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Having a broad range of methods available for implementing unitary operations is crucial for quantum
information tasks. We study a dissipative process commonly used to describe dissipatively coupled systems
and show that the process can lead to pure unitary dynamics on one part of a bipartite system, provided that
the process is strong enough. As a consequence of these findings, we discuss within the framework of quantum
control theory how the dissipative process can enable universal control of the considered part, thereby turning
parts of the system into a system capable of universal quantum information tasks. We characterize the time scales
necessary to implement gates with high fidelity through the dissipative evolution. The considered dissipative
evolution is of particular importance since it can be engineered in the laboratory in the realm of superconducting
circuits. Based on a reservoir that is formed by a lossy microwave mode we present a detailed study of how our
theoretical findings can be realized in an experimental setting.
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I. INTRODUCTION

The implementation of unitary operations lies at the heart
of quantum information processing. Quantum simulators and
quantum metrology as well as quantum computing schemes
and in general state preparation rely on the ability to imple-
ment unitary gates with high accuracy. It is therefore highly
desirable to have a broad range of methods at hand for meeting
that task. Typically unitary gates are implemented through
external pulses, such as tailored optical fields and microwave
fields [1]. Methods from quantum control theory [2] can be
used to determine the set of operations that can be imple-
mented, whereas optimal control theory provides the tools to
calculate the corresponding pulses to implement such gates
with high accuracy [3], even allowing one to implement gates
in the shortest possible time [4]. Over the past years quantum
reservoir engineering schemes [5,6], particularly dissipative
state preparation [7] and dissipative quantum computing [8],
turned out to be a valuable alternative to unitary gate designs.
For instance, instead of implementing a sequence of gates in
order to carry out some computation, the computational step is
entirely encoded in a suitably engineered dissipative process.
Moreover, while the general asymptotic behavior of dissipa-
tive processes has been analyzed in great detail in [9], a strong
dissipative process can also lead to pure unitary dynamics over
a subspace that is robust against the process being considered
[10–13]. Such decoherence free subspaces [14] can be used to
implement gates in a noiseless manner [15,16] and, further-
more, combined with methods from control theory, can turn
parts of a system into a system capable of universal quan-
tum computational tasks [17]. However, identifying deco-
herence free subspaces and engineering dissipative processes
yielding a unitary evolution on parts of the system remains
challenging.

In this work we show that a dissipative process commonly
used to describe dissipatively coupled systems S1 and S2

[18–22] can yield a purely unitary evolution on one system,
say S2. In fact, we show that a dissipative process D described
by the Lindblad operator L = √

γ (A1 − i η

γ
B2), where A1 and

B2 are Hermitian operators on system S1 and S2, yields for
large γ the same dynamics on system S2 as a coherent
interaction between S1 and S2 would. That is,

lim
γ→∞ tr1{eDt (ρ1 ⊗ ρ2)} = tr1{U (t )(ρ1 ⊗ ρ2)U †(t )}, (1)

where U (t ) = exp(−itH ) is the overall unitary evolution
generated by the Hamiltonian H = ηA1B2, tr1{·} denotes the
partial trace over system S1, and ρ1 and ρ2 are the initial states
of both systems. Consequently, when system S1 is prepared in
an eigenstate of A1, the overall dissipative evolution yields for
γ → ∞ a purely unitary dynamics on system S2 determined
by B2. Such being the case, as represented in Fig. 1, for two
systems S1 and S2 undergoing an overall purely nonunitary
evolution described by D, system S2 can evolve entirely
unitarily provided the dissipative process is strong enough.
For the control properties of S2 this implies that if system
S2 can be additionally steered by some time-dependent fields,
system S2 can become fully controllable, and thus universal
for quantum information tasks. We additionally provide crite-
ria that characterize the time scales for implementing unitary
gates with high fidelity through the dissipative process.

The presented dissipative evolution is of particular im-
portance since it can be realized in the laboratory using
superconducting circuit architectures. Based on a reservoir
that is formed by a strongly damped cavity mode, similar to
the setting in [23–26], we discuss in detail how our theoretical
findings can be experimentally realized.
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FIG. 1. Schematic representation of two systems S1 and S2 that
interact coherently described by the Hamiltonian (2) and in a dis-
sipative way described by the Lindblad operator (3) resulting from
an interaction with a reservoir. For suitably engineered reservoirs
the effect of the coherent interaction on S2 can be enhanced or
suppressed. In fact, if suitably engineered the dissipative process
yields the same dynamics for S2 as the coherent interaction would
do [see Eq. (1)]. As such, for certain initial states of S1, system S2

evolves unitarily. If additionally system S2 can be steered by some
time-dependent coherent process, the dissipative process can turn
system S2 into a system capable of universal quantum information
tasks.

II. DISSIPATIVELY AND COHERENTLY
COUPLED SYSTEMS

In order to study the interplay between coherently
and dissipatively coupled systems we consider two finite-
dimensional systems S1 and S2 that interact coherently de-
scribed by the Hamiltonian

Hcoh = gA1B2, (2)

with A1 = A ⊗ 1S2 and B2 = 1S1 ⊗ B being Hermitian opera-
tors acting only nontrivially on system S1 and S2, respectively,
and g being the interaction strength. The two systems are
additionally coupled through a reservoir described by the
Lindblad operator

L = √
γ

(
A1 − η

γ
eiφB2

)
, (3)

so that the evolution of the total system is given by the
Lindblad master equation

ρ̇(t ) = −i[Hcoh, ρ(t )] + D[L](ρ(t )), (4)

where ρ is the state of the total system and D[L](ρ) =
LρL† − 1

2 (L†Lρ + ρL†L) with L given by Eq. (3) is the Lind-
bladian describing the dissipative process. Here γ denotes
the rate associated with the dissipative process for system S1,
while for system S2 the corresponding rate is η2/γ (η < γ ),
reflecting the asymmetric coupling to the dissipation. We
remark here that while we start by considering dissipative
and coherent interactions together, the coherent interaction is
not necessary to obtain purely unitary dynamics on system
S2, as already expressed in Eq. (1). The latter is shown later
by focusing on the dissipative part only. Furthermore, at this
stage the Lindblad operator is introduced with a general phase

φ. The master equation then takes the form

ρ̇(t ) = − i[Hcoh, ρ(t )] + γD[A1](ρ(t )) + η2

γ
D[B2](ρ(t ))

− K(ρ(t )) + η cos(φ){A1B2, ρ(t )}, (5)

with {·, ·} being the anticommutator and K(ρ(t )) =
ηeiφB2ρ(t )A1 + H.c. From Eq. (5) we immediately see
that for γ → ∞, which we refer to as the large γ

limit, the dissipative term D[B2] on system S2 vanishes.
Moreover, we note that the process D[A1] does not affect
system S2. As we will see below, in the large γ limit the term
K can enhance or suppress the coherent interaction depending
on the phase φ [25,26], as well as give rise to pure unitary
dynamics for system S2.

The evolution of the state ρ2(t ) of system S2 is given by
tracing over system S1, i.e., ρ̇2(t ) = tr1{ρ̇(t )}. If we evaluate
the partial trace in the eigenbasis {|φ(a)

j 〉} of A with corre-

sponding eigenvalues λ
(a)
j we find

ρ̇2(t ) = −i
∑

j

λ
(a)
j

{
[g + η sin(φ)]B,

〈
φ

(a)
j

∣∣ρ(t )
∣∣φ(a)

j

〉}

+ η2

γ
D[B](ρ2(t )), (6)

from which we see that, depending on the phase φ and the
effective coherent coupling η, the dissipative interaction can
enhance or suppress the effect of the coherent interaction on
system S2. Analogously, the evolution of the state ρ1(t ) of
system S1 is governed by

ρ̇1(t ) = −i
∑

j

λ
(b)
j

{
[g − η sin(φ)]A,

〈
φ

(b)
j

∣∣ρ(t )
∣∣φ(b)

j

〉}

+ γ D[A](ρ1(t )), (7)

where {|φ(b)
j 〉} is the eigenbasis of B with corresponding

eigenvalues λ
(b)
j . Notice the sign difference in the commutator

part of Eq. (6) and Eq. (7), which leads to unidirectional
coherent dynamics due to the dissipative process D. This
matches nicely the recipe introduced in Refs. [25,26], where
the balancing of a coherent and dissipative process can break
the symmetry of reciprocity, rendering an interaction between
two systems in a unidirectional fashion. For instance, for φ =
π/2 and η = g the commutator part present in the dynamics
of system S1 vanishes, whereas for system S2 the part coming
from the coherent interaction (2) between both systems is
enhanced due to the dissipative process. In addition, under the
directionality conditions φ = π/2 and η = g the full master
equation resembles the one obtained from cascaded quantum
systems theory [27,28], i.e., the remaining (unidirectional)
coupling yields

ρ̇(t ) ∼ iη{[A1ρ(t ), B2] + [ρ(t )A1, B2]}, (8)

affecting only system S2. However, an important difference
to cascaded quantum systems theory here is that one does not
require a chiral information transfer via a waveguide to realize
such a unidirectional interaction.

We proceed by focusing on the dynamics of system S2.
Assuming the composite system is initially in a product state,
one can easily check that in the large γ limit the solution
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ρ2(t ) = Et (ρ2(0)) to (6) is given by the (bistochastic) com-
pletely positive trace preserving (CPTP) map

Et (·) =
∑

j

p jUj (t )(·)U †
j (t ), (9)

where p j = 〈φ(a)
j |ρ1(0)|φ(a)

j 〉 with ρ1(0) being the initial
state of system S1 and the unitaries are given by Uj (t ) =
exp{−itλ(a)

j [g + η sin(φ)]B}. For φ = π/2 we have Uj =
exp[−i(η + g)λ(a)

j B] so that the effect of the coherent inter-
action is enhanced, thereby establishing for η = g the equiv-
alence expressed in (1). In the case where A = 1S1 we can
already see from the form of the Lindblad operator (3) that
Et (·) = U (t )(·)U †(t ) with U (t ) = exp{−it[g + η sin(φ)]B}.
For generic Hermitian operators A the preparation of system
S1 in an eigenstate of A yields, up to a modification of B in
U by the eigenvalue λa, the same unitary map. Furthermore,
if in addition to the dissipative process system S2 is subject
to some (possibly time-dependent) coherent process H2(t ) =
1S1 ⊗ H (t ), in the large γ limit the dynamics of the state ρ2(t )
of system S2 is governed by the von Neumann equation

ρ̇2(t ) = −i{λa[g + η sin(φ)]B + H (t ), ρ2(t )}. (10)

In summary, for a suitable choice of the phase in the dissi-
pative process D, the large γ limit enhances or suppresses the
effect of the coherent interaction on one part of the bipartite
system. Both the large γ limit of the dissipative process given
by (3) and the coherent process (2) independently yield the
same CPTP map (9) for system S2. We remark here that the
same result can be obtained using a perturbative treatment
[13]. If we treat the B1 term in L as a perturbation to A1, the
unperturbed D[A1] effectively yields a (projected) evolution
over the decoherence free subspaces of D[A1]. As shown in
[13], if we prepare the system in a decoherence free subspace,
the evolution over this subspace can be purely unitary.

In order to investigate the dynamics in more detail, we
henceforth focus on the dissipative dynamics given by D[L]
only, where we chose φ = π/2 such that

L = √
γ

(
A1 − i

η

γ
B2

)
. (11)

We proceed with discussing a few implications of the previ-
ous observations. First of all we trivially see that a generic
coherent evolution can be created on system S2 through the
dissipative process D. For instance, in the case where system
S2 is given by two noninteracting spins, choosing B = σz ⊗
σz induces in the γ limit a coherent Ising type interaction.
Clearly, the challenge remains to engineer dissipative pro-
cesses of the form D containing two-body or many-body
interaction terms. Before we address this potential issue by
providing a concrete experimental realization based on an
engineered reservoir, we want to discuss in the context of
quantum control theory how D can turn the system S2 into
a system capable of universal quantum information tasks. We
remark here that this observation immediately follows from
the form of Eq. (10) along with standard results in quantum
control theory [2], which will be elaborated further in the next
section.

A. Universal control

In general the aim of quantum control theory is to steer
a quantum system towards a desired target by using a set
of suitably tailored classical control fields { fk (t )}. The total
Hamiltonian describing the system reads H (t ) = H0 + Hc(t ),
where the control typically enters in a bilinear way through
Hc = ∑n

k=1 fk (t )Hk . We refer to H0 as the drift Hamiltonian
and to {H1, . . . , Hn} as the set of control Hamiltonians. The
system is said to be fully controllable if every unitary transfor-
mation Ug ∈ SU(d ) (for traceless Hamiltonians) with SU(d )
being the group of unitary d × d matrices with determinant
one can be implemented through shaping the control fields
fk (t ). It is known that every unitary operation in the closure
of the dynamical Lie group eL can be implemented with
arbitrarily high precision, with L = Lie(iH0, iH1, . . . , iHn)
being the real Lie algebra formed by real linear combina-
tions of the drift and the control Hamiltonians and of their
iterated commutators [2]. The system is fully controllable iff
L = su(d ), where su(d ) is the special unitary algebra. That
is, every unitary can be implemented up to a global phase
arbitrarily well. We remark here that operator controllability
implies pure state controllability, i.e., every pure state can be
prepared given that the system was initially prepared in a pure
state. The dimension of the dynamical Lie algebra dim(L)
characterizes how complex the driven evolution can be [29],
and for a fully controllable system of dimension d we have
dim(L) = d2 − 1. In [17] it has been shown that a strong
dissipative process exhibiting a decoherence free subspace
can substantially change the dimension of the dynamical Lie
algebra, even turning the system into a fully controllable one.
However, this effect critically relies on the ability to arbitrarily
control two-body interactions, and, moreover, the increase in
dim(L) is limited by the dimension of the decoherence free
subspace being considered.

In contrast, the strong dissipative process that is determined
by the Lindblad operator (11) offers a generic procedure
for turning a quantum system through dissipation into a
fully controllable one and increasing the dimension of the
dynamical Lie algebra arbitrarily. Suppose system S2 is in
addition to the overall acting D subject to some time varying
controls, i.e., the time-dependent Hamiltonian in (10) is given
by H (t ) = ∑n

k=1 fk (t )Hk . Then, in the large γ limit (γ → ∞)
the unitary operations that can be implemented on system S2

are determined by the dynamical Lie algebra

LS2 = Lie(iB, iH1, . . . , iHn). (12)

In the large γ limit the Hermitian operator B given through
the Lindblad operator L takes the role of the drift Hamiltonian
H0. Thus the dynamical Lie algebra for system S2 can be
substantially different in the presence of the strong dissipative
process D. For instance, in the case of a single control
Hamiltonian H1 on system S2 the dynamical Lie algebra is
just one dimensional if dissipation is absent. Now, if L can be
engineered in such a way that B generates together with H1

the full algebra, i.e., LS2 = su(d ) such that the dynamical Lie
algebra has increased from 1 to dim(LS2 ) = d2 − 1, system
S2 is turned into a fully controllable system only due to
the dissipative process. There are several examples of pairs
of Hamiltonians generating the full algebra, for example,
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Refs. [30,31], and, moreover, it can be shown that almost
all pairs (but a set of measure zero) do the job [32]. Thus
system S2 becomes for almost all choices of B and H1 fully
controllable.

B. Timescales

So far we have studied the time evolution of system S2

in the large γ limit, i.e., for γ → ∞. Now we want to
investigate the effect of a finite γ on the fidelity for preparing
a state. We consider the fidelity error ε = 1 − F , where F =
〈ψG|ρ2(t )|ψG〉 is the fidelity for preparing a pure state |ψG〉
and ρ2(t ) is the state at time t of system S2. We assume here
that system S2 was initially prepared in a pure state |φ(0)〉
such that |ψG〉 = U |ψ (0)〉 is prepared at time t on system S2

in the large γ limit.
We begin with the case for which no additional coherent

term on system S2 is present so that the time evolution of sys-
tem S2 is entirely determined by the Lindblad operator (11).
Since all processes contained in D mutually commute with
each other and assuming that the process K with φ = π/2
prepares the state |ψG〉 at time t , the time evolution of system
S2 is given by ρ2(t ) = exp( η2

γ
D[B2]t )(|ψG〉〈ψG|). Expanding

|ψG〉 = ∑
n cn|φ(b)

n 〉 in the eigenbasis {|φ(b)
n 〉} of B with corre-

sponding eigenvalues {λ(b)
n } the fidelity error then reads ε =

1 − ∑
n,m |cn|2|cm|2 exp[− tη2

2γ
(λ(b)

n − λ(b)
m )2]. We can conclude

that we need
γ

η2

 t

2
max
n �=m

(
λ(b)

n − λ(b)
m

)2
(13)

in order to prepare the state |ψG〉 at time t with high fidelity
through the dissipative process.

We proceed with the case in which system S2 is addi-
tionally subject to some possibly time-dependent coherent
process described by H2(t ) = 1S1 ⊗ H (t ), where H (t ) could
for instance be of the form H (t ) = ∑n

k=1 fk (t )Hk . We saw
in the previous paragraph that in this case in the large γ

limit every unitary operation Ug = e� with � ∈ LS2 can be
implemented on system S2. Here we now want to study the
fidelity error for finite γ for preparing the corresponding state
|ψG〉 = Ug|ψ (0)〉 at time t . Because the relevant processes
do not necessarily commute anymore, and moreover the total
generator is now time dependent, an exact expression for ε as
before is not tractable anymore. However, with details found
in the Appendix we can upper bound the fidelity error by

ε � tη2

2γ
(‖B‖2

∞ + ‖B2‖∞), (14)

where ‖ · ‖∞ is the standard operator norm.
Having discussed the theoretical properties of the dissipa-

tive process D, we now turn to presenting an experimental
realization of D.

III. EXPERIMENTAL REALIZATION

In general, dissipation is trivially modeled by coupling the
system of interest to a Markovian bath. Information is then
simply lost into this bath forever and the bath does not mediate
any inner correlations in the system. In contrast, engineered
dissipation is a controlled form of dissipation; here the system

of interest is coupled to a damped auxiliary system which
mediates a manipulable dissipative process. Engineering a
nonlocal dissipative process of the form D[L](ρ) between sys-
tems S1 and S2, with the jump operator L being a combination
of Hermitian operators of S1 and S2, e.g., Eq. (3), requires
both systems to be coupled to a strongly damped auxiliary
system in a coherent and controllable manner. The easiest
form of such an auxiliary system is a damped mode a. Then
the required coherent system-bath dynamics are described by
a Hamiltonian of the form

HSB = λ1Xϕ1 A1 + λ2Xϕ2 B2, (15)

with Xϕn = [a e−iϕn + a†eiϕn ] being the quadrature operators
of the a mode. These quadratures Xϕn do not have to be
orthogonal, but crucial is their relative phase ϕ1 − ϕ2, which
determines the phase in the resulting nonlocal jump operator
L. To have HSB generate the dissipative process D[L](ρ), we
couple mode a to a Markovian bath with rate γa. In the case
of strong damping, i.e., for γa → ∞, the auxiliary mode can
be adiabatically eliminated [33,34] and one is left with the
dissipative process described by the Lindblad operator

L = 2λ1√
γa

[
A1 + λ2

λ1
e−i(ϕ1−ϕ2 )B2

]
. (16)

Thus an asymmetry in the coherent couplings λ1 and λ2

translates directly to an asymmetry in the dissipative process
between systems S1 and S2. And, as mentioned above, the
relative phase of the quadratures allows for a finite phase
in the nonlocal dissipator. Note that here HSB has to be a
resonant interaction, i.e., if the auxiliary mode is detuned, one
generates an effective coherent coupling Heff ∼ A1B2 between
systems S1 and S2 too.

As discussed in Sec. II, in the large γ limit one can create
effective coherent dynamics for system S2. Crucially, we have
to make a distinction here in terms of what we consider large
damping. On the one side we have the dissipation of the a
mode associated with the rate γa. The latter has to be large
to obtain L in Eq. (16) out of HSB given in Eq. (15). On the
other side, to realize coherent dynamics in S2 the engineered
dissipation has to be large, i.e., we have to realize η2/γ →
0, while keeping the resulting effective coherent coupling
η finite; cf. Eq. (6). By comparing the dissipators given in
Eq. (3) and Eq. (16) we identify

γ = 4λ2
1

γa
, η = 4λ1λ2

γa
. (17)

Thus η2/γ → 0 is obtained for large γa and small coupling
λ2 of system S2 to the auxiliary mode, which is in agreement
with the adiabatic elimination condition γa → ∞. However,
to keep the effective coherent coupling strength η finite, the
coupling λ1 of system S1 to the auxiliary mode has to compen-
sate for a small ratio λ2/γa, while fulfilling λ1 < γa to justify
the adiabatic elimination. This means that the engineered
dissipation rate γ , scaling quadratically with λ1, has to be
sufficiently large to obtain the desired unitary dynamics, i.e.,
in total we require a scaling λ2  λ1 < γa � γ .

To illustrate this further we have performed numerical sim-
ulation [35] for two qubits coupled via an XX coupling, i.e.,
we choose A1 = σ x

1 and B2 = σ x
2 . In addition, we simulated
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(a)

(b)

(c)

FIG. 2. Rabi oscillations of the expectation of σ z
2 in XX -coupled

qubits for different values of the damping rates γ , γa (values as
denoted in the graphs). The gray solid line depicts the dynamics
under the coherent Hamiltonian Hxx = gσ x

1 σ x
2 , where qubit 1(2)

initially was in an eigenstate of σ x
1 (σ z

2 ). The orange dotted line shows
the equivalent dynamics resulting from the system-bath Hamiltonian
in Eq. (15) with A1 = σ x

1 and B2 = σ x
2 , while the blue dashed line

depicts the corresponding dissipative dynamics described by the
Lindblad operator Eq. (16). Here, the effective coherent coupling
is matched to the coherent coupling, i.e., η = g, and the remain-
ing parameters can be extracted from λ1/g = √

γaγ /2 and λ2/g =√
γa/γ /2.

the dynamics resulting from the corresponding system-bath
Hamiltonian Eq. (15) to verify the validity of the adiabatic
elimination, assuming the oscillator mode was initially pre-
pared in the vacuum state. As expected, we find that a large γa

is required for the dynamics of the system-bath Hamiltonian
in Eq. (15) to coincide with dissipative dynamics described
by the Lindblad operator Eq. (16); cf. Fig. 2(a). When the
engineered dissipation rate γ is small compared to the effec-
tive coherent coupling η (and therewith the ratio η2/γ ), the
resulting dynamics is not unitary as visible in the damped
oscillation depicted in Fig. 2(a). Increasing the value of γ

fixes this issue and the dissipative dynamics coincides with
the evolution resulting from the coherent interaction Hxx =
gσ x

1 σ x
2 . Crucially, in order to obtain this equivalence expressed

in (1), the value of γa has to be increased simultaneously; cf.
Figs. 2(b) and 2(c). Thus we find that the large damping limit
applies to both the dissipation of the auxiliary system (γa) and
the engineered dissipation (γ ). Both decay rates have to be of
the same order to obtain unitary dynamics of system S2, i.e.,
γa/g � γ /g 
 1 has to be fulfilled.

Engineering unitary dynamics in system S2 via a dis-
sipative process L as given in Eq. (16) can especially be
beneficial for realizing higher-order processes. The dissipative
process requires a lower order in the system-bath Hamiltonian
compared to engineering the higher-order process coherently.
This is straightforwardly seen by considering the example of
a multipartite system S1 with N qubits interacting with system
S2 with M qubits such that

A1 =
N∏

n=1

σn, B2 =
M∏

m=1

σm, (18)

so that the coherent process is of order N + M, but if en-
gineered via a dissipator L in Eq. (16) out of HSB given in
Eq. (15), the required processes are of order N + 1 and M + 1,
where the +1 results from the coupling to the auxiliary mode.
Crucially, for N, M � 2 the required processes in HSB are of
lower order than the coherent process Hcoh. Thus, in the large
γ limit, the dissipatively engineered higher-order process in
system S2 has been achieved via lower-order processes, and
therewith we have mitigated the more challenging engineering
of the higher-order process in a coherent manner.

In the following section we present a concrete example of
how to realize a nonlocal dissipative process between a three-
spin system.

A. Superconducting circuit implementation

Over the past decade, the realm of superconducting cir-
cuitry [36–38] has experienced tremendous growth due to
advances in nanofabrication technologies, which in turn have
led to an impressive progress in the development of quantum
technologies. Despite being macroscopic elements, i.e., on the
length scale of hundreds of nanometers, superconducting cir-
cuits behave quantum mechanically, as they can be designed
to be well isolated from the environment. For a recent review,
please see Ref. [38].

The basic toolbox of superconducting circuits utilized for
quantum simulation and quantum computation consists of
linear and nonlinear resonators, where the latter can be oper-
ated as artificial few-level atoms or qubits. Superconducting
qubits are formed via the two lowest energy states of a
nonlinear Kerr resonator. The nonlinearity of the resonator is
crucial here for the design of the qubits, as it is accompanied
with discrete energy levels which are not equally spaced (in
contrast to a linear oscillator). The nonlinear Kerr resonator
can be realized by combining a linear LC-resonator circuit
with a nonlinear and dissipationless inductance: the Josephson
junction. Once placed into a low temperature environment
these nonlinear Kerr resonators enter the quantum regime and
can be treated as artificial two-level systems also known as
qubits. Mixing between multiple qubits can be accomplished
via tunable couplers [39–42], and the readout, manipulation,
and control of the qubits can be realized via the coupling to
the discrete electromagnetic modes of quantum cavities or to
the continuum of modes in a waveguide.

In this section we are going to discuss a concrete example
on how to engineer a nonlocal dissipative process in a three-
qubit system based on a superconducting circuit architecture.
We would like to stress that this is just one of many possible
realizations and we choose the present setup because it nicely
illustrates that one circuit can provide the same type of coher-
ent and dissipative nonlinear process, with the difference that
engineering the coherent interaction requires processes that
are of higher order than the processes leading to dissipative
interactions.

The multiqubit system we would like to consider is formed
by three nonlinear Kerr resonators, e.g., a transmission line
intersected with a Josephson junction, which are operated in
the low excitation and low dissipation regime. For a strong
enough Kerr nonlinearity each resonator can be considered as
an effective two-level system, which we describe by the Pauli
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(a)

(b)

FIG. 3. Three-qubit coupling via a Josephson ring modulator.
The resulting interaction between the qubits can be either of the
dissipative form (a) D[L] with L = σ1 + σ2σ3 or of the coherent form
(b) Hcoh = σ1σ2σ3. The nature of the interaction is determined by the
external drives (see text for details).

spin operators σn, where n = 1, 2, 3 labels each two-level
system. To realize a dissipative coupling between the qubits
we aim for the situation that all three nonlinear resonators
are coupled to the same dissipative reservoir, i.e., an auxil-
iary mode which is strongly damped via the coupling to a
Markovian bath with rate γa. We focus on realizing a nonlocal
jump operator L of the form given in Eq. (3) with A1 = σ1 and
B2 = σ2σ3. As discussed above, such a nonlinear dissipative
process is realized via the system-bath Hamiltonian

HSB =
√

γ γa

2

[
Xϕ1σ1 + η

γ
Xϕ2σ2σ3

]
, (19)

with ϕ2 − ϕ1 = π + φ and φ, η, γ as introduced in Eq. (3).
We leave the spin component, i.e., σn → σ

x,y,z
n , unspecified

for now. To realize the interaction in HSB we use a Josephson
ring modulator (JRM) [42], which consists of four identical
Josephson junctions embedded in a ring geometry. This device
provides three-wave mixing between its three spatial mode
amplitudes φx,y,z and was originally developed for quantum-
limited amplification of weak signals [43]. The whole circuit
is sketched in Fig. 3 and can be modeled via the Hamiltonian

H = H0 +
∑

m=x,y,z

3∑
n=1

gnm[dmσ+
n + d†

mσ−
n ] + VJRM, (20)

where H0 contains the free energy of the two-level systems
and the JRM modes φm = φ0,m(dm + d†

m), where φ0,m denotes
the standard deviation of the zero-point flux fluctuation for
the JRM mode φm. The second term describes excitation
exchange between the qubits and the JRM modes with interac-
tion strength gnm, which depend on the design of the coupling
capacitors Cm; cf. Fig. 3. VJRM denotes the mixing potential

VJRM = −EJ

∑
±

[
cos

φx ∓ φy

2φ0
cos

2(2 ± 1)φext ± φz

2φ0

]
(21)

for the spatial mode amplitudes φx,y,z realized via the JRM
and the latter potential is tunable via the external flux φext.
EJ denotes the Josephson energy, which is assumed to be
identical for all four junctions, and φ0 = h̄/2e corresponds to
the reduced flux quantum. We choose a design where the JRM

loop is shunted with linear inductors as depicted in Fig. 3. For
simplicity we neglect the frequency shifts associated with the
potential energies of the inductors. The resulting inner loops
of the JRM are asymmetrical biased, i.e., with an external flux
φext(3φext ) for the small (big) loops. Such kind of setup was
proposed earlier to realize tunable multibody interactions em-
ployed to protect quantum information in cat-code approaches
[44] and for quantum annealing protocols [45].

For our purpose we set φext = π/4φ0 and assume that the
x mode and y mode are externally driven by multiple pump
tones. This external driving ensures that the otherwise far off
resonant nonlinear processes are enforced. For now we do not
further specify the involved driving frequencies, but make the
classical approximation φxφy → 4φ0,xφ0,yαxαyM(t ), where
|αn|2 denotes the average photon number in the n-mode in-
duced by the external drives, and the time-dependent modula-
tion is given by

M(t ) =
∏

n=x,y

∑
m

cos
(
ωd

n,mt + φn,m
)
, (22)

with m drives on each mode with frequencies ωd
n,m; crucially,

these drives are associated with the phases φn,m.
Expanding the JRM mixing potential yields

VJRM ≈ EJα
′
xα

′
y

2
√

2
M(t )

[
φz

φ0
− φ2

z

4φ2
0

− φ3
z

24φ3
0

]
, (23)

with α′
n = αnφ0,n/φ0. In what follows, the z mode is going to

be our auxiliary mode and the choice of the drive frequencies
will determine which interactions are resonant in the three-
spin system. The frequencies of the circuit should be engi-
neered such that all three qubits are dispersively coupled to the
z mode. In this regime we can perform the Schrieffer-Wolff
transformation

H ′ = e−SHeS, S =
3∑

n=1

λnz[d
†
z σ−

n − dzσ
+
n ], (24)

where λnz = gnz/�nz and �nz denotes the detuning of qubit
n with respect to the z mode. In the dispersive limit λnz is
small and we only keep terms up to second order in λnz. In
addition, we apply a rotating wave approximation to eliminate
fast rotating terms. The remaining effective interaction yields

Heff = − � M(t )(dz + d†
z )

[
λ1z σ x

1 + β σ x
2 σ x

3

]
, (25)

with the coefficients

� =EJα
′
xα

′
y√

2

φ2
z,0

4φ2
0

, β = λ2zλ3z
φz,0

2φ0
. (26)

The effective interaction Hamiltonian Heff is close to the de-
sired form, cf. Eq. (19), but it is still time-dependent through
the modulation M(t ).

This time dependence can be omitted by moving into the
right rotating frame and choosing the appropriate driving
frequencies. First we move into an interaction frame with
respect to the modified free Hamiltonian H ′

0, i.e., the free-
energy part of the Hamiltonian after the Schrieffer-Wolff
transformation has been performed. This unitary operation
gives us for the spin operators σ x

n → σ+
n e+i�nt + σ−

n e−i�nt

and the z-mode operator dz → dze−iωzt , where �n(ωz ) is the
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(shifted) frequency of qubit n (z mode). Inserting these expres-
sions into the interaction Eq. (25), we can identify the required
driving frequencies, e.g., the processes dzσ

±
n oscillate in this

frame with (ωz ± �n), thus choosing the external modulation
at these frequencies renders these processes resonant. Overall,
we find six modulation frequencies to obtain the desired
operators A1 and B2:

ω1,± = ωz ± �1 ⇒ A1 = σ x
1 ,

ω2,± = ωz ± (�2 + �3)
ω3,± = ωz ± (�2 − �3)

}
⇒ B2 = σ x

2 σ x
3 . (27)

Luckily, the six frequencies ωn,± are asymmetric and antisym-
metric combinations of four basic tones; thus an appropriately
chosen four-tone driving of the modes x and y is sufficient to
produce these six tones; cf. Eq. (22) with ωd

n,m as the external
drive frequencies. To obtain the required modulation frequen-
cies ωm,± (m = 1, 2, 3) it is sufficient to drive the x mode
with one tone at ωd

x,1 = ωz and the y mode at three different
frequencies: ωd

y,m = �1,�2 ± �3. Setting these frequencies
into Eq. (22) and applying basic trigonometric product rules
results in the modulation M(t ) = M+(t ) + M−(t ) with

M±(t ) = 1

2

3∑
m=1

cos
[(

ωz ± ωd
y,m

)
t + φm,±

]
, (28)

and with the definition φm,± = φy,m ± φx,1. Combining this
modulation with the interaction given in Eq. (25), performing
a rotating wave approximation, and setting φ1,+ = φ1,− ≡
φ1 and φ2,± = φ3,± ≡ φ2 leaves us with the resonant (time-
independent) terms:

Heff ≈ −�

4

(
λ1zXφ1σ

x
1 + βXφ2σ

x
2 σ x

3

) ≡ H ′
SB, (29)

which is of the desired form for the system-bath interaction;
cf. Eq. (19). In a last step we assume that the z mode is
strongly damped with rate γz, so we can adiabatically elim-
inate it.

Thus, in the large γz limit, the discussed circuit design pro-
vides the dissipative process for system S1 and S2 described
by the jump operator

L = �λ1z

2
√

γz

(
σ x

1 + β

λ1z
e−i(φ1−φ2 )σ x

2 σ x
3

)
. (30)

Creating now effective coherent dynamics for system S2

requires additionally the large γ limit. When mapping the
parameters of the dissipator to the ones given in Eq. (3) we
find φ2 − φ1 = π + φ and

γ = �2

4γz
λ2

1z, η = �2

4γz

φz,0

2φ0
λ1zλ2zλ3z. (31)

The induced damping η2/γ of system S2 scales inversely
with the decay rate of the z mode; thus the condition is in
good agreement with the requirement of a strongly damped z
mode, as expected from the discussion at the beginning of this
section. The dispersive coupling strength λ1z of qubit 1 to the
z mode has to compensate for a small ratio λ2zλ3z/γz to obtain
a finite effective coherent coupling strength η. Hence we see
here that the large γ limit for this experimental realization is

rather a strong dispersive limit, where the hierarchy λ2zλ3z 
λ1z is the crucial ingredient.

B. Nonreciprocal coherent dynamics

The large γ limit results in coherent dynamics of system
S2 as would have been obtained from Hcoh = gA1B2. As men-
tioned in Sec. II, having both processes, the dissipative and the
coherent one, enables us to render the system directional. The
introduced circuit architecture allows as well the realization
of a coherent interaction of the form given in Eq. (2). In the
dispersive regime we obtain the process

H ′
coh = −λM(t )σ x

1 σ x
2 σ x

3 , λ = �λ1zβ, (32)

which originates from the cubic term in the VJRM potential
given in Eq. (23). This coherent interaction is a third-order
process in the dispersive limit, i.e., it scales with λ1zλ2zλ3z;
in contrast to this, for the (equivalent) dissipative process the
second order of the dispersive limit was sufficient.

However, this applies here to the order in the dispersive
limit, but not to overall order of the process, i.e., the system-
bath Hamiltonian in Eq. (19) requires a third-order process
between the z mode and system S2 and therewith is of the
same order as the process in Eq. (32).

Note, considering the cubic term in the potential would in
principle require one to perform the Schrieffer-Wolff transfor-
mation up to the third order as well, an additional step we have
omitted here.

For now we just want to briefly illustrate how the intro-
duced circuit architecture can realize H ′

coh. The required drive
frequencies are obtained by making the substitution ωz → �1

in Eq. (27). Thus we can still work with the same basic
tones and just add another drive to the x mode at ωd

x,2 = �1.
The total modulation becomes Mtot(t ) = M(t ) + Mcoh

+ (t ) +
Mcoh

− (t ) with

Mcoh
± (t ) = 1

2

3∑
m=1

cos
[(

�1 ± ωd
y,m

)
t + θm,±

]
, (33)

and the phases θm,± = φy,m ± φy,1. Note, the modulation
Mtot(t ) results as well in an unused tone at 2�1, which should
not drive any additional process if the involved resonances are
designed appropriately. For θm,± = π we obtain the coherent
interaction H ′

coh = λ/4 σ̂ x
1 σ̂ x

2 σ̂ x
3 .

Combining now this coherent process H ′
coh, and the dis-

sipative process D[L](ρ) with the jump operator L given
in Eq. (30) and φ2 − φ1 = π + φ, the interaction between
systems S1 and S2 becomes fully nonreciprocal under the
conditions [25,26]

φ = ±π

2
, � = γz, (34)

where the sign of the phase determines whether system S1 or
S2 is affected by the dynamics of the respective other system.
For example, for φ = π/2 system S2 performs enhanced
coherent dynamics, while system S1 is not affected; cf. Eq. (6)
and Eq. (7).
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IV. CONCLUSION

We have analyzed two systems S1 and S2 that interact in
a coherent and a dissipative way mediated though a reser-
voir. We showed that the dissipative process can enhance or
suppress the effect of the coherent interaction on system S2.
In fact, if suitably engineered, the dissipative process has the
same effect on S2 as the coherent interaction. Consequently,
for certain initial states of system S1, system S2 evolves
unitarily, which implies that if S2 is additionally steered by
some classical time-dependent fields, the dissipative process
can allow one to create every unitary gate on S2. As such,
the dissipative process can turn S2 into a system capable
of universal quantum information tasks. Furthermore, based
on superconducting circuits, we have presented a scheme
to engineer a reservoir that yields the desired dissipative
process, as well as the “equivalent” coherent interaction. It
is interesting to note that engineering coherent couplings can
require processes that are of higher order than the processes
leading to dissipative couplings. Given the equivalence of both
processes for the dynamics of system S2, this suggests that
engineering the desired dissipation may be more applicable to
coherently control one part of a system.

ACKNOWLEDGMENTS

The authors wish to thank V. Albert for useful discussions.
A.M. acknowledges funding by the Deutsche Forschungs-
gemeinschaft through the Emmy Noether program (Grant
No. ME 4863/1-1) and the Project No. CRC 910. C.A.
acknowledges funding from the Army Research Office (Grant
No. W911NF-19-1-0382).

APPENDIX: DERIVATION OF THE UPPER BOUND FOR
THE FIDELITY ERROR

Here we derive the upper bound (14) for the fidelity error ε

in the time-dependent case described by the master equation
ρ̇(t ) = D[L](ρ(t )) − i[H2(t ), ρ(t )], (A1)

where the Lindblad operator L is given by (3) and H2(t ) =
1S1 ⊗ H (t ) is a coherent time-dependent process only acting
nontrivially on system S2; assume that no coherent interaction
between S1 and S2 is present. We set the phase in (3) to
φ = π/2 and we include the constant η in the operator B
acting on S2. We work in the frame rotating with H (t ).
That is, we introduce the rotated state ρ̃ = V †(t )ρV (t ) with
V (t ) = T exp[−i

∫ t
0 H (t ′)dt ′] so that the master equation in

the rotated frame reads
˙̃ρ(t ) = D[L(t )](ρ̃(t )), (A2)

where L(t ) = √
γ [A1 − iγ −1B2(t )] with B2(t ) =

V †(t )B2V (t ), so that
˙̃ρ(t ) = γD[A1](ρ̃(t )) + γ −1D[B2(t )](ρ̃(t ))

− i[B2(t )ρ̃(t )A1 − A1ρ̃(t )B2(t )]. (A3)

If system S1 is initially prepared in an eigenstate |a〉 of A with
corresponding eigenvalue λa, in the limit γ → ∞ the dynam-
ics of system S2 is given by the unitary map Ũt generated by
H̃t (·) = −iλa[B2(t ), ·]. We now want to study the effect of a
finite γ by upper bounding the fidelity error ε = 1 − F with
F = 〈ψG|ρ2(t )|ψG〉 being the fidelity. We assume that system

S2 is initially prepared in a pure state |φ(0)〉 such that in the
limit γ → ∞ the target state |ψ̃G〉 (in the rotated frame) is
prepared on system S2. That is, if we assume that the initial
state of the total system is given by

ρ(0) = |a〉〈a| ⊗ |ψ (0)〉〈ψ (0)|, (A4)

we have limγ→∞ trS1{T e
∫ t

0 dt ′D[L(t ′ )](ρ(0))} = Ũt (ρ(0)) =
|a〉〈a| ⊗ |ψ̃G〉〈ψ̃G|, whereas for finite γ the state ρ̃2(t ) in the
rotated frame is given by

ρ̃2(t ) = trS1

{
T e

∫ t
0 dt ′D[L(t ′ )](ρ(0))

}
. (A5)

The time order exponential can be written as

T e
∫ t

0 dt ′D[L(t ′ )](·) = id(·) +
∫ t

0
dt1D[L(t1)]

+
∫ t

0
dt1

∫ t1

0
dt2D[L(t1)] ◦ D[L(t2)] + · · · ,

(A6)
noting that D[A1] does not affect system S2 so that with

D[L(t1)] ◦ · · · ◦ D[L(tn)](ρ(0))

= (D[B2(t1)] + H̃t1 )◦ · · · ◦(D[B2(tn)] + H̃tn )(ρ(0)), (A7)

we have

ρ̃2(t ) = trS1

{
T e

∫ t
0 dt ′(γ −1D[B2(t ′ )]+H̃t ′ )(ρ(0))

}
. (A8)

Defining �t (·)=T e
∫ t

0 dt ′Lt ′ (·) with Lt (·)=γ −1D[B2(t )](·) +
H̃t (·) we then find

‖ρ2(t ) − |ψG〉〈ψG|‖1 = ‖ ρ̃2(t ) − |ψ̃G〉〈ψ̃G|‖1

= ‖trS1{(�t − Ũt )(ρ(0))}‖1

� ‖(�t − Ũt )(ρ(0))‖1

= ‖(Ũ†
t ◦ �t − id)(ρ(0))‖1, (A9)

where we have used that the one norm ‖ · ‖1 is unitarily
invariant and ‖trS1{·}‖1 � ‖ · ‖1. In general, the integration of

d

dt
[(Ũ†

t ◦ �t )(ρ)] = (Ũ†
t ◦ H̃†

t ◦ �t + Ũ†
t ◦Lt ◦ �t )(ρ) (A10)

yields

‖(Ũ†
t ◦ �t − id)(ρ)‖1 =

∥∥∥∥
∫ t

0
dt ′ Ũ†

t ′ ◦ (H̃†
t ′ + Lt ′ ) ◦ �t ′ (ρ)

∥∥∥∥
1

,

(A11)

such that we arrive at

‖ρ2(t ) − |ψG〉〈ψG|‖1 �
∥∥∥∥
∫ t

0
dt ′ Ũ†

t ′ ◦ (H̃†
t + Lt ′ ) ◦ �t ′ (ρ(0))

∥∥∥∥
1

�
∫ t

0
dt ′ ‖Ũ†

t ′ ◦ (H̃†
t ′ + Lt ′ ) ◦ �t ′ (ρ(0))‖1

�
∫ t

0
dt ′ ‖Ũ†

t ′ ◦ (H̃†
t ′ + Lt ′ )‖∞

�
∫ t

0
dt ′ ‖H̃†

t ′ + Lt ′ ‖∞, (A12)

where we used the triangle inequality, again unitary invari-
ance, and ‖S(ρ)‖1 � ‖S‖∞‖ρ‖1 valid for some superopera-
tor S with ‖ · ‖∞ being the standard operator norm. Since
H̃†

t = −H̃t we find with the matrix representation of
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D[B2(t )], obtained from row vectorization of the density
operator,

‖ρ2(t ) − |ψG〉〈ψG|‖1 � t

γ
(‖B‖2

∞ + ‖B2‖∞). (A13)

Again, we have used unitary invariance, particularly
‖B̃(t )‖∞ = ‖B‖∞, and since the fidelity error ε is upper
bounded by 1

2‖ρ2(t ) − |ψG〉〈ψG|‖1 we have arrived at the
desired result (14).
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