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Quantization of the damped harmonic oscillator based on a modified Bateman Lagrangian
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An approach to quantization of the damped harmonic oscillator (DHO) is developed on the basis of a modified
Bateman Lagrangian (MBL); thereby some quantum mechanical aspects of the DHO are clarified. We treat
the energy operator for the DHO, in addition to the Hamiltonian operator that is determined from the MBL
and corresponds to the total energy of the system. It is demonstrated that the energy eigenvalues of the DHO
exponentially decrease with time and that transitions between the energy eigenstates occur in accordance with
the Schrödinger equation. Also, it is pointed out that a new critical parameter discriminates different behaviors
of transition probabilities.
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I. INTRODUCTION

Lagrangian-Hamiltonian mechanics of the damped har-
monic oscillator (DHO) and its applications to quantization
of the DHO have been investigated for a long time by an
enormous number of authors [1–21]. One of the most argued
Lagrangians of the DHO is the Bateman Lagrangian [1],

LB = mẋẏ + γ

2
(xẏ − ẋy) − kxy. (1)

This Lagrangian yields the equation of motion of the DHO,
mẍ + γ ẋ + kx = 0, and has the tractable property that it
does not explicitly depend on time. However, LB also yields
the equation of motion of the amplified harmonic oscillator
(AHO), mÿ − γ ẏ + ky = 0. It thus turns out that LB, in actu-
ality, describes a doubled system consisting of the uncoupled
DHO and AHO, not the DHO itself. The quantization of this
system has been studied until recently with various interest-
ing ideas [5–15]. However, in the quantization procedure,
(x ± y)/

√
2, rather than x and y, are treated as fundamental

variables, and therefore it is quite doubtful whether the DHO
itself is correctly quantized in this approach.

In this paper, we develop a novel approach to quantization
of the DHO to correctly understand the DHO at the quantum
level. To this end, we propose a modified Bateman Lagrangian
(MBL) in order to consistently treat only the DHO. We
first study the Lagrangian-Hamiltonian mechanics based on
the MBL and subsequently perform canonical quantization
of the DHO by utilizing the Lagrangian-Hamiltonian me-
chanics studied. Unlike earlier approaches, we consider the
(nonconserved) energy operator for the DHO, in addition to
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the (conserved) Hamiltonian operator that is found from the
MBL and corresponds to the total energy of the system. We
show that the energy eigenvalues of the DHO are real and
exponentially decrease with time, just like the classical energy
of the DHO. We also show that with the decrease of energy
eigenvalues, transitions between the energy eigenstates occur
in accordance with the Schrödinger equation. In addition, we
point out that a new critical parameter discriminates different
behaviors of transition probabilities.

II. LAGRANGIAN-HAMILTONIAN
MECHANICS BASED ON A MBL

Let us begin with the MBL constructed as follows:

LMB = LB − 1

2
(ρσ̇ − ρ̇σ ) − γ

2m
ρσ + λ(ρx − σy), (2)

where ρ, σ , and λ are additional real dynamical variables.
Note that this Lagrangian does not explicitly depend on time.
From the five Euler-Lagrange equations implied by LMB, one
of which is ρx = σy, we can obtain λ = 0, 2mρ̇ − γ ρ = 0,
and 2mσ̇ + γ σ = 0, in addition to the above-mentioned equa-
tions of motion for x and y (see Appendix). The condition
ρx = σy, together with ρσ > 0 imposed later under (3), leads
to the fact that the initial phases of x and y are equal modulo
2nπ (n ∈ Z) (see Appendix). We thus see that only one
oscillation term exists in this system.

Now we have the canonical coordinates (x, y, ρ, σ, λ)
and their conjugate momenta (px, py, pρ, pσ , pλ) defined
from LMB. Following the Dirac algorithm for constrained
systems [22–24], we obtain six constraints for the 10
canonical variables. Hence we actually have four indepen-
dent canonical variables. Among several choices, we now
choose (x, px, ρ, σ ) as independent variables to describe
the DHO. Accordingly, we have the Hamiltonian that is
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written in terms of the four variables X := √
2x, P := √

2 px,
θ := (1/2) ln(ρ/σ ), and N := ρσ as

H = 1

2m
e−2θ P2 + 1

2
mω2

−e2θ X 2 + γ

2m
N, (3)

where ω− :=
√

ω2 − γ 2/4m2 with ω := √
k/m. We assume

that θ is real and N is positive real so that H can be
positive definite. [An inverse Legendre transformation of H
leads to a Lagrangian expressed in terms of (X, θ, Ẋ , θ̇ ).]
The nonvanishing Dirac brackets are derived as follows:
{X, P}D = 1, {X, N}D = −X , {P, N}D = P, {θ, N}D = 1. Un-
like the Caldirola-Kanai Hamiltonian [16,17], H does not
explicitly depend on time. For this reason, H turns out to be
a conserved quantity. The Hamiltonian H is recognized as the
total energy of the system.

The mechanical energy of the DHO is given by E =
(m/2)Ẋ 2 + (mω2/2)X 2, which can be expressed as

E = 1

2m

(
e−2θ P − γ

2
X

)2
+ 1

2
mω2X 2, (4)

by using Ẋ = {X, H}D. The conserved Hamiltonian H can be
decomposed as H = E + Q, with Q being identified as the
heat energy generated in the system.1

III. CANONICAL QUANTIZATION

Next we perform the canonical quantization of the DHO
by replacing X , P, θ , and N with their corresponding
Hermitian operators X̂ , P̂, θ̂ , and N̂ , respectively, and
by setting the commutation relations in accordance with
[Â, B̂] = ih̄{A, B}D1l. Here, 1l denotes the identity opera-
tor. Through this quantization procedure, we define the
Hamiltonian operator Ĥ and the energy operator Ê using
(3) and (4). We can verify that [Ĥ, Ê ] �= 0; hence, Ê
is not a conserved quantity as expected. The Heisen-
berg equations ih̄d θ̂/dt = [θ̂ , Ĥ ] and ih̄dN̂/dt = [N̂, Ĥ ] can
be solved to yield θ̂ (t ) = (γ /2m)t1l + θ̂0 and N̂ (t ) = N̂0.
Here, θ̂0 and N̂0 are time-independent operators satisfying
[θ̂0, N̂0] = ih̄1l.

We now define the operator,

â =
√

mω+
2h̄

Λ∗eθ̂ X̂ + i

√
1

2h̄mω+
Λe−θ̂ P̂, (5)

where Λ := √
(1 + ω+/ω)/2 + i

√
(−1 + ω+/ω)/2 with

ω+ :=
√

ω2 + γ 2/4m2. It is easy to show that [â, â†] = 1l
and [â, θ̂0] = [â†, θ̂0] = 0. In terms of â, â†, and

1With X := √
2x, the equation of motion for x is written

as mẌ + γ Ẋ + kX = 0, whose energy integral reads (m/2)Ẋ 2 +
(mω2/2)X 2 + γ

∫
Ẋ 2dt = constant. We thus see that γ

∫
Ẋ 2dt rep-

resents the heat energy generated during the damped oscillation.
Substituting the general solution of the equation of motion for X into
(3), (4), and γ

∫
Ẋ 2dt , we can confirm that Q(= H − E ) = γ

∫
Ẋ 2dt

under the condition θ (0) = 0. Also, under this condition, we can
obtain H = E = H0 from (3) and (4) when γ = 0. Here, H0 denotes
the Hamiltonian of the ordinary simple harmonic oscillator.

N̂ ′ := N̂ + (X̂ P̂ + P̂X̂ )/2, the operator Ĥ is written as

Ĥ = h̄ω2
−

ω

(
â†â + 1

2
1l

)
− h̄γ 2

8m2ω+

{(
1 − iγ

2mω

)
â2

+
(

1 + iγ

2mω

)
â†2

}
+ γ

2m
N̂ ′. (6)

It should be emphasized here that the nonvanishing com-
mutation relations for (X̂ , P̂, θ̂ , N̂ ′) are only [X̂ , P̂] = ih̄1l
and [θ̂ , N̂ ′] = ih̄1l. We thus see that the canonical conjugate
operator to θ̂ is N̂ ′ rather than N̂ . The energy operator can be
written as

Ê = h̄ωe−2θ̂ (t )
(
â†â + 1

2 1l
)
, (7)

with θ̂ (t ) = (γ /2m)t1l + θ̂0.
Now we introduce the ground-state vector |0, t〉 specified

by â(t )|0, t〉 = 0 and θ̂0|0, t〉 = 0. The second condition is
necessary to reproduce the simple harmonic oscillator sys-
tem when γ = 0. The Fock basis vectors are constructed as
|n, t〉 = (1/

√
n!)(â†(t ))n|0, t〉 (n = 0, 1, 2, . . .), which obvi-

ously satisfy θ̂0|n, t〉 = 0. The energy eigenvalue equation is
found to be Ê |n, t〉 = En|n, t〉 with the energy eigenvalues,

En = h̄ωe−γ t/m
(
n + 1

2

)
. (8)

All the energy eigenvalues decrease exponentially with time
and eventually vanish in the limit t → ∞, while maintaining
the energy distribution with equal intervals at each time point
t . Incidentally, the classical energy of the DHO is also propor-
tional to e−γ t/m. To the best of our knowledge, (8) has not been
found in the earlier literature on quantization of the DHO.2

IV. THE SCHRÖDINGER PICTURE

The time-evolution operator is given by
Û = exp(−iĤt/h̄). Here, Ĥ is understood as Ĥ (0) because Ĥ
is a conserved quantity. We define the time-independent
operators X̂S and P̂S in the Schrödinger picture by
X̂S = Û X̂Û † and P̂S = Û P̂Û † [25]. Similarly, we define
|n, t〉S = Û |n, t〉. In terms of |n, t〉S, the condition θ̂0|n, t〉 = 0
reads

θ̂0|n, t〉S = γ

2m
t |n, t〉S. (9)

Equation (9) implies that in the Schrödinger picture,
(2m/γ )θ̂0 behaves as a time operator. This operator is well de-
fined, because the canonical conjugate operator N̂ ′

0(:= N̂ ′(0))
can possess eigenvalues unbounded below and above, unlike
N̂0 whose eigenvalues are assumed to be positive so that the
condition N0 > 0 at the classical level would be inherited.
Combining (9) with [θ̂0, N̂ ′

0] = ih̄1l leads to

S〈n, t |N̂ ′
0 = −ih̄

2m

γ

d

dt
S〈n, t |. (10)

2A similar but different expression, h̄(ω2/ω−)e−γ t/m(n + 1/2), has
been derived as an energy expectation value of the DHO [18–21].
This expression, however, behaves in a strange manner such that it
diverges in the critical damping limit ω− → 0.
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Using (9), we can show that â(0)|n, t〉S = âS(t )|n, t〉S,
â†(0)|n, t〉S = â†

S(t )|n, t〉S, and furthermore |n, t〉S =
(1/

√
n!)(â†

S(t ))n|0, t〉S with âS(t )|0, t〉S = 0, where

âS(t ) =
√

mω+
2h̄

Λ∗eγ t/2mX̂S + i

√
1

2h̄mω+
Λe−γ t/2mP̂S. (11)

The energy eigenfunction corresponding to the energy eigen-
value En is derived as follows:

φn(X, t ) := 〈X |n, t〉S

= 1√
2nn!

(mω

π h̄

)1/4
(

ω − iγ
2m

ω + iγ
2m

)n/4

Hn

(√
mω

h̄
eγ t/2mX

)

× exp

[
γ

4m
t − m

2h̄

(
ω − iγ

2m

)
eγ t/mX 2

]
, (12)

where Hn denotes the nth Hermite polynomial. It is easy to
verify that

∫
φ∗

n (X, t )φn′ (X, t )dX = δnn′ . In Fig. 1, we show
the graphs of |φn|2 (n = 0, 1, 2) plotted as functions of X
at t = 0 and t = 250 for the fixed values m = 10, ω = 1,
γ = 0.1, and h̄ = 1. As t → ∞, |φn|2 infinitely increases in
an infinitesimal neighborhood, N, of the origin X = 0, while
decreasing to zero in the domain R \ N. When γ = 0, φn

reduces to the nth energy eigenfunction of the ordinary simple
harmonic oscillator.

FIG. 1. Figures 1(a) and 1(b) show the graphs of |φn(X, t )|2
(n = 0, 1, 2) at t = 0 and t = 250, respectively.

V. THE SCHRÖDINGER EQUATION AND ITS SOLUTIONS

Let |ψ (t )〉 be a state vector that can be expanded over the
Fock basis { |n, t〉S}. Then the Schrödinger equation for the
present system, ih̄d |ψ (t )〉/dt = Ĥ (0)|ψ (t )〉, can be written
as

ih̄
d

dt
|ψ (t )〉 = ĤS(t )|ψ (t )〉, (13)

where ĤS(t ) is defined by replacing â, â†, and N̂ ′ in (6)
with âS(t ), â†

S(t ), and N̂ ′
0, respectively. Now we expand

|ψ (t )〉 as |ψ (t )〉 = ∑
n cn(t ) exp[(i/h̄)

∫ t
0 Θn(t ′)dt ′]|n, t〉S

with Θn(t ) := S〈n, t |[ ih̄d/dt − ĤS(t )]|n, t〉S [26,27]. Here
the normalization condition

∑
n |cn(t )|2 = 1 is understood.

Substituting this |ψ (t )〉 into (13), we obtain

dcn(t )

dt
=

∑
n′( �=n)

1

En − En′
S〈n, t |DÊS(t )

Dt
|n′, t 〉S

× cn′ (t ) exp

[
i

h̄

∫ t

0
{Θn′ (t ′) − Θn(t ′)}dt ′

]
, (14)

with DÊS(t )/Dt := dÊS(t )/dt + (1/ih̄)[ÊS(t ), ĤS(t )] ,
where ÊS(t ) is defined by replacing â, â†, and θ̂ (t ) in
(7) with âS(t ), â†

S(t ), and θ̂0, respectively. In deriving (14),
ÊS(t )|n, t〉S = En|n, t〉S has been used. It is remarkable
that in Θn(t ), the geometric phase S〈n, t |ih̄d/dt |n, t〉S is
canceled out with S〈n, t |(γ /2m)N̂ ′

0|n, t〉S by means of (10).
Consequently, Θn(t ) is conveniently simplified and reduces to
Θn = −h̄(ω2

−/ω)(n + 1/2). The wave function is then found
to be

ψ (X, t ) := 〈X |ψ (t )〉 =
∑

n

cn(t )e(i/h̄)Θntφn(X, t ). (15)

We see from (12) that the dispersion of the probability density
|ψ (X, t )|2 decreases with time and ultimately becomes zero,
maintaining

∫ |ψ (X, t )|2dX = 1. This result is consistent
with the classical motion of the DHO.

After some calculation, (14) becomes

dcn(t )

dt
= γ

4m
{−

√
(n + 1)(n + 2) e−i(2αt+β )cn+2(t )

+
√

n(n − 1) ei(2αt+β )cn−2(t )}, (16)

where α and β are defined by α = ω2
−/ω and eiβ = (ω +

iγ /2m)/ω+, respectively. We here impose the initial condition
cn(0) = δnl (l = 0, 1, 2, . . .) so that the initial state would
be | l, 0〉S and ψ (X, 0) = φl (X, 0) can hold accordingly. The
solutions of the differential-difference equation (16) can be
obtained by solving the partial differential equation,

∂G

∂t
= −

{
γ

4m

(
∂2

∂q2
− q2

)
+ iαq

∂

∂q

}
G, (17)

for G(q, t ) := ∑
n qne−in(αt+β/2)cn(t )/

√
n! under the condi-

tions G(q, 0) = ql e−ilβ/2/
√

l ! and G(0, t ) = c0(t ). (As for an-
alytically solving differential-difference equations, see, e.g.,
Refs. [4,28,29].) In the following, we investigate the cases
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l = 0 and l = 2 in particular, although the other cases can be
explicated.

A. Case l = 0

In the case l = 0, the initial state is the ground state
specified by |0, 0〉S. The solution of (17) is then found to be

G0(q, t ) =
√

ξ eiαt/2{cosh(ζ + ξγ t/2m)}−1/2

× exp

[
sinh(ξγ t/2m)

2 cosh(ζ + ξγ t/2m)
q2

]
, (18)

where ξ and ζ are defined by ξ = (1 − 4m2α2/γ 2)1/2 and
e±ζ = ξ ± 2imα/γ , respectively. It is easily verified that
G0(q, 0) = 1. The solution of (16) can be derived from (18)
as follows:

cn,0(t ) = 1√
n!

ein(αt+β/2) ∂n

∂qn
G0(q, t )

∣∣∣∣
q=0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n − 1)!!√
n!

√
ξ ei(n+1/2)αt einβ/2

× {sinh(ξγ t/2m)}n/2

{cosh(ζ + ξγ t/2m)}(n+1)/2

for n = 0, 2, 4, . . . ,

0
for n = 1, 3, 5, . . . ,

(19)

which certainly satisfies the conditions
∑

n |cn,0(t )|2 = 1,
cn,0(0) = δn0 , and G0(0, t ) = c0,0(t ).

Now we evaluate the transition probability from |0, 0〉S

to |n, t〉S, described by |cn,0(t )|2. Since no transition occurs
when n is odd, we hereafter consider only the cases in which
n is even. As seen from (19), the time evolution of |cn,0(t )|2
essentially depends on e±ξγ t/2m. For this reason, it is necessary
to separately evaluate |cn,0(t )|2 in the following three cases:
(a) (0 �) γ < γ∗, (b) γ = γ∗, and (c) (2mω >) γ > γ∗. Here,
γ∗ stands for the critical constant parameter (

√
5 − 1)mω �

1.236mω, and 2mω > γ is the classical condition for the
damped oscillation.

In the case (a), ξ becomes a purely imaginary number,
and accordingly |cn,0(t )|2 becomes a periodic function. In
Fig. 2(a), we show the graphs of |cn,0(t )|2 (n = 0, 2, 4, 6) for
the fixed values m = ω = 1 and γ = 1, which satisfy γ < γ∗.
The transition probabilities |cn,0(t )|2 change periodically with
the same period.

In the case (b), ξ vanishes, and hence we need to expand
Eq. (19) around ξ = 0 to obtain

cn,0(t ) = (n − 1)!!√
n!

ei(n+1/2)αt einβ/2 (γ t/2m)n/2

(1 + iαt )(n+1)/2
. (20)

Clearly, |cn,0(t )|2 is an irrational function. Figure 2(b) shows
the graphs of |cn,0(t )|2 (n = 0, 2, 4, 6) for the fixed values
m = ω = 1 and γ = √

5 − 1, which satisfy γ = γ∗. The tran-
sition probability |c0,0(t )|2 decreases monotonically, while
|cn,0(t )|2 (n = 2, 4, 6, . . .) increase once in the order of n and
subsequently decrease monotonically.

In the case (c), ξ becomes a positive real number, and
accordingly |cn,0(t )|2 becomes a combination of real hyper-
bolic functions. Figure 2(c) shows the graphs of |cn,0(t )|2
(n = 0, 2, 4, 6) for the fixed values m = ω = 1 and γ = 1.5,

FIG. 2. Figures 2(a), 2(b), and 2(c) show the graphs of |cn,0(t )|2
(n = 0, 2, 4, 6) plotted in the cases (a), (b), and (c), respectively.

which satisfy γ > γ∗. The shapes of the curves in Fig. 2(c) are
similar to those in Fig. 2(b); the differences, such as the rates
of changes, are essentially due to the presence of e±ξγ t/2m

(ξ > 0).

B. Case l = 2

In the case l = 2, the initial state is the second excited state
specified by |2, 0〉S. We can obtain the solution of (17) for
l = 2 and denote it as G2(q, t ). This satisfies the condition
G2(q, 0) = q2e−iβ/

√
2. The corresponding solution of (16) is
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found to be

cn,2(t ) = 1√
n!

ein(αt+β/2) ∂n

∂qn
G2(q, t )

∣∣∣∣
q=0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n − 1)!!√
2n!

√
ξei(n+1/2)αt ei(n/2−1)β

×
{
− sinh(ξγ t/2m) + nξ 2

sinh(ξγ t/2m)

}

× {sinh(ξγ t/2m)}n/2

{cosh(ζ + ξγ t/2m)}(n+3)/2

for n = 0, 2, 4, . . . ,

0
for n = 1, 3, 5, . . . ,

(21)

which certainly satisfies the conditions
∑

n |cn,2(t )|2 = 1,
cn,2(0) = δn2 , and G2(0, t ) = c0,2(t ).

We next evaluate the transition probability from |2, 0〉S

to |n, t〉S, described by |cn,2(t )|2. As in the case l = 0, it
is sufficient to consider only the cases in which n is even.
Since the time evolution of |cn,2(t )|2 intrinsically depends on
e±ξγ t/2m, we need to separately evaluate |cn,2(t )|2 in the above
mentioned three cases (a), (b), and (c).

In the case (a), |cn,2(t )|2 becomes a periodic function.
Figure 3(a) shows the graphs of |cn,2(t )|2 (n = 0, 2, 4, 6) for
the fixed values m = ω = 1 and γ = 1. It is confirmed that
the transition probabilities |cn,2(t )|2 change periodically with
the same period.

In the case (b), ξ vanishes, and it is necessary to expand
Eq. (21) around ξ = 0 to obtain

cn,2(t ) = (n − 1)!!√
2n!

ei(n+1/2)αt ei(n/2−1)β

×
(

− γ t

2m
+ 2mn

γ t

)
(γ t/2m)n/2

(1 + iαt )(n+3)/2
. (22)

Obviously, |cn,2(t )|2 is an irrational function. Figure 3(b)
shows the graphs of |cn,2(t )|2 (n = 0, 2, 4, 6) for the fixed
values m = ω = 1, and γ = √

5 − 1.
In the case (c), |cn,2(t )|2 becomes a combination of real hy-

perbolic functions. Figure 3(c) shows the graphs of |cn,2(t )|2
(n = 0, 2, 4, 6) for the fixed values m = ω = 1 and γ = 1.5.

Comparing the graphs in Figs. 2 and 3 plotted for the same
γ and n, we observe that most of the graphs in Fig. 3 have
more inflection points than the corresponding graphs in Fig. 2.
Such details on the graphs of |cn,l (t )|2 should be examined
analytically in the case of arbitrary l and n.

VI. CONCLUDING REMARKS

In conclusion, the DHO at the quantum level is understood
as the one whose energy eigenvalues with equal energy inter-
vals decrease exponentially with time and that involves tran-
sitions between the energy eigenstates in association with the
decrease of energy eigenvalues. To the best of our knowledge,
no such quantum mechanical aspects of the DHO have been
illustrated in earlier literature. It is remarkable that in addition
to the classical critical parameter 2mω, the new critical pa-
rameter γ∗ ≡ (

√
5 − 1)mω appears at the quantum level. This

FIG. 3. Figures 3(a), 3(b), and 3(c) show the graphs of |cn,2(t )|2
(n = 0, 2, 4, 6) plotted in the cases (a), (b), and (c), respectively.

parameter discriminates different behaviors of |cn,l (t )|2 under
time evolution.

We first considered the doubled system with the dynamical
variables x and y. The doubling of dynamical variables is a
common strategy for dealing with dissipative systems such as
the DHO [30–35], regardless of whether or not the additional
variables represent the degrees of freedom of a heat bath
or environment. In fact, Galley developed a new framework
of Lagrangian-Hamiltonian mechanics for generic dissipative
systems by means of the doubling of dynamical variables [32].
In this framework, after all variations are performed, each
doubled variables are reduced to a single physical variable
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by imposing the condition called physical limit by hand. In
our approach, instead, an alternative condition, ρx = σy, is
imposed at the Lagrangian level as in (2).

In this paper, we have not explicitly treated the degrees
of freedom of a heat bath or environment, although the heat
energy Q = H − E has been taken into account. In this sense,
our approach is, so to speak, phenomenological. It would be
interesting to generalize our phenomenological approach to
other dissipative systems.

APPENDIX

This Appendix is devoted to deriving the equations men-
tioned under (2) and to examining their general solutions.

From LMB, we obtain the Euler-Lagrange equations,

mẍ + γ ẋ + kx + λσ = 0, (A1a)

mÿ − γ ẏ + ky − λρ = 0, (A1b)

2mρ̇ − γ ρ − 2mλy = 0, (A1c)

2mσ̇ + γ σ − 2mλx = 0, (A1d)

ρx − σy = 0. (A1e)

To avoid the reduction to the original Bateman model, we
here assume that ρ �= 0 and σ �= 0. Then (A1e) can be written
as y = (ρ/σ )x. Using (A1c), (A1d), and (A1e), we have

ẏ = ρ

σ

(
ẋ + γ

m
x
)
, (A2)

ÿ = ρ

σ

(
ẍ + 2γ

m
ẋ + γ 2

m2
x

)
. (A3)

Substituting y = (ρ/σ )x, (A2), and (A3) into Eq. (A1b) leads
to

mẍ + γ ẋ + kx − λσ = 0. (A4)

From (A1a) and (A4), we have

mẍ + γ ẋ + kx = 0, (A5)

λ = 0, (A6)

because σ �= 0. In this way, λ is automatically determined to
be 0; as a result, (A1b), (A1c), and (A1d) become

mÿ − γ ẏ + ky = 0, (A7a)

2mρ̇ − γ ρ = 0, (A7b)

2mσ̇ + γ σ = 0, (A7c)

respectively. Thus we can naturally derive (A5)–(A7) and
(A1e), namely the equations mentioned under (2), from LMB.

The general solutions of (A5), (A7a), (A7b), and (A7c) are,
respectively, found to be

x(t ) = x0e−γ t/2m sin(ω−t + ϕ), (A8a)

y(t ) = y0eγ t/2m sin(ω−t + χ ), (A8b)

ρ(t ) = ρ0eγ t/2m, (A8c)

σ (t ) = σ0e−γ t/2m, (A8d)

where x0 and y0 are positive real constants, and ϕ, χ , ρ0, and
σ0 are real constants. Substituting (A8a)–(A8d) into (A1e)
gives

ρ0x0 sin(ω−t + ϕ) = σ0y0 sin(ω−t + χ ). (A9)

Dividing (A9) by its derivative with respect to t , we
have tan(ω−t + ϕ) = tan(ω−t + χ ), which implies that
χ = ϕ + nπ (n ∈ Z). Substituting this into Eq. (A9) yields
ρ0x0 = (−1)nσ0y0. Since ρ0σ0 = ρσ = N > 0 is assumed
under (3), in addition to x0 >0 and y0 > 0, we conclude that n
is even. Hence, the initial phases ϕ and χ are equal modulo
2πn (n ∈ Z). We thus see that only one oscillation term,
sin(ω−t + ϕ), exists in the present system.
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