>

(μν − 1)2

(μ − ν)2 . (A29)

We find that the most fragile energy level is n = N/4, so the
complex energy levels start to appear if

(1 − ν)(1 − μ) < 0, (A30)

which is the appearance condition of the complex levels. The
most stable energy level is n = 1 or N − 1, so all the N − 2
energy levels turn to be complex at

sin2 2π

N
= (μν − 1)2

(μ − ν)2 . (A31)

We define the proportion of the complex level as the ratio

g(μ, ν) = NC(μ, ν)

N
, (A32)

where NC is number of the complex levels. In the large-N
limit, sin2(2π/N ) → 0, then we have

g(μ, ν) =
⎧⎨
⎩

0, μ, ν � 1, or μ, ν � 1
(π − 2kc)/π, μ > 1 > ν, or μ < 1 < ν

1, μν = 1
,

(A33)

with kc = | arcsin[(1 − μν)/(ν − μ)]|. This expression
clearly shows that g(μ, ν) is nonanalytical at three curves
μ = 1, ν = 1, and μν = 1.

At last, for n = N or N/2, Eq. (A9) is reduced to

tan θN = (1 − μν) sin (θN N )

μ + ν − (1 + μν) cos (θN N )
. (A34)

θN is either real for some configuration of (μ, ν) or complex
with ReθN = π (0). For the second case, we take

θN = π + iε or iε, (A35)

which corresponds to the real energy level but a localized
state. The decay rate and energy can be obtained from ε,
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which obeys another transcending equation:

tan (iφ) = (μν − 1) sin (Niε)

(1 + μν) cos (iNε) − (μ + ν)
. (A36)

3. Energy levels

Next we will show that for a fixed n, Eq. (A25) must have
a pair of solutions (θn, θn) leading to a pair of (kn, kn). We
discuss this in the following cases.

(i) Real energy levels. In this case we have

θnN = �n − φn

θnN = π − �n − φn, (A37)

and accordingly,

kn = 2nπ

N
+ θn, kn = 2nπ

N
+ θn, (A38)

for n < N/2. On the other hand, for the energy level N − n,
we have

tan φN−n = −1 + μν

1 − μν
tan

2nπ

N
, (A39)

which means

φN−n = 2π − φn, (A40)

in comparison with Eq. (A26). Furthermore, from

sin (φN−n + θN−nN ) = sin �N−n, (A41)

we get θN−n and θN−n in the form of

θN−nN = π − �N−n − φN−n = −θnN

θN−nN = 2π + �N−n − φN−n = −θnN (A42)

and

kN−n = 2π − kn

kN−n = 2π − kn. (A43)

The corresponding energy levels satisfy εN−n = εn = 2 cos kn

and εN−n = εn = 2 cos kn. In summary, if kn (n < N
2 ) is real

and

kn = 1

N
[2nπ + �n − φn], (A44)

with εn there must exist another

kn′ = 1

N
[(2n′ + 1)π − �n′ − φn′], (A45)

with n′ = N − n and εn′ = εn. We see that kn is a monotonic
function except at the point μ = ν = 1. Thus the real energy
levels are nondegenerate. The corresponding eigenstate has
time-reversal symmetry since the wave function is real.

(ii) Complex energy levels. In this case, we have sin(φn +
θnN ) > 1. The reality of sin(φn + θnN ) requires that θn must
be complex since φn is real. The two solutions of Eq. (A25)
are

θnN = �n − φn

θnN = (�n)∗ − φn (A46)

and, accordingly,

kn = 2nπ

N
+ θn

kn = 2nπ

N
+ θn, (A47)

and the corresponding energy is εn = 2 cos(2nπ/N + θn) and
εn = 2 cos(2nπ/N + θn). This indicates that

εn = (εn)∗, (A48)

i.e., the complex energy levels always come in pairs, and two
energy levels coalesce when θn = θn. On the other hand, for
the energy level N − n, we have

φN−n = 2π − φn, (A49)

which leads to

θN−nN = �N−n − φN−n = −θnN − 2π

θN−nN = (�N−n)∗ − φN−n = −θnN − 2π (A50)

and

kN−n = 2π − kn − 2π

N

kN−n = 2π − kn − 2π

N
. (A51)

This indicates that the corresponding energy levels obey
ImkN−n = Imkn = −Imkn, εN−n ≈ εn, εN−n ≈ εn for a large
N limit.

In summary, if kn (n < N
2 ) is complex and

kn = 1

N
[2nπ + �n − φn], (A52)

with εn there must exist another,

kn′ = 1

N
[2n′π + (�n′ )∗ − φn′], (A53)

with n′ = N − n and εn′ = εn. We note that the correspond-
ing eigenstate breaks time-reversal symmetry since the wave
function is complex.

4. Center of mass

We still estimate the CoM in the following cases;
(i) Real energy levels. In this case, the eigenstate with real

kn has the form

∣∣ψn
R

〉 = 1√
�n

N∑
l=1

sin (knl + αn)|l〉, (A54)

where

αn = tan
cn

sn

and �n = ∑N
l=1 sin2 (knl + αn) is the Dirac normalization

factor. Then the CoM of the eigenstate |ψn
R〉 is

〈
rR

c

〉
n = 1

N

N∑
l=1

l
〈
ψn

R

∣∣c†
l cl

∣∣ψn
R

〉

= 1

N�n

N∑
l=1

l sin2 (lkn + αn). (A55)
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Taking the approximation kn ≈ 2nπ/N , together with the
identities

N∑
l=1

l sin2 (lkn + αn) ≈ N2

4
− N sin (kn + 2αn)

4 sin kn

N∑
l=1

sin2 (lkn + αn) ≈ N

2
− cos ((1 + N )kn + 2αn)

2 sin kn csc (knN )
,

(A56)

we have 〈
rR

c

〉
n ≈ 1

2 , (A57)

which shows that all |ψn
R〉 have the same CoM, located at the

center of the lattice.
(ii) Complex energy levels. In this case, the eigenstates of

the conjugate pair are expressed as

|ψn
+〉 = 1√

�n

N∑
l=1

sin (knl + αn)|l〉, (A58)

|ψn
−〉 = 1√

�n

N∑
l=1

sin(k∗
n l + α∗

n )|l〉. (A59)

Similarly, the corresponding CoMs, defined as

〈r±
c 〉n = 1

N

N∑
l=1

l〈ψ±|c†
l cl |ψ±〉, (A60)

are identical with each other,

〈r+
c 〉n = 〈r−

c 〉n = 〈rc〉n, (A61)

since |ψn
+〉 and |ψn

−〉 have the same distributions of Dirac
probability. According to Eq. (A12), we have

N∑
l=1

|sin (knl + αn)|2

≈ 1

2
cosh(kI + kIN + 2αI )csch(kI ) sinh(kIN ) (A62)

and

N∑
l=1

l|sin (knl + αn)|2

≈ 1

8
csch2kI

n

(
cosh 2αI

n − (1 + N ) cosh
[
2
(
k I

n N + αI
n

)]
+ N cosh

[
2
(
kI

n + kI
nN + αI

n

)])
, (A63)

where

kR
n = Rekn, k I

n = Imkn,

αR
n = Reαn, αI

n = Imαn. (A64)

Finally, we get

〈rc〉n ≈ N−1 cosh
(
2αI

n

) − cosh
[
2
(
kI

nN + αI
n

)] + cosh
[
2
(
kI

n + k I
n N + αI

n

)]
4 cosh

(
k I

n + kI
nN + 2αI

n

)
sinh

(
kI

nN
)

sinh
(
kI

n

) , (A65)

which indicates that the CoM of the complex level has a
distribution from 0 to 1.

For the special case with μν = 1, and μ > 1 > ν (or μ <

1 < ν), it is readily obtained that

〈rc〉n ≈ 1

( N
√

ν2 − 1)N
+ 1

1 − ν2
(A66)

in a large-N limit which is independent of n.

5. Current

We now turn to the current of eigenstate, which is defined
as

Jn
l = −i〈(c†

l cl+1 − H.c.)〉n

= −i
((

f l
n

)∗
f l+1
n − (

f l+1
n

)∗
f l
n

)
. (A67)

According to Eq. (A12), for the eigenstates with real kn, we
always have

Jn
l = 0. (A68)

In contrast, for the eigenstates with complex kn, we have

Jn
l = −i[sin(k∗

n l + α∗
n ) sin(knl + αn + kn)

− sin(k∗
n l + k∗

n + α∗
n ) sin (knl + αn)]. (A69)

Taking a trigonometric transformation and an approximation
sinh(kI

n) ≈ 0, one can obtain

Jn
l ≈ − sin

(
kR

n

)
sinh

(
2k I

n l + 2αI
n + kI

n

)
.

We see that the current with k∗
n is (Jn

l )∗ = −Jn
l , i.e., the sum

current of a conjugate pair always vanishes. We introduce the
concept of the average staggered current,

J = −2i

N

N/2∑
n=1

(−1)n

〈
N∑

l=2

(c†
l cl+1 − H.c.)

〉
n

, (A70)

which is nonzero for the band containing complex levels. A
direct derivation yields〈

N∑
l=2

(c†
l cl+1 − H.c.)

〉
n

= −i sin
(
kR

n

)
csch

(
k I

n

)
sinh

(
kI

nN
)

sinh
(
2kI

n + 2αI
n+NkI

n

)
(A71)

for large N . The average staggered current has the form

J = − 2

N

N/2∑
n=1

(−1)n sin
(
k R

n

)
csch

(
kI

n

)
× sinh

(
kI

nN
)

sinh
(
2kI

n + 2αI
n + NkI

n

)
. (A72)
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For the special case with μν = 1, in the large-N limit it is
readily obtained that

J ≈ 4

π
. (A73)

In summary, we have

J =
⎧⎨
⎩

0, μ, ν � 1, or μ, ν � 1

= 0, otherwise
4/π, μν = 1

, (A74)

which has the implication that J can characterize the phase
transitions.
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