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Breaking rotational symmetry in a trapped-ion quantum tunneling rotor
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A trapped-ion quantum tunneling rotor (QTR) is in a quantum superposition of two different Wigner crystal
orientations. In a QTR system, quantum tunneling drives the coherent transition between the two different
Wigner crystal orientations. We theoretically study the quantum dynamics of a QTR, particularly when the
spin state of one of the ions is flipped. We show that the quantum dynamics of an N-ion QTR can be described
by continuous-time cyclic quantum walks. We also investigate the quantum dynamics of the QTR in a magnetic
field. Flipping the spin state breaks the rotational symmetry of the QTR, making the quantum-tunneling-induced
rotation distinguishable. This symmetry breaking creates coupling between the spin state of the ions and the
rotational motion of the QTR, resulting in different quantum tunneling dynamics.
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I. INTRODUCTION

A trapped-ion quantum rigid rotor has recently been re-
alized, and is referred to as a quantum tunneling rotor
(QTR) system [1]. Due to the presence of micromotion, it
is not straightforward to cool the collective modes of two-
dimensional (2D) ion crystals to the motional ground state.
However, ground-state cooling of the rotational mode, which
is a collective mode of a 2D ion crystal, has been demonstrated
[1]. The unique property of the QTR is that the rotational
motion of the QTR is driven by the quantum tunneling effect.
In a previous study, a quantum-tunneling-induced transition
between two stable orientations of a Wigner crystal was
realized [1]. In addition, quantum interference induced by the
Aharonov-Bohm (AB) effect [2] was observed [1].

In this paper, we consider the quantum tunneling dynamics
of the QTR when the spin state of one of the ions in the
QTR is flipped. We first formalize the quantum state of an
N-ion QTR including spin degrees of freedom. The quantum
dynamics of such a QTR can be considered as a 2N-site
cycle graph. Therefore, we describe the quantum dynamics
of the QTR as continuous-time cyclic quantum walks [3,4].
Continuous-time cyclic quantum walks require a quantum
system where a quantum propagates into neighboring sites via
quantum tunneling, and the QTR system is an ideal quantum
system for implementing continuous-time cyclic quantum
walks.

In addition, we investigate the quantum dynamics of a
QTR when a magnetic field passes through the QTR system.
Flipping the spin state breaks the rotational symmetry in
the QTR system, which then exhibits completely different
dynamics. In particular, when the ions in the QTR couple
to a vector potential, the difference in the quantum tunnel-
ing dynamics becomes marked due to quantum interference
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induced by the AB effect [1]. We find that this spin-dependent
quantum interference induces coupling between the spin state
of the ions and the rotational motion of the QTR, which may
experimentally realize a quantum spin filter [5] or a cat state of
the spin states of the ions and the Wigner crystal structures [6].
In terms of controlling the quantum tunneling dynamics with
the spin degrees of freedom of the ions, our work is analogous
to studies on the quantum dynamics of a double-well bosonic
Josephson junction coupled to a single atomic ion [7,8].

II. TRAPPED-ION QTR

We first review the dynamics of the QTR. N ions with mass
m and charge e are trapped in a harmonic potential. The trap
frequencies are ωx and ωz � ωy, so that the motion along the
y direction is considered to be frozen out. The total Hamilto-
nian of this effective 2D system is Htotal = ∑N

i=1 p2
i /2m + V ,

where pi represents the momentum of the ith ion. The poten-
tial V is derived from the harmonic potential and the Coulomb
repulsion; V = ∑N

i=1 m(ω2
x x2

i + ω2
z z2

i )/2 + ∑N
i> j e2/4πε0r2

i j ,
where ri j is the distance between the ith and jth ions. We
assume that the trap frequencies are ωz � ωx so that an ion
chain along the z direction is formed. Then, by decreasing
the confinement along the x direction, the ions gradually
form a 2D crystal structure. When the trap frequencies ωx

and ωz are comparable, an almost regular polygon crystal is
created.

When the ions have a high mean energy, rotation in the
x-z plane is observed [1,9]. If the kinetic energy of the ions
is lower than the energy barrier for the rotation, the ions are
localized at local minima. However, under some conditions,
rotation can be driven by the quantum tunneling effect [1].
Specifically, when the motional mean energy is low enough
for the ions to be pinned and the rotational barrier is quite low,
quantum tunneling occurs. This can be achieved by cooling
the rotational mode to the motional ground state and making
ωx slightly higher than ωz.
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FIG. 1. (a) Normalized six lowest collective frequencies of three ions as a function of the ratio of ωx to ωz. The inset shows the eigenvector
of each collective mode when ωx/ωz = 1.001. (b) Effective potential for ωx/ωz = 1.001 (ωz = 2π × 1.500 MHz). (c) Effective potential and
probability amplitudes of the wave functions of |ψup〉 and |ψdown〉 as a function of the angle θ . (d) Quantum-tunneling-induced transition of the
Wigner crystal in the QTR system.

We take a QTR with three trapped ions as an example. We
suppose that three 171Yb+ ions are trapped and their internal
states are the same. As mentioned above, there are two steps
to create a QTR [1]: (1) Motional ground-state cooling of the
rotational mode and (2) adiabatically ramping down ωx (adi-
abatic cooling). Figure 1(a) shows a numerical calculation of
the frequencies of the six lowest collective modes of the three
ions. The red curve (mode1) in Fig. 1(a) corresponds to the
rotational mode. The other collective modes are also shown
for reference. In the following discussion, the frequency of the
rotational mode is denoted as ωrot and the trap frequency along
the z direction is fixed to ωz = 2π × 1.500 MHz as a typical
experimental parameter. The eigenvectors of each collective
mode for ωx/ωz = 1.001 are also shown in Fig. 1(a).

To create the QTR, the rotational mode needs to be cooled
to the motional ground state; otherwise, the ions start rotating
due to the high kinetic energy. Therefore, we first set ωx to
the point where ωrot is high enough to cool the rotational
mode to the ground state. After motional ground-state cool-
ing, adiabatic cooling [1,10–12] is employed to increase the
population of the ground state of the rotational mode. As
indicated in Fig. 1(a), ωrot gets smaller as ωx is ramped down.
By reducing the confinement along the x direction under
the condition dωrot

dt /ωrot � 1, adiabatic cooling is realized.

ωx is adiabatically ramped down to the point where the trap
frequencies along the x and z directions are comparable. In
this article, we discuss the dynamics of a QTR assuming
perfect ground-state cooling of the rotational mode, so that
the classical rotation caused by the other quantum motional
states, which have the higher kinetic energy than the effective
rotational barrier, can be safely ignored. Figure 1(b) shows
the effective potential created by the harmonic potential and
the Coulomb interaction between ions for ωx/ωz = 1.001. It
is clear from Fig. 1(b) that there are two stable ion crystal
orientations. We define the wave functions of those stable ion
structures as |ψup〉 and |ψdown〉.

Figure 1(c) shows the effective potential and the proba-
bility amplitudes for both wave functions, |ψup〉 and |ψdown〉,
for ωx/ωz = 1.001. As can be seen from Fig. 1(c), the wave
functions |ψup〉 and |ψdown〉 overlap. Since |ψup〉 and |ψdown〉
are not orthogonal, quantum tunneling can occur.

The QTR changes its crystal orientation due to the quantum
tunneling effect, as shown in Fig. 1(d). The Coulomb interac-
tion prevents the exchange of ions when quantum tunneling
occurs. Therefore, the QTR can be considered to be a quantum
rigid rotor system. It should be noted that this protocol to
create the QTR is not realistic if the number of ions is even
because the barrier for rotation is significantly high.
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FIG. 2. Schematic representation of the N-ion QTR. Since the
QTR is the superposition of two different polygon Wigner crystal
orientations |ψup〉 and |ψdown〉, the QTR is considered to be a 2N-site
cycle graph.

III. CYCLIC QUANTUM WALKS

Formation of QTR, including the spin state

An ion has an internal state, which is considered an
effective spin state. For 171Yb+ ions, the hyperfine states

|↓〉 ≡ |F = 0, mF = 0〉 and |↑〉 ≡ |F = 1, mF = 0〉 are
usually used as the effective spin system. If the internal
states of the ions are the same, |↓〉, the internal states are
simply ignored and the quantum state of the N-ion QTR,
|ψ〉, can be expressed as the superposition of |ψup〉 and
|ψdown〉:

|ψ〉 = α |ψup〉 + β |ψdown〉 , (1)

where α and β are complex coefficients satisfying |α|2 +
|β|2 = 1. Since the QTR is the superposition of two dif-
ferent polygon Wigner crystals, the N-ion QTR is viewed
as a 2N-site cycle graph, as shown in Fig. 2. We define
the wave function of the kth ion at the lth site as |ψk,l〉.
As is evident from quantum interference in the QTR sys-
tem induced by the AB effect [1], the particles constituting
the QTR are considered to be identical. Since 171Yb+ is
bosonic, the quantum states of |ψup〉 and |ψdown〉 are given as
follows:

|ψup〉 = 1√
N!

perm

⎛
⎜⎜⎜⎜⎜⎜⎝

|ψ1,1〉 · · · |ψ1,2n−1〉 · · · |ψ1,2N−1〉
...

. . .
...

. . .
...

|ψk,1〉 · · · |ψk,2n−1〉 · · · |ψk,2N−1〉
...

. . .
...

. . .
...

|ψN,1〉 · · · |ψN,2n−1〉 · · · |ψN,2N−1〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

|ψdown〉 = 1√
N!

perm

⎛
⎜⎜⎜⎜⎜⎜⎝

|ψ1,2〉 · · · |ψ1,2n〉 · · · |ψ1,2N 〉
...

. . .
...

. . .
...

|ψk,2〉 · · · |ψk,2n〉 · · · |ψk,2N 〉
...

. . .
...

. . .
...

|ψN,2〉 · · · |ψN,2n〉 · · · |ψN,2N 〉

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

When the ions are fermionic, |ψup〉 and |ψdown〉 can be expressed using Slater determinants. There are two directions of the
rotations induced by quantum tunneling in the QTR system. Therefore, the Hamiltonian of the QTR is given as follows:

H = h̄ j(ĴCL + ĴCCL), (4)

where h̄ and j are the Planck constant and the quantum tunneling rate. ĴCL and ĴCCL are defined as

ĴCL ≡
N⊗

k=1

2N∑
l=1

|ψk,l+1〉 〈ψk,l | , (5)

ĴCCL ≡
N⊗

k=1

2N∑
l=1

|ψk,l〉 〈ψk,l+1| , (6)

with |ψk,2N+1〉 = |ψk,1〉. Thus ĴCL and ĴCCL satisfy ĴCL |ψup(down)〉 = |ψdown(up)〉 and ĴCCL |ψdown(up)〉 = |ψup(down)〉, representing
clockwise and counterclockwise rotation, respectively. It is possible to experimentally distinguish these two states using a
projective measurement [1], i.e., there are two distinguishable states.

Next, we flip the internal state of the ion at the lth site (l = 2n or 2n − 1). By introducing the wave function

|ψup,2n−1〉 = 1√
N!

perm

⎛
⎜⎜⎜⎜⎜⎜⎝

|↓〉 |ψ1,1〉 · · · |↑〉 |ψ1,2n−1〉 · · · |↓〉 |ψ1,2N−1〉
...

. . .
...

. . .
...

|↓〉 |ψk,1〉 · · · |↑〉 |ψk,2n−1〉 · · · |↓〉 |ψk,2N−1〉
...

. . .
...

. . .
...

|↓〉 |ψN,1〉 · · · |↑〉 |ψN,2n−1〉 · · · |↓〉 |ψN,2N−1〉

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)
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and

|ψdown,2n〉 = 1√
N!

perm

⎛
⎜⎜⎜⎜⎜⎜⎝

|↓〉 |ψ1,2〉 · · · |↑〉 |ψ1,2n〉 · · · |↓〉 |ψ1,2N 〉
...

. . .
...

. . .
...

|↓〉 |ψk,2〉 · · · |↑〉 |ψk,2n〉 · · · |↓〉 |ψk,2N 〉
...

. . .
...

. . .
...

|↓〉 |ψN,2〉 · · · |↑〉 |ψN,2n〉 · · · |↓〉 |ψN,2N 〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

including the spin degrees of freedom, the quantum state of
the QTR can be given as follows:

|ψ〉 = α′
N∑

n=1

c2n−1 |ψup,2n−1〉 + β ′
N∑

n=1

c2n |ψdown,2n〉, (9)

where α′, β ′, c2n−1, and c2n are the complex coeffi-
cients satisfying |α′|2 + |β ′|2 = 1,

∑N
n=1 |c2n−1|2 = 1, and∑N

n=1 |c2n|2 = 1. This equation clearly shows that there are
distinguishable N states for each crystal orientation. There-
fore, a QTR with an ion in the internal state |↑〉 at the lth site
is considered to be a 2N-site cyclic graph. Figure 3(a) shows
the time evolution of a three-ion QTR with one ion in |↑〉. As
is clear from the above discussion, as shown in Fig. 3(b), this
model is considered to be equivalent to the 2N-site cycle graph
where the ion with internal state |↑〉 at the nth site evolves into
the neighboring sites via quantum tunneling. By introducing
the notation |2n − 1〉 = |ψup,2n−1〉 and |2n〉 = |ψdown,2n〉, the
quantum state of the QTR can be rewritten as

|ψ〉 =
2N∑

n=1

γn |n〉, (10)

where γn is the complex coefficient satisfying
∑2N

n=1 |γn|2 = 1.
The Hamiltonian of this system can also be described as

H = h̄ j
2N∑

n=1

(ânâ†
n+1 + â†

nân+1), (11)

where â1 = â2N+1. â†
n and ân are creation and annihilation

operators of an ion in |↑〉 at the nth site.
We show the quantum dynamics of the three-ion QTR in

Fig. 3(c). In the simulation, we prepared the initial state in
|1〉, as shown in Fig. 3(b). Note that the evolution time is
normalized to the unit of the quantum tunneling rate. Here,
by considering the ion in |↑〉 to be a quantum walker, the time
evolution of the probability distribution of the ion in |↑〉 can be
described by continuous-time quantum walks. The quantum
dynamics of the cyclic quantum walks using a five-ion QTR
is also shown in Fig. 3(d) (see the Appendix for more details).

IV. SPIN-DEPENDENT QUANTUM INTERFERENCE

We now consider a magnetic flux 
 = SB threading
through a QTR consisting of identical ions, as shown in
Fig. 4(a). Here, S and B are a closed area of the QTR and
a magnetic field passing through the closed area, respec-
tively. The ions in the QTR couple to the vector potential.
Therefore, the AB effect introduces a relative phase differ-
ence 2θAB between wave functions rotating clockwise and

counterclockwise, as shown in Fig. 4(b) [1]. The AB effect
induced phase shift is θAB = π 


φ0
, where φ0 = h̄

e . Here, the
Hamiltonian of the QTR is expressed as

H = h̄ j(ĴCLeiθAB + ĴCCLe−iθAB ). (12)

FIG. 3. (a) Time evolution of the three-ion QTR. The spin states
|↑〉 and |↓〉 are represented as red and blue circles, respectively.
(b) Time evolution of the QTR shown in (a), considered as a six-site
cyclic graph. The ion in |↑〉 propagates into the neighboring sites via
quantum tunneling. (c),(d) Continuous-time cyclic quantum walks.
The time evolution of the probability distribution of the ion in |↑〉 is
calculated for (c) three-ion and (d) five-ion QTR.
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FIG. 4. (a) Magnetic field B passing through the three-ion QTR.
(b) Ions in the QTR system coupled to the vector potential, intro-
ducing a phase difference between wave functions rotating in two
opposite directions. (c) Probability of finding |ψup〉 for each AB
phase shift as a function of time. The evolution time is normalized to
the unit of the quantum tunneling rate.

Figure 4(c) shows the numerically calculated time evo-
lution of the probability of finding |ψup〉 as a function of
time. In the numerical simulation, we prepared an initial
state of the three-ion QTR in |ψup〉. Then, we calculated
the probability of finding |ψup〉 based on Eq. (12). Since
the spin states of the ions in the QTR are the same, the
rotational direction of the transition of the QTR is indistin-
guishable. Therefore, the quantum interference is induced by
the AB effect [1]. When the AB effect phase shift is π/2,
the clockwise and counterclockwise rotating wave functions
counteract each other, resulting in suppression of quantum
tunneling. These results clearly show that it is possible to
control the quantum tunneling probability by changing the
amount of magnetic flux passing through the QTR. By com-
bining the quantum interference effect and the time-dependent
magnetic field, it is possible to realize an arbitrary superpo-
sition of two different Wigner crystal orientations, such as
|ψ〉 = 1√

2
(|ψup〉 + eiθ0 |ψdown〉), where θ0 is the relative phase

shift.
We next consider the quantum dynamics of a QTR for

which one of the spin states of the ions is flipped. According
to the above discussion and Eq. (11), the Hamiltonian of this
QTR system is described as follows:

H = h̄ j
2N∑

n=1

(ânâ†
n+1eiθAB + â†

nân+1e−iθAB ). (13)

We show a simulation of the three-ion QTR dynamics
when the AB phase shifts are θAB = 0, π

24 , π
12 , and π

6 in
Figs. 5(a)–5(d). Note that the time is normalized to the unit of

FIG. 5. (a)–(d) Time evolution of the probability distribution of
an ion in |↑〉. The initial state is prepared in |1〉. The evolution time
is normalized to the unit of the quantum tunneling rate. (a) θAB = 0.
(b) θAB = π

24 . (c) θAB = π

12 . (d) θAB = π

6 .

the quantum tunneling rate and the initial state is prepared in
|1〉. The dynamics are slightly modulated by the correspond-
ing θAB. In particular, when θAB = π

6 , destructive interference
always occurs at the opposite site, i.e., at the fourth site,
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resulting in the probability of finding |4〉 being always zero,
as shown in Fig. 5(d).

We find that the spin degrees of the trapped ions in a QTR
can change the quantum tunneling dynamics of the QTR. This
property can be used to realize spin-dependent motion of the
QTR. For example, we consider the dynamics of a three-ion
QTR having identical ions. By applying the magnetic field
which induces θAB = π

2 , the QTR does not rotate due to the
destructive interference, as shown in Fig. 4(c). However, if we
flip the spin state of one of the ions in the QTR, the QTR then
starts to rotate, as shown in Fig. 5(d). The dynamics of the
QTR with an ion in |↑〉 when θAB = π

2 is exactly the same as
Fig. 5(d). This is analogous to spin-motion coupling, such as
the Stern-Gerlach experiment [13] or the quantum spin filter
[5]. In addition, if one of the ions is prepared in 1√

2
(|↑〉 + |↓〉),

the superposition of two different QTRs is realized, for which
one QTR rotates and another does not. Such a quantum system
may realize the entangled state of the spin degrees of freedom
and the Wigner crystal structures [6].

V. DISCUSSION

To observe quantum tunneling, the quantum coherence
of the QTR is important. One of the biggest sources of
decoherence is heating of the rotational mode. The quantum
tunneling rate of the QTR is relatively slow. For example, the
numerically calculated quantum tunneling rate using the wave
functions and effective potential shown in Fig. 1(c) is 4.95 Hz.
Therefore, the heating rate of the rotational mode needs to be
sufficiently suppressed. As previously discussed [1], the lack
of adiabaticity of the trap potential control and the fluctuation
of the rf voltage may be related to the heating of the rotational
mode. These factors can be avoided by carefully choosing the
experimental parameters and using the rf voltage stabilization
method [14]. Other collective modes may heat the rotational
mode. To prevent this effect, further implementation of the
laser cooling technique to cool all the collective modes si-
multaneously [15] may be helpful. Heating of the rotational
mode decreases the population in the motional ground state of
the rotational mode, reducing the quantum tunneling quality.
However, as long as the population of the motional ground
state of the rotational mode is not zero, the quantum tunneling
dynamics can be deduced from the measurement results. In
addition, the coherence time of the quantum tunneling needs
to be long. One reason for the degradation of the quantum
tunneling coherence is the fluctuation of the rf potential. This
can be mitigated by implementing rf stabilization [14].

VI. CONCLUSIONS

We have studied the quantum dynamics of a QTR when
a spin state of one of the ions is flipped. We found that
symmetry breaking by flipping the spin state of the ion of
the QTR results in different quantum dynamics. Additionally,
we have exploited the quantum dynamics of the QTR when a
magnetic field is present. Our work may be useful for realizing
applications using spin-motion coupling [5–8]. While quan-
tum tunneling is a fundamental phenomenon, it is difficult
to investigate the quantum tunneling dynamics at a single
quantum level. Advantages such as individual addressability

and manipulation of quantum states of the ions provide a
well-controllable quantum system. Therefore, a trapped-ion
QTR system can provide an ideal platform for performing
fundamental quantum physics experiments.
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APPENDIX: FIVE-ION QTR

We show the results of the analysis of a QTR using
five 171Yb+ ions. We assume that the confinement along
the z direction (ωz) is 2π × 1.500 MHz. The numerically

FIG. 6. (a) Normalized ten lowest collective frequencies of the
five trapped ions as a function of the ratio of ωx to ωz. The inset
shows the eigenvector of each collective mode for ωx/ωz = 1.010.
(b) Effective potential for ωx/ωz = 1.010 (ωz = 2π × 1.500 MHz).
The almost isotropic trap potential and Coulomb interaction create
two stable ion crystal orientations |ψup〉 and |ψdown〉. (c) Effective
potential and amplitudes of the wave functions |ψup〉 and |ψdown〉 as
a function of the angle θ .
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calculated frequencies of the ten lowest collective modes
are shown in Fig. 6(a). The eigenvectors of each collective
mode for ωx/ωz = 1.010 are also shown in Fig. 6(a). The red
curve (mode 1) is the rotational mode. Figure 6(b) shows the

effective potential of the five-ion QTR system for ωx/ωz =
1.010. There are two stable orientations of the ion crystal,
|ψup〉 and |ψdown〉. When ωx/ωz = 1.010, |ψup〉 and |ψdown〉
overlap [Fig. 6(c)].
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