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Quantum traversal time across a potential well

Dean Alvin L. Pablico * and Eric A. Galapon †

Theoretical Physics Group, National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines

(Received 13 August 2019; accepted 21 January 2020; published 10 February 2020)

We consider the quantum traversal time of an incident wave packet across a potential well using the theory
of quantum time of arrival (TOA) operators. This is done by constructing the corresponding TOA operator
across a potential well via quantization. The expectation value of the potential-well TOA operator is compared
to the free-particle case for the same incident wave packet. The comparison yields a closed-form expression of
the quantum well traversal time which explicitly shows the classical contributions of the positive and negative
momentum components of the incident wave packet and a purely quantum-mechanical contribution significantly
dependent on the well depth. An incident Gaussian wave packet is then used as an example. It is shown that
for shallow potential wells, the quantum well traversal time approaches the classical traversal time across the
well region when the incident wave packet is spatially broad and approaches the expected quantum free-particle
traversal time when the wave packet is localized. For deep potential wells, the quantum traversal time oscillates
from positive to negative, implying that the wave packet can be advanced or delayed.
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I. INTRODUCTION

One of the simplest and most studied potentials in quantum
mechanics is the rectangular one-dimensional potential such
as the potential barrier and well. This type of potential of-
fers interesting quantum-mechanical phenomena such as the
quantum tunneling through a potential barrier and quantum
reflection and transmission through a potential well. Such
phenomena are predicted by solving the time-independent
Schrödinger equation. However, things get complicated when
one has to incorporate the time-dependent picture of these
quantum mechanical effects, for example, the traversal time,
which is the time it takes for a quantum wave packet or particle
to traverse a given region of space. In classical mechanics, one
can just use a stopwatch to find the traversal time of a classical
particle. However, the concept of traversal time in the context
of quantum mechanics has been controversial since standard
quantum theory does not offer a clear definition and unique
treatment of quantum traversal time [1,2].

The most well known quantum traversal time problem is
the quantum tunneling time problem, i.e., the problem of
how long a particle tunnels through a potential barrier that is
classically forbidden [3,4]. It is almost as old as quantum me-
chanics itself [5] and has attracted much attention with diverse
and contradicting opinions [3,6]. Initial studies on quantum
tunneling using the attosecond angular streaking technique,
which can time the release of electrons in strong-field ion-
ization with a precision of a few attoseconds, confirm that
tunneling happens instantaneously [6,7]. In contrast, a study
on multielectron atoms claims evidence for finite tunneling
times [8]. However, a more recent paper by Sainadh et al.
reported an instantaneous tunneling in atomic hydrogen using
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attoclock and momentum-space imaging [9]. Although there
is still no consensus on whether or not quantum tunneling
occurs instantaneously, the attosecond science community is
more inclined toward instantaneous quantum tunneling time
[6,10]. Such experimental results are also consistent with
the independent theoretical predictions of Galapon [11] and
Petersen and Pollak [12–14].

Now that the tunneling time for particles passing through
a potential barrier may be instantaneous, what would the
corresponding quantum traversal time be when particles pass
through a potential well instead? This may sound simple
at first since classical mechanics already tells us that the
particle would speed up in the well region because its incident
energy is increased by the potential depth. This implies that
the traversal time in the well region is always less than the
traversal time in the free region. However, this is not neces-
sarily true if one employs a quantum-mechanical treatment of
traversal time.

Li and Wang reported a negative phase time for particles
passing through a potential well [15]. Their result implies
that quantum particles pass through the well region at a neg-
ative phase velocity. This further suggests that the quantum
particles seem to leave the potential well before entering it.
The existence of the negative phase time was experimentally
verified by Vetter et al. using electromagnetic wells realized
by waveguides filled with different dielectrics [16]. Chen and
Li also showed that the group delay for Dirac particles trav-
eling through a potential well can be negative under specific
conditions [17]. Another paper by Chen and Li discussed the
mechanism of superluminal traversal time from the viewpoint
of interference between multiple finite wave packets, due to
multiple reflections inside a potential well or barrier [18].
Furthermore, Los and Los showed that the particle arrival time
and dwell time in a potential barrier or well are dependent
on the positive and negative momentum components and their
interference with an incident wave packet [19]. Finally, Muga
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et al. showed that potential square wells lead to much larger
time advancements than square barriers [20].

We are then motivated to consider this problem using the
theory of quantum time of arrival (TOA) operators proposed
in Refs. [21,22]. The basic idea is to incorporate time and time
quantities as dynamical observables, like any other observ-
ables in standard quantum mechanics. For our case, the quan-
tum well traversal time for quantum particles is determined
under the hypothesis that we can meaningfully construct a
TOA operator T̂ corresponding to an arrival at some point q in
our configuration space for a given interaction potential V (q).
This TOA operator is then constructed via quantization of the
classical TOA [22]. The expectation values of the potential
well and free-particle TOA operators are then compared for
the same incident wave packet.

It is shown in this paper that the quantum traversal time
across the well region is dependent on the initial state of the
incident wave packet �̃(k) in momentum space representation
and the width and depth of the potential well. It is also
expressed as the weighted sum of the classical traversal times
on top of the well region with weights |�̃(k)|2 and |�̃(−k)|2
and the traversal time inside of the potential well with a
nonpositive-definite weight Im[2�̃(ik)�̃∗(−ik)]. An incident
Gaussian wave packet is then used as an example. It is found
that for shallow potential wells, the expected quantum well
traversal time approaches the classical traversal time across
the well region when the incident wave packet is spatially
broad. Meanwhile, it approaches the free particle quantum
traversal time for localized or spatially narrow wave packets.
For deep potential wells, the quantum well traversal time
oscillates from positive to negative, implying that the wave
packet, on average, can be advanced or delayed.

This work provides concrete testable predictions that may
clarify the nature of time as a quantum dynamical observable.
More specifically, it gives a deeper understanding of and
insights into the proper treatment of quantum traversal time
for quantum systems since standard quantum theory does not
give us a clear quantum-mechanical generalization of the clas-
sical traversal time. Furthermore, it has potential application
in electronic devices since the concept of group time delay,
an aspect of traversal time, is important in quantum particle
transport in various semiconductor devices [23,24].

The rest of the paper is organized as follows. The TOA
operator is constructed via quantization in Sec. II. The quan-
tum traversal time across the potential well is determined by
comparing the expectation values of the TOA operators in the
presence and absence of the potential well in Sec. III. The
relation between the quantum well and barrier traversal times
is investigated in Sec. V. An incident Gaussian wave packet
is used as an example to explicitly calculate the quantum
traversal time across the potential well in Sec. V. A summary
and conclusions are given in Sec. VI.

II. QUANTUM TOA OPERATOR

The same operational definition of the quantum traversal
time prescribed in Refs. [11,25,26] is used. The measurement
schemes in the presence and absence of the potential well
are shown in Figs. 1 and 2, respectively, and are described
as follows. A detector DT is placed at the origin to announce

FIG. 1. Measurement scheme in the presence of a potential well.
The potential well V (q) = −V0 of length L is located at −a < q <

−b, with the arrival point at q = 0. The corresponding average TOA
τ̄W at DT is computed.

the arrival of a particle and a detector DR at the far left of
DT . A potential well V (q) = −V0 of width L is situated in
between DT and DR at −a < q < −b, where a and b are both
positive. A wave packet ψ (q) is prepared between DR and the
potential well and launched at time t = 0. The time of arrival
of the particle at the origin is recorded when DT clicks; if not,
no data are collected when DR clicks. This is repeated a large
number of times, with ψ (q) as the initial state for every repeat,
and then the average time of arrival τ̄W at DT is computed.
A similar experiment for a free particle is performed, which
is in the absence of the potential well, as shown in Fig. 2.
The average free time of arrival τ̄F at DT is then computed
from the new time of arrival data. A comparison between the
average TOAs τ̄W and τ̄F is made. The expected traversal time
across the potential well is deduced from the TOA difference
given by

�τ = τ̄F − τ̄W . (1)

Equation (1) implies three possible cases, i.e., �τ is 0, pos-
itive, or negative. The first case (�τ = 0) suggests that the
average traversal time for a free-particle case and in the pres-
ence of the well is the same. The case �τ > 0 suggests that
the quantum particle, on average, passes through the potential
well region earlier than in the free-particle case. Meanwhile,
the case �τ < 0 implies that the free particle, on average,
is advanced, so the quantum particle traveling through the
potential well is delayed. The measurement scheme for each
case is chosen because it avoids altering the propagation of
the incident wave packet and hence provides an indirect but
realistic and accurate way of obtaining the well traversal time.

FIG. 2. Measurement scheme in the absence of a potential well.
The corresponding average TOA τ̄F at DT is computed.
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Note, however, that Eq. (1) is not the well traversal time itself,
but the traversal time can be deduced from it.

We now hypothesize that this measurement scheme can
be described theoretically by TOA operators. Let T̂W be the
TOA operator in the presence of the potential well and T̂F be
the TOA operator in the absence of the well. The operator
T̂F is defined as the free-particle TOA operator, which is
the quantization of its classical time of arrival [21,27]. The
operator T̂W is constructed by quantization using the theory
of quantum time of arrival in the presence of an interaction
potential V (q) described in Refs. [21,22]. We identify τ̄W as
the expectation value τ̄W = 〈ψ |T̂W |ψ〉 and τ̄F as the expecta-
tion value τ̄F = 〈ψ |T̂F |ψ〉 of the two TOA operators T̂W and
T̂F , respectively. It was already shown by one of us that the
expectation value τ̄F leads to the correct classical value, where
the classical TOA exists, in the limit as h̄ approaches zero
[27]. It will be shown later that the expectation value τ̄W also
leads to its correct classical limit. Hence, the time of arrival
difference given in Eq. (1) becomes

�τ = 〈ψ |T̂F |ψ〉 − 〈ψ |T̂W |ψ〉. (2)

For analytic or piecewise constant potentials, a TOA op-
erator can be constructed by quantization of the classical
TOA [21,22]. In coordinate representation, the quantized TOA
operator for arrival at the origin is the integral operator

(T̂ φ)(q) =
∫ ∞

−∞

μ

ih̄
T (q, q′)sgn(q − q′)φ(q′)dq′, (3)

where μ is the mass of the particle, sgn(x) is the sign function,
and T (q, q′) is the time kernel factor for a chosen quantiza-
tion. For Weyl quantization, the time kernel is given by

T (q, q′) = 1

2

∫ η

0
0F1

(
; 1;

μ

2h̄2 ζ 2V (η) − V (η′)
)

ds, (4)

in which 0F1(; 1; z) is a specific hypergeometric function,
ζ = q − q′, and η = (q + q′)/2 [21]. In general, the time
kernels via different quantizations are not the same due to the
noncommutativity of the position and momentum operators
[22]. However, it can be easily shown that for the case of
constant piecewise potentials, such as that of potential barriers
and wells, the time kernels are equal for Weyl, Born-Jordan,
and simple symmetric quantizations.

For the free-particle case, substituting V (q) = 0 into
Eq. (4) and using the identity 0F1(; 1; 0) = 1 yields the time
kernel factor given by

TF (q, q′) = q + q′

4
. (5)

Substituting TF (q, q′) back into Eq. (3) gives the free TOA
operator in its integral form [27].

The TOA operator T̂W across the potential well is con-
structed by solving first for the time kernels using Eq. (4)
with reference to Fig. 1. The potential V (q) in configuration
space is mapped into the same potential in the η coordinate
such that the arrival point is at η = 0. A change of variables
is done using the relations η = (q + q′)/2 and ζ = q − q′ so
that the time kernel factor given in Eq. (4) assumes the form
T (q, q′) = T̃ (η, ζ ). The time kernel factor T̃ (η, ζ ) is obtained
by dividing the η coordinate into three nonoverlapping regions
separated by the edges of the well as shown in Fig. 1. Thus,

T̃ (η, ζ ) has three pieces corresponding to the three regions
where η may fall, which are given by

T̃1(η, ζ ) = η

2
,

T̃2(η, ζ ) = η

2
− b

2
[J0(κ|ζ |) − 1],

T̃3(η, ζ ) = η

2
− L

2
[I0(κ|ζ |) − 1],

(6)

where κ = √
2μV0/h̄ and L = a − b is the width of the poten-

tial well.
We now prove that Eq. (3) gives the quantization of the

classical time of arrival across the well by showing that the
constructed TOA operator gives the correct classical limit.
The limit is obtained by taking the inverse Weyl-Wigner
transform of the kernel 〈q|T̂ |q′〉 given by

tn(q0, p0) = μ

ih̄

∫ ∞

−∞
T̃n(q0, ζ )sgn(ζ )eipoζ/h̄dζ , (7)

where q0 and p0 are the initial position and momentum,
respectively. The integral in Eq. (7) is to be understood in
the distributional sense. The subscript n represents the region
where the initial position q0 lies in the three possible regions.
For example, the time kernel factor T̃1(q0, ζ ) gives the classi-
cal time of arrival t1 in which the particle started somewhere
within region I.

We substitute T̃1(q0, ζ ), T̃2(q0, ζ ), and T̃3(q0, ζ ) into
Eq. (7). Integrals involving Bessel functions are evaluated
by expanding them in their power series representations,
exchanging the order of summation and integration, and
then performing a term-by-term integration using the integral
identity ∫ ∞

−∞
νm−1sgn(ν)e−ixνdν = 2(m − 1)!

imxm
(8)

(the inverse Fourier transform of [28]) to obtain the clas-
sical limit. We then sum the resulting series, which leads
to the classical limits corresponding to the three possible
locations of q0,

t1(q0, p0) = −μ
q0

p0
,

t2(q0, p0) = −μ
q0 + b

p0
+ μb√

p2
0 − 2μV0

,

t3(q0, p0) = −μ
q0 + L

p0
+ μL√

p2
0 + 2μV0

,

(9)

provided 2μV0/p2
0 < 1.

Notice that t1 is just the expected classical time of arrival in
the free region of length q0. For t2, the first term is the traversal
time on top of the well region of length −(q0 + b) > 0 with
momentum p0 and the second term is the traversal time across
the free segment b with momentum

√
p2

0 − 2μV0. On the other
hand, the first term of t3 is the traversal time before and after
the potential well with momentum p0. Note that the second
term of t3 is just the known classical traversal time across the
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potential well,

tclassical = μL√
p2

0 + 2μV0

. (10)

Hence, the constructed TOA operator reduces to the correct
classical TOA expression in the classical limit.

III. QUANTUM WELL TRAVERSAL TIME

The expectation value for a TOA operator T̂ for a given
incident wave packet ψ (q) is given by

〈ψ |T̂ |ψ〉 =
∫ ∞

−∞

∫ ∞

−∞
ψ̄ (q)ψ (q′)

μ

ih̄
T (q, q′)sgn(q − q′)dq′dq.

(11)

Let the incident wave packet take the form ψ (q) = ϕ(q)eik0q

with a momentum expectation value h̄k0 and group velocity
h̄k0/μ. Substituting ψ (q) into Eq. (11) and changing vari-
ables to (ζ , η), the expectation value evaluates to 〈ψ |T̂ |ψ〉 =
Im(τ ∗), where τ ∗ is the complex-expected TOA given by

τ ∗ = −2
μ

h̄

∫ ∞

−∞

∫ ∞

−∞
ϕ̄

(
η − ζ

2

)
ϕ

(
η + ζ

2

)

× T̃ (η, ζ )eik0ζ dη dζ . (12)

We assume that the incident wave packet is infinitely
differentiable and with support to the left of the well. The
same assumption was used independently by Galapon [11]
and Pollak [13] for the potential barrier case. Now, in the
absence of the potential well, substituting the time kernel
T̃F (η, ζ ) = η/2 into Eq. (12) gives the complex-expected
TOA for the free-particle case given by

τ ∗
F = −μ

h̄

∫ ∞

0

∫ ∞

−∞
ϕ̄

(
η − ζ

2

)
ϕ

(
η + ζ

2

)
ηeik0ζ dη dζ .

(13)

In the presence of the well, we use the time kernel T̃3(η, ζ )
only since we have assumed that the support of ϕ(q) does
not extend inside the well region. Substituting T̃3(η, ζ ) into
Eq. (12) gives the complex-expected TOA in the presence of
the potential well,

τ ∗
W = −μ

h̄

∫ ∞

0

∫ ∞

−∞
ϕ̄

(
η − ζ

2

)
ϕ

(
η + ζ

2

)
(η + L)eik0ζ dη dζ

+ μL

h̄

∫ ∞

0

∫ ∞

−∞
ϕ̄

(
η − ζ

2

)
ϕ

(
η + ζ

2

)
I0(κζ )eik0ζ dη dζ .

(14)

Recall that the direct measurable quantity for deducing the
well traversal time is the TOA difference given by Eq. (2).
In terms of the complex-expected TOAs τ ∗

W and τ ∗
F , the TOA

difference reduces to �τ = Im(�τ ∗) = Im(τ ∗
F − τ ∗

W ). Using
Eqs. (13) and (14), the complex-expected TOA difference
leads to

�τ ∗ = L

v0
(Q∗ − R∗), (15)

where v0 = h̄k0/μ is the group velocity. The quantities Q∗ and
R∗ are defined as

Q∗ = k0

∫ ∞

0
dζ �(ζ )eik0ζ , (16)

R∗ = k0

∫ ∞

0
dζ �(ζ )I0(κζ )eik0ζ , (17)

where �(ζ ) is given by

�(ζ ) =
∫ ∞

−∞
dη ϕ̄

(
η − ζ

2

)
ϕ

(
η + ζ

2

)
. (18)

We explain first the underlying physical contents of the
quantities (L/v0)Q and (L/v0)R, where Q = Im(Q∗) and R =
Im(R∗). This is done by investigating their corresponding
asymptotic form in the high-energy limit k0 → ∞ for fixed
κ , i.e., fixed potential depth V0. It was already shown by
one of us that Q ∼ 1 as k0 → ∞ [11]. This implies that the
quantity (L/v0)Q ∼ L/v0 in the classical limit, which is just
the classical traversal time for a quantum particle across a free
region of length L with speed v0. We can therefore identify
τF = (L/v0)Q as the expected quantum traversal time for the
free particle across the free region of length L.

For the quantity (L/v0)R, notice that R∗ in Eq. (17) is a
Fourier integral with respect to the asymptotic parameter k0.
By repeated integration by parts, collecting equal powers of
h̄, substituting κ = √

2μV0/h̄ and k0 = √
2μE0/h̄, and taking

the imaginary part lead us to the asymptotic expansion

R ∼
∞∑

j,l=0

(−1) j+l

22l

h̄2 j

(2μE0) j

(
2 j + 2l

2l

)(
2l

l

)(
V0

E0

)l

�(2 j)(0).

(19)

In the classical limit, only j = 0 terms contribute since terms
with the factor h̄ must vanish. Using the normalization condi-
tion �(0) = 1, one finds

R ∼
√

E0

E0 + V0
(20)

in the high-energy limit k0 → ∞. It can be seen that Eq. (20)
is just the square root of the ratio of the incident energy and the
energy on top of the potential well. This can be written as the
ratio of the free velocity v0 and the velocity on top of the well
vW such that R ∼ v0/vW . In the classical limit, we then find
(L/v0)R ∼ L/vW , which is simply the classical traversal time
across the potential well, consistent with Eq. (10). Therefore,
the quantity

τW = L

v0
R (21)

can be identified as the quantum traversal time across the
potential well. This result can be related to optics. One can see
that the classical limit R ∼ v0/vW is just the effective index of
refraction of the well with respect to the incident wave packet,
R being the ratio of the reference speed v0 to the phase speed
vW in the medium. The same interpretation of R has been used
for the potential barrier case in Ref. [11].

We now focus on establishing the expected quantum traver-
sal time τW across the potential well. We rewrite the complex
index of refraction R∗ by introducing the inverse Fourier
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transform ϕ(q) = (1/2π )
∫ ∞
−∞ φ(k̃)eik̃qdk̃. Substituting ϕ(q)

into �(ζ ) given by Eq. (18) yields

�(ζ ) =
∫ ∞

−∞
dk̃|φ(k̃)|2eik̃ζ . (22)

Substituting Eq. (22) into our definition of the complex index
of refraction of the well R∗ and letting k̃ = k − k0 leads to

R∗ = k0

∫ ∞

0
dζ

∫ ∞

−∞
dk|φ(k − k0)|2I0(κζ )eikζ . (23)

Notice that φ(k − k0) is just the Fourier transform of the full
incident wave function ψ (q) = ϕ(q)eik0q, that is,

φ(k − k0) = 1√
2π

∫ ∞

−∞
dq e−ikqψ (q) = �̃(k). (24)

The complex effective index of refraction of the well then
takes the form

R∗ = k0

∫ ∞

0
dζ I0(κζ )

∫ ∞

−∞
dk|�̃(k)|2eikζ . (25)

One may naively just interchange the order of integrations
along ζ and k in R∗ and then evaluate first the integral along
ζ . This leads to a divergent integral which can be normally
evaluated by analytic continuation, regularization, summabil-
ity methods, finite part integrals, and others. However, we
recently found out that naively interchanging the order of
integrations in the real line leads us to miss some significant
terms due to the special nature of divergent integrals [29,30].
These missed terms naturally appear when one has to solve
Eq. (25) in the complex plane. This problem is somewhat
similar to the problem of missing terms in term-by-term
integration involving divergent integrals [30]. Now evaluating
Eq. (25) in the complex plane leads us to our final expression
for the effective index of refraction of the well given by

R = k0

∫ ∞

0
dk

|�̃(k)|2√
k2 + κ2

− k0

∫ ∞

0
dk

|�̃(−k)|2√
k2 + κ2

− k0

∫ κ

0
dk

Im[2�̃(ik)�̃∗(−ik)]√
κ2 − k2

. (26)

The derivation of Eq. (26) is shown explicitly in the Appendix.
Substituting Eq. (26) into τW = (L/v0)R = (μL/h̄k0)R
gives us the expected quantum traversal time across the
potential well.

Now notice that the factor h̄
√

k2 + κ2/μ can be defined
as the velocity vtop(k) on top of the potential well and
h̄
√

κ2 − k2/μ as the velocity vin(k) inside of the well. We can
also define τtop(k) = L/vtop(k) as the traversal times across
the top of the well with velocity vtop(k) and τin(k) = L/vin(k)
as the traversal times inside the well with velocity vin(k) for
a given k. Hence, the expected quantum traversal time across
the potential well is now given by

τW =
∫ ∞

0
dk τtop(k)|�̃(k)|2 −

∫ ∞

0
dk τtop(k)|�̃(−k)|2

−
∫ κ

0
dk τin(k)Im[2�̃(ik)�̃∗(−ik)]. (27)

Equation (27) is our final expression for the expected
quantum traversal time across the potential well, which is the

main result of this paper. The first two terms of Eq. (27) can
be identified as the weighted sum of the classical traversal
times τtop(k) across the top of the potential well with weights
|�̃(k)|2 and |�̃(−k)|2. In fact, these two weights can be
identified as legitimate momentum probability distributions.
Furthermore, the first two terms of R show the contribution
from the positive and negative momentum components of the
incident wave packet to the well traversal time. This is some-
what similar to the result of Los and Los [19]. One may argue
that only the positive components are relevant for arrivals
at the transmission channel, which is to be expected from
the classical notion of traversal time. However, in quantum
mechanics, a wave packet which represents an ensemble of
particles cannot be initially localized in the region q < 0 at
t = 0 if it only has positive momentum components. In fact,
the negative momentum components of the incident wave
packet, which by construction are restricted to the half-line
in the momentum space, are not necessarily equal to zero in
the entire q space [−∞,+∞] and thus contribute [19].

Unlike the first two terms, the third term of Eq. (27) has a
purely quantum-mechanical origin. Notice that the third term
is expressed as a weighted sum of the traversal time inside
the well with velocity vin(k) with weight Im[2�̃(ik)�̃∗(−ik)].
Unlike |�̃(k)|2 and |�̃(−k)|2, the weight Im[2�̃(ik)�̃∗(−ik)]
cannot be identified as a probability distribution because it
is not positive definite and in some cases has an oscillatory
behavior. Recall that, classically, the expectation is that the
incident particle will only traverse on top of the potential well
because its incident energy E is greater than the potential
−V0. Of course we know quantum mechanically that there is a
portion of the incident wave packet that interacts with the po-
tential well. This portion is captured by the well and remains
trapped inside for a period of time. In other words, there is
a nonzero probability that a quantum particle, described by a
wave packet, is found inside the potential. This phenomenon
is exactly what is depicted by the third term of Eq. (27). The
portion of the wave packet trapped inside the well traverses
the well region and only comes out at time τin(k) for a given
k. The contribution from this term becomes more apparent
when one has to consider sufficiently large κ , that is, for deep
potential wells. As will be shown later, the third term becomes
dominant for deep wells, implying a significant quantum-
mechanical interaction between the incident wave packet and
the potential well.

IV. BARRIER TRAVERSAL TIME RELATION

Now that we have a closed-form expression of the quantum
well traversal time, it would be interesting to investigate how
the latter is related to the known barrier traversal time found
in Ref. [11]. We will show here that both the barrier and well
traversal times vary smoothly when the potential amplitude is
varied from V0 to −V0 so that the two traversal times can be
derived from each other. This also enables us to determine the
origin of the zero tunneling time result of Ref. [11].

A. Relation of well traversal time to barrier traversal time

With the definition κ = √
2μV0/h̄, the transformation

V0 → −V0 implies an equivalent transformation κ → iκ . This
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FIG. 3. Original contours of integration for (a) the first two terms and (b) the third term of the real-valued function R given by Eq. (26).
Here κ is a purely real number. The branch cuts of 1/

√
k2 + κ2 and 1/

√
κ2 − k2 are chosen such that they are analytic at [0, ∞] and [0, κ],

respectively. When κ becomes a purely imaginary number κ = iκ0, the chosen branch cuts are rotated counterclockwise. Hence, the previously
real-valued function R becomes now a complex-valued function R(iκ0) given by Eq. (28). This implies new contour representations in the
complex plane for (c) the first two terms and (d) the third term of the refractive index R(iκ0).

then gives us the motivation to consider the previously real-
valued function R given by Eq. (26) as a complex-valued
function so that the previously real-valued weights |�̃(±k)|2
and Im[2�̃(ik)�̃∗(−ik)] are now to be considered entire
functions of the complex variable k. We choose the branch
cuts of 1/

√
k2 + κ2 and 1/

√
κ2 − k2 as depicted in Figs. 3(a)

and 3(b), respectively. Now we impose the transformation
V0 → −V0 by considering κ to be a purely imaginary number,
that is, κ = iκ0, where κ0 > 0. Equation (26) then leads to

R(iκ0) = k0

∫ ∞

0
dk

|�̃(k)|2√
k2 − κ2

0

− k0

∫ ∞

0
dk

|�̃(−k)|2√
k2 − κ2

0

− k0

∫ iκ0

0
dk

Im[2�̃(ik)�̃∗(−ik)]√
k2 + κ2

0

, (28)

where the corresponding contour representations in
the complex plane are shown in Figs. 3(c) and 3(d).
Note that �̃(ik)�̃∗(−ik) = |�̃(±z)|2|z=±ik , so the factor
Im[2�̃(ik)�̃∗(−ik)] in the third term of Eq. (28) can be
expressed as a sum involving the real and imaginary parts of
|�̃(±z)|2|z=±ik . Using the contour shown in Fig. 3, one finds
that the third term of R(iκ0) can be rewritten as

R3(iκ0) = −k0

∫ κ0

0
dk

|�̃(k)|2√
k2 − κ2

0

+ k0

∫ κ0

0
dk

|�̃(−k)|2√
k2 − κ2

0

,

(29)

which exactly cancels the [0, κ0] limit of the first two integrals
of Eq. (28). This then leads to R(iκ0) = RB, where

RB = −k0

∫ ∞

κ0

dk
|�̃(k)|2√
k2 − κ2

0

+ k0

∫ ∞

κ0

dk
|�̃(−k)|2√

k2 − κ2
0

. (30)

With κ0 = κ = √
2μV0/h̄, one can identify RB as the

same barrier effective index of refraction found in Ref. [11].
Equation (30) then implies that only those components of
�̃(±k) with |k| > κ contribute to any measurable traversal
time across the barrier region. For the case of quantum
tunneling, the support of the momentum distribution of the
incident wave packet has a corresponding energy distribution

that lies below the potential height. This then implies that the
index of refraction is zero and the traversal time under the
barrier vanishes. This inevitably leads to the conclusion that
below the barrier energy components are transmitted without
delay across the barrier, that is, quantum tunneling happens
instantaneously [11].

Our result here suggests that the well index of refraction
leads exactly to the barrier refractive index when the potential
value V0 is varied to −V0. Since τB = (L/v0)RB, this immedi-
ately implies that the well traversal time also leads to the bar-
rier traversal time under the same variation. This is interesting
because the classical well traversal time cannot be generally
extended to the barrier traversal time for all energy values
of the incident particle because the latter is undefined when
E0 < V0. This stems from the fact that quantum tunneling
violates the principles of classical mechanics. However, we
have shown here that the quantum well traversal time varies
smoothly such that the barrier traversal time can be derived
from the former under the transformation V0 → −V0. This
in fact originates from the wavelike aspect of the incident
particle and the prediction of quantum tunneling in quantum
mechanics.

In addition, what we fail to see in Ref. [11] that we see
here is that the barrier traversal time can actually be written
as the sum involving the classical and quantum contribu-
tions, similar to the well traversal time given by Eq. (27) as
discussed in Sec. III. However, the presumably third term
in RB with weight Im[2�̃(ik)�̃∗(−ik)], which we identified
earlier as a purely quantum contribution to the traversal time,
exactly cancels the nonclassical contribution of the suppos-
edly finite quantum tunneling time, that is, when �̃(±k)
with |k| > κ . Hence, we only have above-the-barrier traversal
time. This cancellation may physically originate from the
interaction of the wave-packet components, such as interfer-
ence and multiple reflections, happening inside the potential
barrier.

B. Relation of barrier traversal time to well traversal time

We have shown in the preceding section that the well
traversal time leads correctly to the barrier traversal time when
V0 varies to −V0. For completeness, we also show that the
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FIG. 4. Contour of integration C for RB when (a) κ is a purely real number, (b) κ is generally a complex number, and (c) κ is a purely
imaginary number given by κ = iκ0. The contour C is then deformed to an equivalent contour C′ with line segments l1 and l2.

barrier traversal time also leads correctly to the well traversal
time under the same transformation.

We impose assumptions similar to those used in the
preceding section on RB given by Eq. (30), |�̃(±k)|2 and
Im[�̃(ik)�̃∗(−ik)], and lift the integrals into the complex
plane. For k > 0, the branch of 1/

√
k2 − κ2 can be chosen

such that it is analytic in the interval [κ,∞] as shown in
Fig. 4(a). The branch cut is set between the branch points
±κ . When k is a general complex number, we can choose the
contour C shown in Fig. 4(b) as our contour of integration so
that it does not go around the branch cut. Now, if κ = iκ0,
Eq. (30) leads to

RB = k0

∫ ∞

iκ0

dk
|�̃(k)|2√
k2 + κ2

0

− k0

∫ ∞

iκ0

dk
|�̃(−k)|2√

k2 + κ2
0

, (31)

where κ0 > 0 and the corresponding contour of integration
is the contour C in Fig. 4(c). However, Eq. (31) can also
be rewritten by deforming the contour C into an equivalent
contour C′ so that the two integrals are evaluated along the
segments l1 and l2 shown in Fig. 3(b). One then finds

∫ ∞

iκ0

dk
|�̃(k)|2√
k2 + κ2

0

=
∫ ∞

0
dk

|�̃(k)|2√
k2 + κ2

0

− i
∫ κ0

0
dk

�̃(ik)�̃∗(−ik)√
κ2

0 − k2

∫ ∞

iκ0

dk
|�̃(−k)|2√

k2 + κ2
0

=
∫ ∞

0
dk

|�̃(−k)|2√
k2 + κ2

0

+ i
∫ κ0

0
dk

[�̃(ik)�̃∗(−ik)]∗√
κ2

0 − k2
. (32)

From Eqs. (31) and (32) we see that the barrier refractive
index also leads exactly to the well refractive index given by
Eq. (26). This immediately implies that the barrier traversal
time leads to the well traversal time as V0 → −V0. We can then
conclude that both the barrier and well traversal times vary
smoothly such that the two can be derived from each other
when V0 → −V0.

V. WELL TRAVERSAL TIME FOR GAUSSIAN
WAVE PACKETS

To better appreciate Eqs. (26) and (27), we consider an
incident Gaussian wave packet of the form

ϕ(q) = 1√
σ
√

2π
e−(q−q0 )2/4σ 2

, (33)

where q0 and σ 2 are the initial position and position variance,
respectively. In the momentum space representation, ϕ(q) is
expressed as

�̃(k) =
√

σ

√
2

π
e−iq0 (k−k0 )e−σ 2(k−k0 )2

. (34)

Hence, we have the following quantities in Eq. (26):

|�̃(±k)|2 =
√

2

π
σe−2σ 2(k∓k0 )2

, (35)

�̃(ik)�̃∗(−ik) =
√

2

π
σe−2σ 2(ik−k0 )2

. (36)

Using Eqs. (35) and (36), the effective index of refraction of
the well can be written in the form

R = R+ + R− + Rκ , (37)

where

R± = ±k0σ

√
2

π

∫ ∞

0
dk

e−2σ 2(k∓k0 )2

√
k2 + κ2

, (38)

Rκ = −2k0σ

√
2

π
Im

∫ κ

0
dk

e2σ 2(k+ik0 )2

√
κ2 − k2

. (39)

The indices + and − indicate the contributions from the posi-
tive and negative momentum components of the incident wave
packet, respectively. The third term with index κ describes
the significant contribution of the well depth to R. Equation
(39) is rewritten by lifting the integral in the complex plane.
This leads to

Rκ = − 2k0σ

√
2

π

[
e2σ 2(κ2−k2

0 )Im(z) + e−2σ 2k2
0 γ

]
, (40)
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FIG. 5. Contribution from each term of R as a function of σ

where k0 = 5 a.u. and κ = 1 a.u. The effective index of refraction R
of the well approaches a constant value as σ increases. This constant
value is exactly the classical refractive index of the well. Hence, the
quantum well traversal time approaches the classical well traversal
time.

where

z = e4iσ 2k0κ

∫ ∞

0
i dk

e−2σ 2(k2+2k0k)e4iσ 2κk

√
k2 − 2iκk

, (41)

γ =
∫ ∞

0
dk

e−2σ 2(k2−2k0k)

√
k2 + κ2

. (42)

One may immediately notice from Eq. (39) that the third term
of R approaches 0 as κ → 0. However, this becomes dominant
when κ → ∞ or σ → ∞ when κ > k0, or both, as can be
seen from Eq. (40) because of the exponentially large factor
e2σ 2(κ2−k2

0 ). In fact, |Rκ | becomes sufficiently large so that the
contributions from the first two terms of R become negligible,
that is, R ∼ Rκ in the limit κ → ∞. Furthermore, the sign of
Rκ oscillates from positive to negative for specific values of
σk0 and σκ , which will be shown later. This then implies that
the Gaussian wave packet, on average, can be either advanced
or delayed as it is transmitted through and reflected by the
potential well.

A. Shallow potential wells

For this paper, shallow potential wells are described using
the condition κ/k0 → 0. Two distinct and interesting results
are found when one considers spatially wide and narrow
Gaussian wave packets. All results are numerically verified
using random values of κ , k0, and σ .

1. Spatially wide incident Gaussian wave packets

When σ → ∞, our momentum distribution is localized.
The contributions from the second and third terms in Eq. (26)
are negligible compared to the first term in the first approx-
imation since the factor e−2σ 2k2

0 → 0 much faster than the
integrals along k. This behavior can be easily seen in the
plot for the refractive index R as a function of the spread σ

shown in Fig. 5. The first term of R dominates when σ is large
and the last two terms are negligible. This suggests that the
contribution from the positive momentum component is only

relevant to the traversal time in the transmission channel. This
physically signifies that in the limit σ → ∞, the wave packet
becomes a pure plane wave such that the traversal time is
only due to the positive momentum component of the incident
wave packet. In fact, this is what happens classically.

Since our momentum distribution is sharply peaked around
its central point, the integral for the first term of R can be
extended from [0,+∞] to [−∞,+∞]. Substituting �̃(k) to
the first term of Eq. (26), expanding the factor 1/

√
k2 + κ2

in a Taylor series about k = k0, interchanging the order of
summation and integration, and integrating term by term,
we find

R ∼ k0√
k2

0 + κ2
+

∞∑
n=1

1

(2σ )2n

(2n − 1)!!

(2n)!
χn, (43)

where

χn = d (2n)

dk(2n)
(k2 + κ2)−1/2|k=k0 . (44)

Substituting k0 = √
2μE0/h̄ and κ = √

2μV0/h̄, the first term
of Eq. (43) is equal to

√
E0/(E0 + V0), which is exactly

Eq. (20), the effective refractive index of the potential well
in the high-energy limit. Substituting R in τW leads to the
quantum traversal time across the well given by

τW ∼ μL√
p2

0 + 2μV0

+
(

μL√
2μE0

) ∞∑
n=1

1

(2σ )2n

(2n − 1)!!

(2n)!
χn.

(45)

Notice that the first term of Eq. (45) is exactly equal to
Eq. (10), which is the classical traversal time across the poten-
tial well. The succeeding terms are the quantum corrections
to the classical traversal time. These quantum corrections are
dependent on h̄, σ , and κ . As h̄ → 0 or in the extreme limit
σ → ∞, the quantum corrections vanish and the expected
quantum traversal time becomes exactly the classical traversal
time, which depicts the known correspondence principle. This
result is also seen in Fig. 5. The plot for the first term of R
approaches a constant value as σ increases and this constant
value is exactly the classical index of refraction of the well.

An important implication of this result is that the size of
the incident wave packet determines the nonclassicality of the
expected traversal time across the well over mass and incident
energy. This is a manifestation of the quantum wave-packet
size effect which is also found by one of us for the free-
particle case [27]. This then serves as an extension of the
said quantum-mechanical effect from the free-particle case to
the potential well case. We can then use a similar discussion
made by Galapon for the free case [27]. One can say that the
more a particle is quantum in nature, the more prominent is
wave property is. The more classical its traversal time is, the
more the particle is classical in nature. The more the particle
is localized, the more nonclassical its traversal time is [27].

For this particular case where the arrival at the transmission
channel is dominated by the contribution from the posi-
tive momentum component of the incident wave packet, the
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FIG. 6. Contribution from each term of R as a function of k0

where σ = 1/10 a.u. and κ = 5 a.u.

measurable quantum traversal time is given by

τW ∼
∫ ∞

−∞
dk τtop(k)|�̃(k)|2, (46)

which implies that τW is just the weighted sum of the classical
traversal times τtop(k) on top of the well with weights |�̃(k)|2.

2. Spatially narrow incident Gaussian wave packets

For this case, we consider σ → 0 and κ/k0 → 0. Since σ

is very small, our momentum distribution is broad and we can
no longer neglect the contributions from the second and third
terms in Eq. (26) as we did previously. This can be verified
if we plot R as shown in Fig. 6. The third term of Eq. (26)
significantly contributes to the effective index of refraction
of the well when κ/k0 � 1 but becomes subdominant when
κ/k0 → ∞. This is because the third term is only dependent
on the components 0 � k � κ and approaches zero when
κ → 0. Using Eqs. (35) and (36), Eq. (26) leads to

R = 2

√
2

π
k0σe−2σ 2k2

0

∫ ∞

0
dk

e−2σ 2k2
sinh(4σ 2k0k)√
k2 + κ2

+ 2

√
2

π
k0σe−2σ 2k2

0 Im
∫ κ

0
dk

e2σ 2(k+ik0 )2

√
k2 + κ2

. (47)

We expand the hyperbolic sine and exponential functions in
Eq. (47) in a Taylor series, interchange the order of integration
and summation, and then perform a term-by-term integration
which leads to an infinite series involving hypergeometric
functions.

However, recall that σ and κ are small, so we can expand
these hypergeometric functions about σκ = 0 and retain the
dominant terms. This leads to R ∼ Q + �, where

� ∼
√

2πk0σe−2k2
0σ 2

[k0L0(α) − k0H0(α) + κL1(α)], (48)

Q =
√

2πk0σe−2k2
0σ 2

erfi(
√

2k0σ ), (49)

with α = 4k0κσ 2, Hν (z) the Struve function, and Lν (z) the
modified Struve function. Notice that Eq. (49) is exactly the
quantum correction factor to the classical expected time of
arrival for a free particle found in [27]. Since the expected

FIG. 7. Contribution from each term of R as a function of σ

where k0 = κ = 5 a.u. The first term of R still approaches the
classical index of refraction as σ increases. The third term of R now
oscillates from positive to negative.

quantum traversal time is τW = (L/v0)R, we find

τW ∼ Q
μL

h̄k0
+ �

μL

h̄k0
(50)

for sufficiently small σ and κ . The first term of Eq. (50)
is exactly the expected quantum traversal time for the free
particle found by one of us in Ref. [27] for the same incident
Gaussian wave packet. The second term of Eq. (50) gives the
quantum corrections to the expected quantum traversal time
for the free particle in the well region. These corrections are
all dependent on κ , i.e., the depth of the potential well. As
we decrease κ , the contribution from these terms decreases
and in the extreme limit κ → 0, Eq. (50) becomes exactly the
quantum free traversal time found in [27]. This result is to be
expected if the concept of traversal time is extended to the
implications of perturbation theory in quantum mechanics. A
shallow potential well can be viewed as a weak perturbation
to our free system and induces corrections to the quantum
traversal time for a free particle. The same result is found if
one solves Eq. (26) by using the finite-part integration of the
generalized Stieltjes transform found in [29].

B. Deep potential wells

As we move away from the high-energy limit k0 → ∞, the
contribution from the third term of R increases (see Fig. 7).
In the case when the incident energy E0 becomes equal to the
potential depth V0, i.e., k0 = κ , the magnitude of the third term
now becomes greater than the first term. In fact, the complete
index of refraction R starts to oscillate from positive to neg-
ative and its oscillation becomes more rapid as σ increases.
Now for sufficiently deep wells, κ/k0 becomes arbitrarily
large. Since κ is very large, the first and second terms of
R are negligible while the third term of R is exponentially
large because of the factor e2σ 2κ2

. From Eq. (40), the refractive
index of refraction for deep wells is

Rκ ∼ −2

√
2

π
k0σe2σ 2(κ2−k2

0 )Im(z), (51)

where z is given by Eq. (41).
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FIG. 8. Two-dimensional plot for the imaginary part of the di-
mensionless factor z where v = 1. This oscillatory behavior suggests
that the effective index of refraction R of the potential well can be
positive or negative.

For convenience, we change to dimensionless variables
given by u = σκ and v = σk0 and numerically solve z. One
can already notice that R oscillates from positive to negative
for deep potential wells because of the presence of the com-
plex exponential e4iσ 2k0κ in Eq. (41). This can be further seen
from the two- and three-dimensional plots of the imaginary
part of z shown in Figs. 8 and 9, respectively.

Figures 8 and 9 imply that the TOA difference �τ =
τF − τW can be positive or negative because of the oscillatory
behavior of τW = (L/v0)R for deep potential wells. This can
be further seen in Fig. 10. The plot for the correction factor Q
for the free particle is negligible compared to the plot for the
refractive index Rκ for deep wells in logarithmic scale, that is,
|Rκ | > Q for κ → ∞.

Furthermore, notice that the plot for ln(Rκ )/10 is discon-
tinuous and the discontinuities arise because Rκ is negative.
These discontinuities show the values of κ for fixed σ and k0

FIG. 9. Three-dimensional plot of the imaginary part of z as a
function of the dimensionless variables u and v. The same oscilla-
tory behavior is observed, implying a positive or negative index of
refraction R.

FIG. 10. Comparison between the natural logarithms of the cor-
rection factor Q for the free particle and the index of refraction R of
the well. The discontinuity in the plot of ln(Rκ )/10 happens when
Rκ is negative, which implies that the corresponding traversal time is
negative.

wherein the quantum particle travels faster in the well region
(advanced) compared to a free region.

One interpretation of the negative index of refraction found
here is that the quantum particle or wave packet is already
at the arrival point prior to time t = 0 and is now moving
away from it. However, this interpretation seems to be phys-
ically unacceptable if this is to be taken literally. A more
acceptable interpretation is that the wave packet propagates
with negative group velocity upon hitting the potential well.
This implies that the wave packet is being reflected away and
moving to the left from the potential well system. Hence,
the wave packet is not detected at the arrival point. This
is somewhat similar to the nonevanescent propagation with
negative phase shifts prediction of Li and Wang for particles
passing through a potential well [15]. Whatever the negative
traversal time means for the well case, it will be meaningless
to compare it to the free arrival time, which, for our setup, is
always positive.

On the other hand, the visible plot for Rκ shows the values
of κ for fixed σ and k0 wherein the particle travels slower
in the well region (delayed). In principle, one can determine
the specific values of σ , k0, and κ when the particle is
delayed (Rκ > Q) and advanced (Rκ < Q) for deep potential
wells. This result may have an interesting application to
microelectronics, in particular, to the concept of group time
delay in quantum particle transport in various semiconduc-
tor devices [23,24]. One can delay or advance an incident
particle or a wave packet by modulating its initial state,
such as its size and incident energy and the depth of the
potential well.

VI. CONCLUSION

We solved for the expected quantum traversal time of an
incident wave packet across a single potential well using the
theory of time of arrival operators. This was done by first
constructing a TOA operator which is the Weyl quantization
of the classical TOA. The expected quantum traversal time
was deduced by comparing the expectation values of the
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potential well and free-particle TOAs for the same incident
wave packet. We have found an analytic expression for the
expectation value of the quantum well traversal time where
the classical contributions from the positive and negative
momentum components of the incident wave packet and a
purely quantum-mechanical contribution due to the depth of
the potential well are explicitly shown.

We also showed that the quantum well traversal time leads
correctly to the barrier traversal time found in Ref. [11] under
the variation V0 → −V0 in the complex plane. In particular,
we found that the barrier traversal time can actually be written
as a sum involving the classical and quantum contributions,
similar to the well traversal time. However, the presumably
third term in RB with weight Im[2�̃(ik)�̃∗(−ik)], which we
identified earlier as a purely quantum contribution to the
traversal time, exactly cancels the nonclassical contribution
of the supposedly finite quantum tunneling time, that is,
when �̃(±k) with |k| > κ . Hence, we only have an above-
the-barrier traversal time. This cancellation may physically
originate from the interaction of the wave-packet components,
such as interference and multiple reflections, happening inside
the potential barrier.

We also investigated the well traversal time for an incident
Gaussian wave packet. Specifically, we determined how the
quantum traversal time is affected by the initial state of the
wave packet, such at its size σ and incident energy (described
by the wave number k0 = √

2μE0/h̄), and the depth of the
potential well (described by the wave number κ = √

2μV0/h̄).
For shallows wells, that is, κ/k0 → 0, we have consid-

ered two interesting cases. When σ → ∞, the quantum well
traversal time across the well is just the known classical
well traversal time plus some quantum corrections mainly
due to σ . This result implies that the size of the incident
wave packet determines the nonclassicality of the expected
traversal time across the well over mass and incident energy.
On the other hand, when σ → 0, the quantum well traversal
time is just the known quantum free traversal time for a free
particle plus some quantum corrections mainly due to κ , i.e.,
the depth of the shallow potential well. This result suggests
that a shallow potential acts as a small perturbation to our
free-particle system and induces corrections to its traversal
time.

For the case of deep potential wells, that is, κ/k0 → ∞,
we have found that the quantum traversal time can be positive
or negative, implying that the particle or wave packet may be
advanced or delayed for some values of σ , κ , and k0. This
result is different from what is classically known where the
particle always speeds up at the well region and so its traversal
time should decrease instead. As a possible extension of this
result, it would then be interesting to investigate deeply the
possible connection of the negative traversal time result we
have found here to the negative phase time result found by Li
and Wang [15] for future works.
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APPENDIX: DERIVATION OF THE INDEX OF
REFRACTION R OF THE POTENTIAL WELL

Here we present the derivation of the effective index of
refraction R of the potential well given in Eq. (26). Recall that
R takes the form R∗ = k0

∫ ∞
0 dζ I0(κζ )I (ζ ), where

I (ζ ) =
∫ ∞

−∞
dk|�̃(k)|2eikζ . (A1)

Equation (25) is evaluated by considering the integral∫
C dz p(z)eizζ , where p(z) = |�̃(z)|2 in the complex plane

along the contour in Fig. 11. For completeness, we assume
that |�̃(z)|2 contains poles of order n. In the limit r → ∞,
we find ∫ ∞

−∞
dx p(x)eixζ =

∫ ∞

−∞
dx p(x + iε)ei(x+iε)ζ

+ 2π i
∑

C

Res[p(z)], (A2)

where C indicates the contour in Fig. 11 enclosing the poles
of p(z). Using Eq. (A2) and interchanging the order of inte-
gration leads to

R∗ = k0

∫ ∞

−∞
dk p(k + iε)

∫ ∞

0
dζ I0(κζ )ei(k+iε)ζ

+ 2π ik0

∫ ∞

0
dζ I0(κζ )

∑
Res[p(z)]. (A3)

The interchange is valid only when ε > κ wherein the integral
converges. The integral along ζ in the first term of Eq. (A3)
evaluates to i csgn(k)/

√
(k + iε)2 + κ2, where csgn(k) is the

cosign function, as shown.
Consider the integral given by

I∗(k) =
∫ ∞

0
dζ I0(κζ )ei(k+iε)ζ . (A4)

We expand the modified Bessel function in a Taylor series
in Eq. (A4) and interchange the order of integration and
summation. This leads to

I∗(k) =
∞∑

n=0

(
κ

2

)2n 1

(n!)2

∫ ∞

0
dζ ζ 2ne−εζ+ikζ . (A5)

Using the integral identity
∫ ∞

0 dx xne−μx = n!μ−(n+1) for
Re(μ) > 0, we find

I∗(k) = i

k + iε

∞∑
n=0

(−1)n

(
κ

2

)2n (2n)!

(n!)2

1

(k + iε)2n
. (A6)

FIG. 11. Contour of integration for Eq. (A1).
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FIG. 12. Contours of integration for the contour integral∫
C dz p(z)/

√
z2 + κ2.

Summing the resulting series leads to

I∗(k) = i csgn(k)√
(k + iε)2 + κ2

. (A7)

Substituting Eq. (A7) into Eq. (A3) leads to

R∗ = ik0

∫ ∞

−∞
dk

p(k + iε)csgn(k)√
(k + iε)2 + κ2

+ 2π ik0

∫ ∞

0
dζ I0(κζ )

∑
C

Res[p(z)], (A8)

where p(k + iε) = �̃(k + iε)�̃(k − iε)∗. To better under-
stand the underlying physical contents of R∗, we rewrite

the first term of Eq. (A8) by considering the integral∫
C dz p(z)/

√
z2 + κ2 twice in the complex plane along the two

contours shown in Fig. 12. The branch cut is set from iκ to
−iκ . In the limit r → ∞, we find the integral

I (±k) =
∫ ∞

−∞
dk

p(±k + iε)√
(±k + iε)2 + κ2

=
∫ ∞

0
dk

p(±k)√
k2 + κ2

+
∫ κ

ε

i dk
p(ik)√
κ2 − k2

∓
∫ κ

0
i dk

p(ik)√
κ2 − k2

− 2π i
∑
C±

Res

[
p(z)

(z2 + κ2)1/2

]
,

(A9)
where I (±k) is evaluated using the contour C±. Using
Eq. (A9), we can rewrite Eq. (A8) as

R∗ = ik0

∫ ∞

0
dk

|�̃(k)|2√
k2 + κ2

− ik0

∫ ∞

0
dk

|�̃(−k)|2√
k2 + κ2

− 2ik0Im

[ ∫ +κ

0
dk

�̃(ik)�̃∗(−ik)√
κ2 − k2

]
+ R∗

Res, (A10)

where R∗
Res is the contribution from the residue terms which is

given by

R∗
Res = 2π ik0

[ ∫ ∞

0
dζ I0(κζ )

∑
C

Res[p(z)]

+
∑
C+

Res

(
p(z)

(z2 + κ2)1/2

)

+
∑
C−

Res

(
p(z)

(z2 + κ2)1/2

)]
. (A11)

It turns out that the first term of Eq. (A11) cancels the
second and third terms, so R∗

Res = 0. This suggests that there
is no contribution from the poles of |�̃(z)|2, if it exists, to the
effective index of refraction R of the well and in turn to the
expected quantum traversal time. Taking the imaginary part
of Eq. (A10) leads to

R = k0

∫ ∞

0
dk

|�̃(k)|2√
k2 + κ2

− k0

∫ ∞

0
dk

|�̃(−k)|2√
k2 + κ2

− 2k0Im

[ ∫ κ

0
dk

�̃(ik)�̃∗(−ik)√
κ2 − k2

]
, (A12)

which is our final expression for the effective index of refrac-
tion of the potential well.
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