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Floquet theory combined with the generalized Van Vleck nearly degenerate perturbation theory has been
widely employed for studying various two-level systems that are driven by external fields via time-dependent lon-
gitudinal (i.e., diagonal) couplings. However, three-level systems strongly driven by time-dependent transverse
(i.e., off-diagonal) couplings have rarely been investigated, due to the breakdown of the traditional rotating wave
approximation. Meanwhile, the conventional perturbation theory is not directly applicable, since a small param-
eter for the perturbed part is no longer apparent. Here we develop a double-unitary-transformation approach to
deal with periodically modulated and strongly driven systems, where the time-dependent Hamiltonian has large
off-diagonal elements. The first unitary transformation converts strong off-diagonal elements to diagonal ones,
and the second enables us to harness the generalized Van Vleck perturbation theory to deal with the transformed
Floquet matrix and also allows us to reduce the infinite-dimensional Floquet Hamiltonian to a finite effective one.
For a strongly modulated three-level system, with the combination of the Floquet theory and the transformed
generalized Van Vleck perturbation theory, we obtain analytical results of the system, which agree well with
exact numerical solutions. This method offers a useful tool to analytically study multilevel systems with strong
transverse couplings.
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I. INTRODUCTION

Strongly driven quantum systems have attracted consid-
erable attention during the past two decades [1]. In particu-
lar, the development of ultrastrong laser and maser systems
opens the doorway for light-matter interactions in the strong-
and ultrastrong-coupling regimes. Experimentally, strongly
driven two-level systems with a Rabi frequency comparable
to or larger than the transition frequency have been realized
in a flux qubit [2–4], where the driving strength reaches
4.78 GHz, larger than the transition frequency 2.288 GHz. In
fact, strongly driven systems introduce not only many novel
phenomena but also the development of fast quantum logic
gates, which is of great importance in quantum computation
and quantum communication [5,6]. In general, strongly driven
systems require strong or ultrastrong coupling between the
system and the driving field.

Combined with the modulation, the strongly driven quan-
tum systems exhibit even more interesting phenomena [7–15],
such as the coherent destruction of tunneling [16], driving-
induced tunneling oscillations [17], the suppression of mul-
tiphoton resonances [18], and localization and transport in a
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strongly driven two-level system [19]. Moreover, periodically
toggling a two-level qubit significantly suppresses its deco-
herence [20–22] and periodically driving a many-body system
offers a powerful tool for coherent manipulation [23–25]. For
these systems, though the time-dependent quantum Hamil-
tonian can generate a variety of novel phenomena that are
inaccessible for ordinary systems, theoretical challenges arise
because many conditional tools such as perturbation theory
and the rotating-wave approximation cannot be directly ap-
plied [8,26], resulting in a complex dynamics that is difficult
to analyze [27].

Floquet theory is a powerful tool to deal with a periodic
time-dependent Hamiltonian, by converting it to an equivalent
infinite-dimensional Floquet Hamiltonian in the quasilevel
space [28,29]. This method has been widely employed in
many driven quantum systems, for couplings from weak to
strong in either transverse (off-diagonal) or longitudinal (di-
agonal) form [30]. Although numerical results are available
by diagonalizing the large-dimensional Floquet Hamiltonian,
analytical results under a certain approximation are also de-
sired. The generalized Van Vleck (GVV) nearly degenerate
perturbation theory is such an analytical method to reduce the
large-dimensional Floquet Hamiltonian to a few-dimensional
one and to derive the analytical results. In the framework
of the Floquet theory, the two-level systems that interact

2469-9926/2020/101(2)/022108(12) 022108-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.022108&domain=pdf&date_stamp=2020-02-18
https://doi.org/10.1103/PhysRevA.101.022108


HAN, LUO, LI, AND ZHANG PHYSICAL REVIEW A 101, 022108 (2020)

with the external fields via diagonal time-dependent couplings
have been extensively explored [17,31–34]. For the two-level
systems interacting through off-diagonal time-dependent cou-
plings, the combined Floquet and GVV theory was studied
only in the weak driving regime [28,34,35]. Despite its wide
applications in the two-level systems, the traditional Floquet
and GVV theory has rarely been explored in three-level sys-
tems even in the weak-coupling regime [26].

In this paper, we present the generalized formalism of
double unitary transformation (DUT), which makes it pos-
sible to employ again the GVV perturbation theory to solve
strongly off-diagonal driven systems. Then we give two ex-
amples, one for a two-level system and another for a three-
level system. Here we focus on the three-level system. We
combine Floquet and GVV theory to theoretically investigate
a �-type three-level system strongly driven by two square-
wave modulated and off-diagonal coupling fields, which can
induce the experimentally observed modulational diffraction
effect in a superconducting qutrit [36]. Application of the
two unitary transformations leads us to use again the GVV
perturbation theory and to derive the analytical results. For
the numerical calculations, we extend the generalized Floquet
formalism to the strongly driven three-level system and obtain
nonperturbative results. Comparisons between the analytical
and numerical results justify the validity of the predictions
from the combined Floquet and GVV theory. This combined
theory can be extended to other strongly driven multilevel
systems and provides a useful tool to deal with quantum
systems in the strongly driven regime.

The paper is organized as follows. In Sec. II, we present
the formalism of DUT. In Sec. III, we present the application
of DUT in a two-level system. In Sec. IV, combining DUT,
Floquet, and GVV perturbation theory, we provide the nu-
merical and analytical solutions of a periodically modulated
three-level system. We also show the quantum coherence
fringes due to the modulation induced diffraction effect in the
excited-state transition probability. We give conclusions and
discussions in Sec. V.

II. THE FORMALISM

We propose a DUT scheme to analyze a strongly off-
diagonal driven system, so that we can further apply the
perturbation theory to the system. In this section, we present
the general formalism that illustrates in a simple manner
the essence of the DUT. In principle, the time-dependent
Hamiltonian of a periodically driven system is

Ĥ (t ) = Ĥ0 + V̂ (t ), (1)

where

V̂ (t ) = V̂ (t + τ ), (2)

with τ the modulation period. Here we assume that the
time-dependent term V̂ (t ) has large off-diagonal elements
compared with Ĥ0, which defines the strong driving regime
and makes it difficult to describe the system analytically. Note
that the V̂ (t ) includes not only a large component but also a

small one, i.e.,

V̂ (t ) = AV̂L(t ) + ξV̂S (t ), (3)

with A � ξ . V̂L(t ) commute with each other at different times,
i.e., [V̂L(t ), V̂L(t ′)] = 0. We use the first unitary transformation
to transfer AV̂L(t ) to the diagonal, i.e.,

Ĥ1(t ) = Û †
1 H (t )Û1

= Ĥ ′
0 + AV̂ ′

L(t ) + ξV̂ ′
S (t ), (4)

where Ô′ = Û †
1 ÔÛ1, with Ô ∈ {Ĥ0, V̂L, V̂S} and AV̂ ′

L(t ) the di-
agonal matrix. After the first transformation, the off-diagonal
elements of Ĥ1(t ) become small. In principle, the unitary
matrix Û1 is system dependent, which can be realized by
having the eigenvectors of the system driven by a strong field.
Obviously, the first unitary transformation is not necessary for
a strong longitudinal (diagonal) modulation.

The second unitary transform is designed to remove the
time dependence of the diagonal terms in Ĥ1(t ) [37]. This can
be realized in the interaction picture by

Û2(t ) = T exp

[
−i

∫ t

0
AV̂ ′

L(t ′)dt ′
]
, (5)

where T denotes the forward-time ordering and hereafter
we set h̄ = 1. This transformation Eq. (5) has also been
employed to estimate the effective tunneling matrix elements
of periodically driven many-body systems [23,24]. Then the
transformed Hamiltonian becomes

Ĥ2(t ) = Û †
2 (t )Ĥ1(t )Û2(t ) − iÛ †

2 (t )
∂Û2(t )

∂t
. (6)

We require that the Hamiltonian Ĥ2(t ) has large and time-
independent diagonal terms but small and time-dependent
off-diagonal ones. Thus we can define the diagonal terms as
the unperturbed part. In fact, a similar idea has already been
discussed in many-body systems [25]. Starting from Eq. (6),
we further combine the Floquet theory and the nearly degener-
ate perturbation theory, to solve the problem analytically [29].
Below we illustrate the DUT method in detail by presenting
two examples, one for a two-level system and another for a
three-level system.

III. PERTURBATIVE SOLUTION FOR
A TWO-LEVEL SYSTEM

We consider a two-level system with a strong off-diagonal
coupling. A strong field couples the two states with a time-
dependent Rabi frequency ε(t ). The Hamiltonian is written as

Ĥ (t ) = −1

2

(−� ε(t )
ε(t ) �

)
, (7)

where

ε(t ) = ε0 + A cos(ωt ). (8)

Here the modulation period is τ = 2π/ω and the detuning is
small � � A. The coupling strength ε(t ) between those two
basis states is time dependent, where the bias consists of a dc
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component ε0 and a cosine modulation with a large amplitude
A and an angular frequency ω.

By employing a rotation along the y direction, strong off-
diagonal elements can be easily transformed to diagonal ones,
and thus the first unitary transformation is

Û1 = exp
(
−i

π

4
σ̂y

)
, (9)

where σ̂y is a Pauli matrix. The Hamiltonian after the transfor-
mation is

Ĥ1(t ) = −1

2

(
ε(t ) �

� −ε(t )

)
, (10)

which has been studied extensively [32,34,38–40]. Clearly,
the first unitary transformation converts a transversely driven
system to a longitudinally driven one. Many useful results
in the longitudinally driven systems can be applied directly.
According to Eq. (4), the time-dependent diagonal matrix with
large elements in Eq. (10) is

AV̂ ′
L(t ) =

(−A
2 cos(ωt ) 0

0 A
2 cos(ωt )

)
. (11)

Then,

Û2(t ) = T exp

(
−i

∫ t

0

−A

2
cos(ωt ′)σ̂zdt ′

)
(12)

= exp

(
i

A

2ω
sin(ωt )σ̂z

)
.

The final Hamiltonian after the DUT becomes

Ĥ2(t ) = 1

2

⎛
⎝ −ε0 −�

∑
n

J ′
ne−inωt

�
∑
n

J ′
neinωt ε0

⎞
⎠,

(13)

where J ′
n = Jn(A/ω) and we have used

exp

(
i
A

ω
sin(ωt )

)
=

∞∑
n=−∞

J ′
neinωt . (14)

As discussed in Sec. II, strong off-diagonal elements with A
now turn into weak off-diagonal elements J±(A/ω) by the
DUT, because a larger A gives rise to a smaller value of
J±(A/ω). This Hamiltonian is exactly the same as in Ref. [34],
but the derivation is now much simpler. We can obtain the
same analytical solution by further harnessing the Floquet
theory and the GVV perturbation theory, as done in Ref. [34]:

ρ11 =
∞∑

n=−∞

1

2

(�J ′
n)2

(�J ′
n)2 + (nω − ε0)2

, (15)

where ρ11 is the time-averaged probability of state |1〉 with
only the first-order perturbation.

IV. NUMERICAL AND PERTURBATIVE SOLUTION FOR A
STRONGLY DRIVEN THREE-LEVEL SYSTEM

As a second example, we consider a generalized �-type
three-level system shown in Fig. 1(a). A weak probe field
couples the ground state |0〉 and the first excited state |1〉 with
a Rabi frequency �p and a detuning �. A strong control field

resonantly couples the excited states |1〉 and |2〉 with a Rabi
frequency �c. The transition between states |0〉 and |2〉 is
forbidden. The control and probe fields are complementarily
modulated in a square wave form with a period τ as shown
in Fig. 1(b), which are the same as in the double-modulation
case studied in Ref. [41].

A. Numerical solution

By decomposing the square-wave modulated fields into
many Fourier components, the effective time-dependent
Hamiltonian of the modulated three-level system is explicitly
given as

Ĥ (t ) =

⎛
⎜⎜⎝

−�
2 −�p

4 + �p(t ) 0

−�p

4 + �p(t ) �
2 −�c

4 + �c(t )

0 −�c
4 + �c(t ) �

2

⎞
⎟⎟⎠,

(16)
where

�p(t ) =
∞∑

n=1

(−1)n�pn cos(ωnt ), (17)

�c(t ) =
∞∑

n=1

(−1)n+1�cn cos(ωnt ), (18)

with

�pn = �p

(2n − 1)π
, �cn = �c

(2n − 1)π
, (19)

ωn

2π
= 2n − 1

τ
, n = 1, 2, 3, . . . . (20)

Clearly, the three-level system is driven by two polychromatic
fields and the Rabi frequencies are �pn and �cn for the
frequency component ωn. Here we focus on the near- and
on-resonance cases. The Hamiltonian in Eq. (16) is expressed
in the dressed-state basis [42] |α̃〉, α = 0, 1, 2.

The Floquet theory provides an exact formulation for the
time-periodic problems, as well as a combined picture for the
three-level system and the two fields by using quasilevels [43].
According to the Fourier expansion theorem [44], the periodic
Hamiltonian Ĥ (t ) in Eq. (16) has Fourier components of nω

with ω = 2π/τ :

Ĥ (t ) =
∞∑

n=−∞
Ĥ [n] exp(−inωt ), (21)

where Ĥ [n] are Fourier coefficients and can be spanned by the
Floquet-state nomenclature [28,34], i.e., |α̃, n〉 with α being
the index of the system and the integer n ∈ [−∞,∞] being
the index of the quasilevels. Then the elements of the infinite-
dimensional Floquet matrix ĤF are defined by [34]

〈αn|ĤF |βm〉 = Ĥ [n−m]
αβ + nωδαβδnm, (22)
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and the block structure of ĤF is

ĤF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . .

.

· · · Ĥ [0] − 2ω Ĥ [−1] Ĥ [−2] Ĥ [−3] Ĥ [−4] · · ·
· · · Ĥ [1] Ĥ [0] − ω Ĥ [−1] Ĥ [−2] Ĥ [−3] · · ·
· · · Ĥ [2] Ĥ [1] Ĥ [0] Ĥ [−1] Ĥ [−2] · · ·
· · · Ĥ [3] Ĥ [2] Ĥ [1] Ĥ [0] + ω Ĥ [−1] · · ·
· · · Ĥ [4] Ĥ [3] Ĥ [2] Ĥ [1] Ĥ [0] + 2ω · · ·
. .

. ...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

The Floquet matrix ĤF is then diagonalized:

ĤF |γ l〉 = qγ l |γ l〉, (24)

where qγ l is a quasilevel eigenvalue and |γ l〉 is the corresponding eigenvector.
According to Eq. (23), the Floquet matrix for the time-dependent Hamiltonian in Eq. (16) is given as follows:

ĤF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

−�
2 − ω

−�p

4 0 0 −�p1

2 0 0 0 0

· · · −�p

4
�
2 − ω −�c

4
−�p1

2 0 �c1
2 0 0 0 · · ·

0 −�c
4

�
2 − ω 0 �c1

2 0 0 0 0

0 −�p1

2 0 −�
2

−�p

4 0 0 −�p1

2 0

· · · −�p1

2 0 �c1
2

−�p

4
�
2

−�c
4

−�p1

2 0 �c1
2 · · ·

0 �c1
2 0 0 −�c

4
�
2 0 �c1

2 0

0 0 0 0 −�p1

2 0 −�
2 + ω

−�p

4 0

· · · 0 0 0 −�p1

2 0 �c1
2

−�p

4
�
2 + ω −�c

4 · · ·
0 0 0 0 �c1

2 0 0 −�c
4

�
2 + ω

. .
. ...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← |0̃,−1〉
← |1̃,−1〉
← |2̃,−1〉
← |0̃, 0〉
← |1̃, 0〉
← |2̃, 0〉
← |0̃,+1〉
← |1̃,+1〉
← |2̃,+1〉

, (25)

where we only show the block matrices with light blue back-
ground in Eq. (23).

For a given initial state |α, 0〉, by truncating the number of
the Floquet blocks with a cutoff number nc and diagonalizing
the matrix numerically, the time-averaged transition probabil-
ity from |α〉 to |α′〉 can be calculated:

T̄α→α′ =
n=nc∑

n=−nc

l=nc∑
l=−nc

∑
γ={0̃,1̃,2̃}

|〈α′, n|γ l〉〈γ l|α, 0〉|2, (26)

which corresponds to the probability of finding the excited
state |α′〉 of the three-level system in the experiment, i.e.,
ρα′α′ . It is worthwhile to note that no approximation is made
in obtaining Eq. (25), so the numerical results are therefore
exact and can be applied to all parameter regimes, with either
weak or strong driving.

B. Perturbative solution

From the Hamiltonian in Eq. (25), we can see that some
off-diagonal terms (∼�c) may be larger than the diagonal
ones (∼�,ω), in the strong driving regime. The GVV theory
apparently fails for large off-diagonal terms. To overcome this

difficulty, we transform the strong off-diagonal terms (∼�c)
to the diagonal.

In the case of weak probe field �p, we may neglect at this
stage the state |0〉. The resonantly coupled states |1〉 and |2〉
become degenerate in the dressed-state basis [Fig. 1(c)] and
further split into the Autler-Townes doublet |P〉 and |Q〉 when
including the coupling �c [Fig. 1(d)] [45]. Note that here
the capital P is different from the lowercase p, which is the
index of the probe field. Fortunately, by adopting the coupled
dressed-state basis via a proper unitary transformation, i.e.,
|0̃〉, |P〉, and |Q〉 as shown in Fig. 1(d), the first unitary matrix
is given by

Û1 =

⎛
⎜⎜⎝

1 0 0

0 1√
2

−1√
2

0 1√
2

1√
2

⎞
⎟⎟⎠. (27)

Then the original Hamiltonian in Eq. (16) becomes

Ĥ1(t ) =
⎛
⎝ −�

2 B(t ) −B(t )
B(t ) �

2 − �c
4 + �c(t ) 0

−B(t ) 0 �
2 + �c

4 − �c(t )

⎞
⎠,

(28)
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(d)(c)(c)(b)(b)

FIG. 1. Schematic of the quasilevels of the modulated three-level system. (a) A qutrit with a resonant control-field coupling between states
|1〉 and |2〉 and with a �-detuned probe-field coupling between states |0〉 and |1〉. (b) Schematic of modulation, where the control and probe
fields are modulated in a complementary square-wave form with a period τ . A strong control field with Rabi frequency �c splits (c) the
degenerate dressed states |1̃〉 and |2̃〉 into (d) Autler-Townes doublets |P〉 and |Q〉. Under modulation in (b), the state |P〉 or |Q〉 further splits
into (e) many equally spaced quasilevels, which couple in a mirror symmetry within the subspace |P, n〉 or |Q, m〉 with m and n being integers.
(f) The positions of the quasilevels are kept untouched after the second unitary transformation, due to the mirror-symmetric coupling. (g)
Besides the time-domain interference, the time-domain diffraction appears by sweeping the detuning of the probe field.

where

B(t ) = −�p/4
√

2 + �p(t )/
√

2. (29)

According to Eq. (4), the time-dependent diagonal matrix in
Eq. (28) is

AV̂ ′
L(t ) =

⎛
⎜⎝

0 0 0

0 �c(t ) 0

0 0 −�c(t )

⎞
⎟⎠. (30)

Here the large number is �c (i.e., A = �c). In Eq. (30), the
strong off-diagonal terms (∼�c) have been shifted to the
diagonal ones and the schematics of Floquet states |P, n〉
and |Q, n〉 are shown in Fig. 1(e). We find that there are
only internal “mirror”-symmetry couplings between Floquet
states |P, n〉 and |P, n′〉 (or between |Q, n〉 and |Q, n′〉),
but without cross couplings between |P, n〉 and |Q, n′〉 (see
Appendix A).

The second unitary transformation can be obtained
directly as

Û2(t ) = T exp

[
−i

∫ t

0
AV̂ ′

L(t ′)dt ′
]

=
⎛
⎝1 0 0

0 UP(t ) 0
0 0 UQ(t )

⎞
⎠, (31)
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where

UP(t ) =
∞∑

n=−∞

∞∑
l=−∞

· · ·
∞∑

g=−∞
Jn

(−�c

ωπ

)
Jl

(
�c

9ωπ

)
· · · Jg

(
(−1)q�c

(2q − 1)2ωπ

)
ei[n+3l+···+(2q−1)g]ωt

=
∞∑

n=−∞

∞∑
l=−∞

· · ·
∞∑

g=−∞
Jn−3l−···−(2q−1)g

(−�c

ωπ

)
Jl

(
�c

9ωπ

)
· · · Jg

(
(−1)q�c

(2q − 1)2ωπ

)
einωt ,

UQ(t ) =
∞∑

n=−∞

∞∑
l=−∞

· · ·
∞∑

g=−∞
Jn

(
�c

ωπ

)
Jl

(−�c

9ωπ

)
· · · Jg

(
(−1)q+1�c

(2q − 1)2ωπ

)
ei[n+3l+···+(2q−1)g]ωt

=
∞∑

n=−∞

∞∑
l=−∞

· · ·
∞∑

g=−∞
Jn−3l−···−(2q−1)g

(
�c

ωπ

)
Jl

(−�c

9ωπ

)
· · · Jg

(
(−1)q+1�c

(2q − 1)2ωπ

)
einωt . (32)

The Hamiltonian Ĥ1(t ) in the interaction picture becomes

Ĥ2(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�
2

∞∑
n=−∞

�P
n einωt

∞∑
n=−∞

�Q
n einωt

∞∑
n=−∞

�P
n e−inωt �

2 − �c
4 0

∞∑
n=−∞

�Q
n e−inωt 0 �

2 + �c
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

where

�P
n = �p

∞∑
l=−∞

· · ·
∞∑

g=−∞

{ −1

4
√

2
Jn−3l−···−(2q−1)g

(−�c

ωπ

)
+

∞∑
j=1

(−1) j

2
√

2(2 j − 1)π

[
Jn−3l−···−(2q−1)g+(2n+1)

(−�c

ωπ

)

+ Jn−3l−···−(2q−1)g−(2n−1)

(−�c

ωπ

)]}
Jl

(
�c

9ωπ

)
· · · Jg

(
(−1)q�c

(2q − 1)2ωπ

)
,

�Q
n = �p

∞∑
l=−∞

· · ·
∞∑

g=−∞

{
1

4
√

2
Jn−3l−···−(2q−1)g

(
�c

ωπ

)
+

∞∑
j=1

(−1) j+1

2
√

2(2 j − 1)π

[
Jn−3l−···−(2q−1)g+(2n+1)

(
�c

ωπ

)

+ Jn−3l−···−(2q−1)g−(2n−1)

(
�c

ωπ

)]}
Jl

(−�c

9ωπ

)
· · · Jg

(
(−1)q+1�c

(2q − 1)2ωπ

)
. (34)

Same as Eq. (25), the Floquet matrix of Eq. (33) is

Ĥ ′
F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

�0
−1 �P

0 �
Q
0 0 �P

1 �
Q
1 0 �P

2 �
Q
2

· · · �P
0 �P

−1 0 �P
−1 0 0 �P

−2 0 0 · · ·
�

Q
0 0 �

Q
−1 �

Q
−1 0 0 �

Q
−2 0 0

0 �P
−1 �

Q
−1 �0

0 �P
0 �

Q
0 0 �P

1 �
Q
1

· · · �P
1 0 0 �P

0 �P
0 0 �P

−1 0 0 · · ·
�

Q
1 0 0 �

Q
0 0 �

Q
0 �

Q
−1 0 0

0 �P
−2 �

Q
−2 0 �P

−1 �
Q
−1 �0

1 �P
0 �

Q
0

· · · �P
2 0 0 �P

1 0 0 �P
0 �P

1 0 · · ·
�

Q
2 0 0 �

Q
1 0 0 �

Q
0 0 �

Q
1

. .
. ...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← |0̃,−1〉
← |P̃,−1〉
← |Q̃,−1〉
← |0̃, 0〉
← |P̃, 0〉
← |Q̃, 0〉
← |0̃,+1〉
← |P̃,+1〉
← |Q̃,+1〉

(35)

where

�0
n = −�

2
+nω, �P

n = �

2
− �c

4
+nω, �Q

n = �

2
+ �c

4
+ nω.

Here the basis is Floquet states |0̃, n〉, |P̃, n〉, and |Q̃, n〉.

Note that, compared to Fig. 1(e), in the interaction picture,
there is no internal coupling proportional to �c between the
Floquet states |P̃, n〉 and |P̃, n′〉 (or between |Q̃, n〉 and |Q̃, n′〉)
in Eq. (35), as shown in Fig. 1(f). Also, the energies of the
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quasilevels in Fig. 1(f) are the same as in Fig. 1(e). However,
the eigenstates are reorganized, which makes the couplings
between the Floquet states |P̃, n〉 and |P̃, n′〉 (or between
|Q̃, n〉 and |Q̃, n′〉) disappear. From the matrix structure of
Ĥ ′

F in Eq. (35), one sees that |0̃, 0〉 couples weakly to |P̃, n〉
(|Q̃, m〉) via an off-diagonal term of �P

n (�Q
m) as shown in

Fig. 1(g). This weak coupling validates the GVV method
again and the perturbation parameter is �p. By tuning the
frequency of the probe field, the Floquet states |0̃, 0〉 can
become nearly degenerate with |P̃, n〉 (or |Q̃, m〉), namely,
−�/2 ≈ �P

n (or −�/2 ≈ �Q
m). Following the standard GVV

method and to the first order, Eq. (35) is reduced to a 3 × 3
matrix by simply neglecting all other coupling terms:

ĤGRWA =

⎛
⎜⎜⎝

−�
2 �P

n �Q
m

�P
n �P

n 0

�Q
m 0 �Q

m

⎞
⎟⎟⎠, (36)

where the bases are |0̃, 0〉, |P̃, n〉, and |Q̃, m〉. Here the results
of the generalized rotating wave approximation (GRWA) are
exactly the same as that of the first-order GVV perturbation.
Note that the effective transverse couplings �P

n and �Q
m in

Eq. (34) oscillatingly decrease as �c increases.
To go beyond the GRWA, we include all coupling chan-

nels and keep the second-order terms according to the GVV
method (see Appendix B):

ĤGVV =

⎛
⎜⎜⎝

−�
2 + δ0 �P

n �Q
m

�P
n �P

n + δP δPQ

�Q
m δPQ �Q

m + δQ

⎞
⎟⎟⎠, (37)

where

δP =
∞∑

k = −∞
k �= n

(
�P

k

)2

� − �c/4 + kω
, (38)

δQ =
∞∑

k = −∞
k �= m

(
�

Q
k

)2

� + �c/4 + kω
, (39)

δPQ = 1

2

∞∑
k = −∞

k �= m

�
Q
k �P

m−n+k

� + �c/4 + kω

+ 1

2

∞∑
k = −∞

k �= n

�P
k �

Q
n−m+k

� − �c/4 + kω
, (40)

δ0 = −δP − δQ, (41)

which result from the second-order corrections of the nonde-
generate quasilevels. In fact, δ0,P,Q is the Stark shift and δPQ

is the effective coupling between the states |P̃, n〉 and |Q̃, m〉.
All higher-order terms have been neglected.

Let us now investigate the off-diagonal elements of the
GVV Hamiltonian in Eq. (37). From Eq. (34), we notice that
�P

n is proportional to �p and expressed by a series of Bessel
functions with �c/ω being the argument. In Fig. 2, we present
�P

n and �Q
m as a function of �c/ω for different n and m with

-0.02

-0.01

0

0.01
n=2n=1n=0n=-1n=-2 (a)

nP
 / 

5 10 15 20 25
-0.01

0

0.01

0.02

m=-2m=-1m=0m=1m=2

(b)

c
 / 

mQ
 / 

FIG. 2. Dependence of �P
n (a) and �Q

m (b) on the strong control
field coupling strength �c with a probe field coupling strength
�p/ω = 0.12.

a fixed parameter �p/ω = 0.12. We observe the translation
invariance relation for different n’s or m’s, i.e.,

�P
n

(
�c

ω

)
= �P

0

(
�c

ω
− 4n

)
,

�Q
m

(
�c

ω

)
= �

Q
0

(
�c

ω
+ 4m

)
. (42)

By substituting the resonance conditions −�/2 = �P
n and

�Q
m, we have |�P

n |2 = |�Q
m|2 = |�(α)|2, with α = �τ/4, and

the function |�(α)|2 = sin2(α)/α2 being the diffraction func-
tion [36].

Figure 3 shows the behaviors of the diagonal term δP,Q un-
der the same resonance conditions as above. As indicated by
Eqs. (38) and (39), δP and δQ are proportional to perturbation
parameter �2

p, so much smaller than �P
n and �Q

m (proportional
to �p). Similar to �P

n and �Q
m, δP and δQ are also expressed

by many Bessel functions and are translationally invariant for
different n’s and m’s. Moreover, Fig. 4 shows the values of δPQ

at the three-level resonance points, i.e., −�/2 = �P
n = �Q

m.
Similar to δP,Q, δPQ is much smaller than �P

n and �Q
m. Note

that here we only show the values of δP,Q,PQ under resonance
conditions, because they become nearly zero at nonresonance
points.

The effective GVV Hamiltonian in Eq. (37) can be di-
vided into two standard two-level systems (i.e., |0̃, 0〉 ↔
|P̃, n〉 and |0̃, 0〉 ↔ |Q̃, m〉) except under some special three-
level resonance situations. Away from three-level resonances,
the time-averaged transition probability from |0〉 to |1〉 be-
comes [46,47]

ρ11 = 1

4

∞∑
n=−∞

(
2�P

n

)2

(
� − εP

n

)2 + (
2�P

n

)2

+ 1

4

∞∑
m=−∞

(
2�Q

m

)2

(
� − ε

Q
m
)2 + (

2�
Q
m
)2 , (43)

022108-7



HAN, LUO, LI, AND ZHANG PHYSICAL REVIEW A 101, 022108 (2020)
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-7.5

0

7.5
10-4

n=3n=2n=1n=0n=-1 (a)

P
 / 

(- +
c
/4) / 

n=-2
n=-3

2 4 6 8 10 12
-7.5

0

7.5
10-4

m=-3m=-2m=-1m=0m=1

( +
c
/4) / 

(b)

Q
 / 

m=2
m=3

FIG. 3. (a) Plot of the level shift δP under two-level resonance
conditions [i.e., obtained from Eq. (38) by setting � − �c/4 =
−nω]. The positions of the two-level resonance in (a) correspond
to the bright yellow fringes marked by n in Fig. 6. (b) Same as
(a) except for the level shift δQ under two-level resonance conditions
[i.e., obtained from Eq. (39) by setting � + �c/4 = −mω]. The
positions of the two-level resonance in (b) correspond to the bright
yellow fringes marked by m in Fig. 6.

where

εP
n = −�c/4 + nω + δP − δ0,

εQ
m = �c/4 + mω + δQ − δ0. (44)

2 4 6 8 10 12
-7.5

0

7.5
10-4

n=3 n=5n=1

(- +
c
/4) / 

P
Q

 / 

FIG. 4. Plot of δPQ under three-level resonance conditions [i.e.,
obtained from Eq. (40) by setting � − �c/4 = −nω and � +
�c/4 = −mω simultaneously]. Different from the positions of the
two-level resonance, which are the continuous fringes in Fig. 6,
the positions of the three-level resonance are the cross points of
the fringes in Fig. 6, which are obviously discrete. The probe field
coupling strength is �p/ω = 0.12.

-2

-1

0

1

2

Q
ua

si
en

er
gy

 / 

(a)(a)

-3 -2 -1 0 1 2 3
 / 

0

0.1

0.2

11

(b)

0

0.01

0.02

|
 (

)|
 / 

FIG. 5. (a) Quasienergies and (b) transition probabilities (blue
dashed line, left axis) and diffraction function |�(α)| (orange solid
line, right axis) as a function of the detuning � for �c/ω = 3 and
�p/ω = 0.12.

Obviously, Eq. (43) contains a series of Lorentzians with each
having a peak of 1/4. The peak value of 1/4 is reasonable
because at resonance ρ00 = ρPP = ρ11 + ρ22 = 1/2 (or ρ00 =
ρQQ). Therefore, ρ11 = ρ22 = 1/4. Equation (43) is the main
analytical result of this paper. By neglecting the second-order
terms δP,Q,PQ, one reaches the GRWA results

ρ11 = 1

4

∞∑
n=−∞

(
2�P

n

)2

(
� + �c/4 − nω

)2 + (
2�P

n

)2

+ 1

4

∞∑
m=−∞

(
2�Q

m

)2

(
� − �/4 − mω

)2 + (
2�

Q
m
)2 . (45)

In addition, we have ρ22 = ρ11, since |P〉 = (|1〉 + |2〉)/
√

2
and |Q〉 = (|2〉 − |1〉)/

√
2.

C. Comparisons and discussions

We plot in Fig. 5 the quasienergies and corresponding time-
averaged transition probabilities for �c/ω = 3, computed by
truncating the dimension of the Floquet matrix in Eq. (25)
to nc = 40 (i.e., Floquet matrix blocks run from −40 to
40). The Floquet states are |α, n〉 with α the system index
and n ∈ [−nc, nc]. For |α, n〉 with a given n, the solid lines
indicate lower Floquet states, the dashed lines indicate middle
Floquet states, and the dot-dashed lines indicate upper Floquet
states [34]. Due to the periodic modulation, the quasiener-
gies exhibit repeated structure by ω. We find some avoided
crossings, where the states are strongly mixed and resonant
transition between the two anticrossing levels occurs. These
are shown in Fig. 5(b) by the blue dashed line, which is the
time-averaged transition probability of state |1〉. One sees that
the maximal values of the peaks are the same [i.e., 1/4, see
also Eq. (43)]. However, the width of the peaks varies with
the increase of |�|. In fact, the width is related to the gap of
the anticrossings shown in Fig. 5(a), and both are determined
by the effective coupling 2|�(α)|, as indicated by Eq. (43).
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FIG. 6. Analytical results of ρ11 as a function of � and �c for
�p/ω = 0.12 [obtained from Eq. (43)].

In Fig. 5(b), we also plot the effective coupling |�(α)| as a
function of �, and further demonstrate that the width of the
peaks broadens as |�(α)| increases. Note that there are zeros
in |�(α)|, where the resonance “peaks” disappear.

We show a contour map of transition probability ρ11,
computed according to Eq. (26), as a function of � and �c

with �p/ω = 0.12 in Fig. 6. Multiphoton resonance processes
occur as the bright yellow fringes shown in the figure. In
addition, the peak positions of the fringes � = �c/4 + mω

and −�c/4 + nω also indicate that the transitions are multi-
photon resonance processes [48]. Note that the photon here
actually means a quasiphoton with energy ω. We find, at the
intersections of the interference fringes, that the highest value
of ρ11 is 1/3. This is because the three levels of the system
are strongly mixed at these intersections. Figure 6 for small
�p agrees well with previous experimental results in a super-
conducting transmon qutrit [36]. Interestingly, the resonance
transitions are suppressed at certain values of � (e.g., �/ω =

0

0.25 (a)

11

(a)

11

(a)

11

Numerical GVV GRWA

0 1 2 3
0

0.25 (b)

11

 / 

(b)

11

 / 

FIG. 7. Comparison of numerical results and analytic GRWA
[obtained from Eq. (45)] and GVV [obtained from Eq. (43)] results
of the transition probability ρ11 for various � with �p/ω = 0.12,
�c/ω = 3 (a) and �c/ω = 9.5 (b).

1 3 5 7
0

0.25

11

c
 /

Numerical
GVV
GRWA

FIG. 8. Same as Fig. 7 except for various �c with �p/ω = 0.12
and �/ω = 0.25.

±2), which are similar to the coherent destruction of tunneling
in two-level systems [16]. In fact, in our modulated three-level
system, these destructive interference points correspond to the
zeros of the diffraction function as the orange solid line shown
in Fig. 5(b).

In order to justify the validity of our analytic results, we
compare the numerical and analytic results by presenting
the transition probability of state |1〉 as a function of � in
Fig. 7. The numerical solutions are computed by solving the
243 × 243 Floquet matrix in Eq. (25). The analytical results
are obtained by directly solving the 3 × 3 matrix in Eqs. (36)
and (37). Figure 7(a) shows the results in the weak control
field case of �c/ω = 3 and Fig. 7(b) in the strong control field
case of �c/ω = 9.5. The higher-order GVV results are not
shown since they are almost coincident with the second-order
ones in the weak probe field regime. The analytic GVV and
GRWA results show very good agreement with the numerical
solutions in all regions we consider. In fact, the difference
between the GRWA and GVV is due to the level shift δ0,P,Q.
From Eqs. (38) and (39), one sees that δ0,P,Q are very small
since they all are proportional to the weak probe field �2

p (see
also Fig. 9 in Appendix C). As the strength of the probe field
increases, we expect that the GVV shows better fits to exact
results than the GRWA (see Fig. 10 in Appendix C).

We further compare the analytical results with the numer-
ical solutions for different control field �c. In Fig. 8, we
plot the transition probability ρ11 as a function of �c for
a fixed �/ω = 0.25. As in Fig. 7, the analytic GRWA and
GVV results agree well with the numerical solutions in the
whole regime of the figure. Actually, the peak shifts δ0,P,Q

and the peak widths of the resonance are independent of the
control field, since �(α) solely depends on the probe field
detuning �.

V. CONCLUSIONS

In summary, we provide a general method to analytically
solve strongly coupled two- and three-level systems by a DUT
and a combination of the Floquet and GVV perturbation the-
ories. For a periodically modulated three-level system driven
by a strong control field, we provide numerical and insightful
analytic solutions of the generalized Floquet formalism to
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explain quantum interference and diffraction patterns. We
extend the generalized Van Vleck perturbation theory to
the strong-field cases and obtain two analytic solutions, the
GRWA and the GVV results. Comparisons show that the two
analytic results agree well with the numerical solutions. The
general method described here provides a unified theoreti-
cal treatment of the modulated two- and three-level systems
covering a wide range of parameter space. Applications of
the quasilevels to various modulated atomic and artificial
atomic systems lead us to a better understanding of the results
of spectroscopy measurement and the dynamics of strongly
driven quantum multilevel systems.
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APPENDIX A: THE FLOQUET MATRIX OF EQ. (30)

The Floquet matrix of Eq. (30) is given as

V̂F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

0 0 0 0 0 0 0 0 0

· · · 0 0 0 0 �c1
2 0 0 0 0 · · ·

0 0 0 0 0 −�c1
2 0 0 0

0 0 0 0 0 0 0 0 0

· · · 0 �c1
2 0 0 0 0 0 �c1

2 0 · · ·
0 0 −�c1

2 0 0 0 0 0 −�c1
2

0 0 0 0 0 0 0 0 0

· · · 0 0 0 0 �c1
2 0 0 0 0 · · ·

0 0 0 0 0 −�c1
2 0 0 0

. .
. ...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← |0̃,−1〉
← |P,−1〉
← |Q,−1〉
← |0̃, 0〉
← |P, 0〉
← |Q, 0〉
← |0̃,+1〉
← |P,+1〉
← |Q,+1〉

. (A1)

One immediately finds that in Eq. (A1) the Floquet states
|0̃, n〉 do not couple to any state and thus one separates them
out. The remaining Floquet states |P, n〉 and |Q, n〉, as shown
in Fig. 1(e), have only internal couplings and the internal
coupling is symmetrical, i.e., the coupling between |P, n〉 and
|P, n − l〉 equals to that between |P, n〉 and |P, n + l〉 (the same
for |Q, n〉). Moreover, the coupling is zero for the even n − n′
transitions, due to the specific Fourier-transform constants of
the square wave.

APPENDIX B: DERIVATION OF THE 3 × 3 EFFECTIVE
FLOQUET MATRIX BY THE GVV THEORY

Our aim is to reduce the infinite-dimensional Floquet ma-
trix in Eq. (35) into a 3 × 3 effective matrix by the use of GVV
perturbation theory [26,34,49]. Consider the Floquet states
|0̃, 0〉 nearly degenerate with |P̃, n〉 and |Q̃, m〉. According to
the perturbation theory, we expand the 3 × 3 matrix h and its
eigenstates � in powers of �p, and the zeroth-order of �(0) is
given by

�
(0)
0 = |0̃, 0〉, �

(0)
P = |P̃, n〉, �

(0)
Q = |Q̃, m〉. (B1)

The zeroth-order h(0) represented by �(0) is

h(0) =
⎛
⎝−�

2 0 0
0 �P

n 0
0 0 �Q

m

⎞
⎠. (B2)

Following the GVV perturbation theory, the higher-order
terms are given by

�
(1)
0 =

∞∑
k = −∞

k �= n

−�P
k

� − �c/4 + kω
|P̃, k〉

+
∞∑

k = −∞
k �= m

−�
Q
k

� + �c/4 + kω
|Q̃, k〉, (B3)

�
(1)
P =

∞∑
k = −∞

k �= n

�P
k

� − �c/4 + kω
|0̃, n − k〉, (B4)

�
(1)
Q =

∞∑
k = −∞

k �= m

�
Q
k

� + �c/4 + kω
|0̃, m − k〉, (B5)

h(1) = 〈�(0)|V ′|�(0)〉 =

⎛
⎜⎝

0 �P
n �Q

m

�P
n 0 0

�Q
m 0 0

⎞
⎟⎠, (B6)

h(2) = 〈�(0)|V ′|�(1)〉 − h(1)〈�(0)|�(1)〉 (B7)

=

⎛
⎜⎝

δ0 0 0

0 δP δPQ

0 δPQ δQ

⎞
⎟⎠.
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FIG. 9. Plots of δP (a) and δQ (b) as a function of �p under two-
level resonance conditions, i.e., obtained from Eq. (38) by setting
� − �c/4 = −nω (a) and from Eq. (39) by � + �c/4 = −mω (b),
respectively, with �c/ω = 3.

Equations (B2) and (B6) form the GRWA results in Eqs. (36),
and Eqs. (B2), (B6), and (B7) form the GVV results in
Eq. (37).

APPENDIX C: A LARGER PROBE FIELD

In the periodically driven three-level system, we assume
�p is small as a perturbation parameter. Therefore, the

1.7 2.3 2.9
0

0.25

 /

11

Numerical GVV GRWA

FIG. 10. Same as Fig. 7(a), except for �p/ω = 0.5.

difference between GVV and GRWA (i.e., |δP| and |δQ|) is
small. As �p increases, as shown in Fig. 9, we observe in-
creasing difference between the two analytical predictions and
the effects of δP,Q are not negligible. In Fig. 10, we compare
the numerical and analytic results of ρ11 from both the GVV
and the GRWA for a larger �p/ω = 0.5. One immediately
sees that the GVV fits better than the GRWA to the exact
numerical results, indicating the deviation of the GRWA and
the validity of the GVV.
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