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Berry phase estimation in gate-based adiabatic quantum simulation
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Gate-based quantum computers can in principle simulate the adiabatic dynamics of a large class of Hamiltoni-
ans. Here, we consider the cyclic adiabatic evolution of a parameter in the Hamiltonian. We propose a quantum
algorithm to estimate the Berry phase and use it to classify the topological order of both single-particle and
interacting models, highlighting the differences between the two. This algorithm is extensible to an interacting
topological system. Our results evidence the potential of near-term quantum hardware for the topological
classification of quantum matter.
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Fault-tolerant universal quantum computers are expected
to efficiently simulate the unitary evolution of large classes
of quantum Hamiltonians [1–3], including those relevant for
condensed matter [4], quantum chemistry [5], and subatomic
physics [6]. In particular, they will help to address the expo-
nential wall problem [7] faced in the simulation of quantum
many-body phenomena.

Algorithms for the preparation of complicated quantum
states are required in most digital quantum simulation (DQS)
strategies. In some instances, such as hybrid variational meth-
ods [8] and phase estimation [9], the preparation of approx-
imate quantum states is a valid approach, as long as the
overlap with the target exact state is large enough. However,
this overlap is expected to become exponentially small as the
number of degrees of freedom increases [10]. A solution to
this problem is parametric adiabatic evolution via DQS [11].
Starting from a Hamiltonian for which the ground state can
be easily obtained, the extra terms are added slowly, and, by
virtue of the adiabatic theorem [12], the quantum state of the
system stays in the ground state of the new Hamiltonian.

A central concept in the theory of adiabatic parametric
evolution is the Berry phase [13]. As a Hamiltonian is cycled
adiabatically around a closed path in a parameter space, the
wave function acquires a geometric phase [13] in addition
to the dynamical phase. The Berry phase plays a crucial
role in several domains of quantum theory [14], including
our understanding of the electronic properties of molecules
[15], nanomagnets [16,17], solids [18,19], and the topological
theory of quantum matter [20,21]. Specifically, the Berry
phase can be used as a quantized index for the topological
classification of different classes of Hamiltonians, including
one-dimensional symmetry-protected topological insulators
[22–24], gapped spin liquids [25], and interacting fermion
models [26].

As one of the main platforms for quantum simulation,
superconducting qubits have been used to explore topological
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states. Quantum algorithms to measure single-particle topo-
logical invariants, one based on quantum walks [27] and
another for finite temperatures [28], have been recently pro-
posed. A more general method was used to probe topological
transitions in both single-qubit [29] and coupled two-qubit
[30] systems. This involved the measurement of deflections
from the adiabatic path to obtain the local Berry curvature
[31], which was then integrated to obtain the Berry phase.

Here, we propose a quantum algorithm that yields the
Berry phase without requiring the explicit integration of the
Berry curvature. Our algorithm combines phase estimation
and gate-based simulation of adiabatic quantum evolution to
obtain the Berry phase, as opposed to the so-called adiabatic
quantum computing [32]. This algorithm can be applied to a
wide class of Hamiltonians in a parameter space. In particular,
we show how it can be used for the topological classification
of model Hamiltonians with gapped ground states, working
out the cases of both the paradigmatic Su-Schrieffer-Heeger
(SSH) Hamiltonian [33] for independent fermions and the
dimerized Heisenberg S = 1/2 spin chain [34].

The formal statement of the problem addressed here is the
following. Given a family of Hamiltonians H(ρ) obtained
from variations of a parameter ρ, we focus on the case
where, for every ρ, H(ρ) has a nondegenerate ground state
|�G(ρ)〉 with energy EG(ρ). At t = 0, ρ(t = 0) ≡ ρ0, and the
system is prepared in its ground state |�G(ρ0)〉. The system
evolves in time as ρ changes slowly enough to ensure that it
remains in the ground state |�G(ρ)〉 per the adiabatic theorem
[12]. After a time T , ρ = ρT and H(ρT ) = H(ρ0). Without
loss of generality ρ can be considered to be an angle that
varies between 0 and 2π and H to depend on ρ via periodic
functions. The parametric evolution can thus be visualized as
a loop in the unit circle generated by ρ ∈ [0, 2π ).

The quantum state at t = T adopts the form

|�G(2π )〉 = e−iθD eiθB |�G(0)〉, (1)

where θD = 1
h̄

∫ T
0 EG[ρ(t )]dt is the dynamical phase and

θB = −i
∫ 2π

0

〈
�G(ρ)

∣∣∣∣∂� �G(ρ)

∂ρ

〉
dρ (2)
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FIG. 1. Quantum circuits to measure Berry phase. Uinit represents
the subcircuit that initializes the n-qubit register in an eigenstate of
H. Uloop implements the quantum simulation of the adiabatic loop.
H are Hadamard gates. (a) Hadamard-test scheme [35]. (b) Iterative
phase estimation (IPE) scheme [36]. The quantum circuit shows a kth
iteration. The Rz(ωk ) gate, where ωk = −2π0.0 · · · γk+1 · · · γR and R
is the total number of iterations, serves to remove the contribution to
the phase from the previously measured bits.

is the Berry phase. Our goal is to carry out a gate-based
quantum simulation of the adiabatic loop to determine θB.
This is accomplished by a combination of quantum phase
estimation [2] and gate-based quantum simulation of the
adiabatic evolution. The proposed quantum circuits are shown
in Fig. 1.

We first discuss the circuit shown in Fig. 1(a), which
represents the standard interferometric phase estimation cir-
cuit [35]. An ancilla qubit reads out the Berry phase, and
an n-qubit register stores the quantum state that undergoes
the evolution. The initialization subroutine, denoted by Uinit ,
accomplishes Uinit|0〉n = |ψG〉. For the examples considered
in this Rapid Communication, the exact initial state can be
found via exact diagonalization. In general, however, this
Uinit subroutine may correspond to another quantum algorithm
such as quantum phase estimation [2] or the variational quan-
tum eigensolver (VQE) [37].

The crux of the matter lies on the second stage, which
carries out the controlled adiabatic evolution Uloop|ψG〉 =
eiφ|ψG〉, where φ depends both on the dynamical and the
Berry phases. Performing an adiabatic evolution for the state
initialization prior to the phase estimation scheme has been
previously explored, but instead we introduce the adiabatic
evolution within the phase estimation itself. The combination
of a Hadamard gate on the ancilla and a controlled operation
kick the φ phase onto the top register. As a result, in the
last stage of the process, the probability of the ancilla being
measured as 0 is P0 = cos2 ( φ

2 ) (see Supplemental Material
[38] and Ref. [35]).

In this Rapid Communication we also use the so-called
iterative phase estimation algorithm (IPEA) [36], the output
of which is the phase itself expressed as an R-bit binary
fraction of the form φ

2π
= ∑

k=1,R
φk

2k , where R is the number
of iterations. The binary digits φk are obtained by repeatedly
applying the circuit at the bottom of Fig. 1. Rz(ωk ) uses the
results of the previous steps to gauge away the corresponding
phase in the ancilla qubit, thus ensuring that at the kth iteration
the circuit yields the digit φR−k .

A crucial element of the generality of our algorithm lies in
the structure of Uloop. Specifically, we can take

Uloop = U�(0, T/2)U�(T/2, 0), (3)

where the first (second) argument stands for forward evolu-
tion in time from t = 0 to t = T/2 (backward evolution in
time from t = T/2 to t = 0) and the subindex � denotes
a counterclockwise cycle in ρ space. In words, in the first
half of the cycle ρ changes counterclockwise from 0 to π ,
but time evolves forward, and in the second half ρ changes
counterclockwise from π to 2π and time goes backward.

Provided that∫ π

0
EG(ρ)dρ =

∫ 2π

π

EG(ρ)dρ, (4)

the dynamical phase is canceled. Equation (4) is satisfied by
definition in time-reversal invariant Hamiltonians.

The implementation of the adiabatic evolution quantum
subroutine Uloop in gate-based quantum computers, such as
the IBM Q Experience devices, is accomplished by breaking
down the evolution in N steps of duration δt during which ρ

stays constant,

Uloop =
N∏

j=1

δU (ρ j ). (5)

Here, δU (ρ j ) = exp[−iH(ρ j ) δt/h̄] stands for the unitary
propagator element due to the Hamiltonian H(ρ j ), keeping
ρ constant. The choice of both T and N is determined by two
competing factors. On the one hand, the adiabatic condition
requires that δρ

δt = 2π
T is small, which imposes large enough N

(cf. δρ = 2π
N ) and T . On the other hand, the number of gates in

the quantum simulation algorithm increases with both N and
T , which is an issue given the limitations of current quantum
hardware.

We now substantiate our proposal by describing the quan-
tum circuit that implements Uloop in the context of the topolog-
ical classification of quantum phases of two different model
Hamiltonians. We first consider the SSH model, which de-
scribes a one-dimensional tight-binding model for spinless
fermions with one orbital per site, intracell hopping v, and
intercell hopping w [Fig. 2(a)]. Using Bloch’s theorem, the
Hamiltonian can be block-diagonalized in terms of 2×2 ma-
trices.

HSSH(k) = (v + w cos k)σx + (w sin k)σy ≡ �h(k) · �σ , (6)

where k is the wave number. For v �= w this model describes
an insulator, with two energy bands separated by a gap of size
2|v − w| at k = ±π . The different topological nature of these
two phases is characterized by a specific case of Berry phase,
known as the Zak phase [39], which is obtained when the
ground state of HSSH(k) is looped in k space across the first
Brillouin zone. The Berry phase can be used as a topological
index,

θB = −i
∫ 2π

0

〈
�G(k)

∣∣∣∣∂ �G(k)

∂k

〉
dk =

{
π, v < w,

0, v > w.
(7)

The number of in-gap edge modes is given by 2θB/π , so that
only the v < w phase has robust in-gap edge states and is
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FIG. 2. (a) SSH tight-binding chain with intra- and intercell hop-
ping parameters v and w. The box delimits a unit cell. (b) Quantum
circuit implementing a controlled-δU gate defined in Eq. (5). α, β,
γ , and δ are related to the parameter ρ and the Hamiltonian HSSH

as described in the Supplemental Material [38]. (c) Berry phase, as
obtained from Eq. (7) analytically (dashed line), in silico unitary
simulation (black pluses), and experimental quantum simulation (red
crosses) of the Hadamard-test (HT) circuit [Fig. 1(a)], and quantum
simulation of the IPEA circuit [Fig. 1(b)] for R = 4 iterations and
N = 4 time steps (green dots with respective error bars). Quantum
simulations were carried out in the ibmq_16_melbourne device from
the IBM Q Experience. Further details about the quantum simulation
can be found in the Supplemental Material.

said to be topological. This is a manifestation of the bulk-
boundary correspondence [20,21]. Hence, at v = w there is a
topological phase transition as a topological invariant changes
value.

Taking the SSH model to reciprocal space permits several
simplifications. First, the wave function can be encoded in a
single qubit. Second, the controlled unitary operations can be
implemented by taking advantage of closed-form analytical
expressions for the unitary evolution operator (see Supple-
mental Material [38]). Also note that EG(k) = EG(−k), so
Eq. (4) is satisfied and the dynamical phase is canceled via
the time-reversal trick. The Berry phase for the SSH model
as a function of v/w is shown in Fig. 2(c) as obtained in
four different ways: analytically [Eq. (7)], via an in silico
simulation of the Hadamard-test circuit shown in Fig. 1(a),
and via the implementation of both circuits in Fig. 1 on the
ibmq_16_melbourne device [40]. The controlled-δU gate was
implemented using the circuit of Fig. 2(b) in both the unitary
simulation and the actual quantum computations.

The results for the Hadamard-test circuit in quantum
hardware (red markers) are close but not quite within the
(shot-noise) error range from the analytical values for N = 4
time steps. This is due to the limitations of current quan-
tum hardware. We have verified that IPEA [Fig. 1(b)] gives

results closer to the theory with R = 4 iterations [see the
green markers in Fig. 2(c)]. Naturally, for R iterations the
maximum precision that can be achieved is 2−R, while in
the original method the precision is shot-noise bounded. The
choice between the Hadamard-test circuit and IPEA therefore
involves a trade-off between accuracy and precision.

The topological classification of noninteracting models can
be efficiently done with classical computers. This is, however,
not the case for interacting systems for which there are no
analytical solutions and whose size is beyond the capacity
of conventional computers. We now show that our algorithm
can be used in this second class of nontrivial systems. To
do so, we implement our proposal to address the topological
classification of the ground state of the dimerized Heisenberg
spin chain. The Hamiltonian for periodic boundary conditions
(PBCs) reads as

ĤPBC =
Ns/2−1∑

i=0

(
J+
4

�σ2i+1 · �σ2i+2 + J−
4

�σ2i+2 · �σ2i+3

)
, (8)

where J± = J ± δ, J is the average spin coupling, δ is the
dimerization parameter, Ns is the number of S = 1/2 spins
in the chain, �σi = (σ x

i , σ
y
i , σ z

i )T is the Pauli vector for the ith
spin, and �σNs+1 = �σ1 due to the periodicity. The Hamiltonian
for open boundary conditions (OBCs) reads HOBC = HPBC −
J−
4 �σN · �σ1. This Hamiltonian has only been solved analytically

for the case δ = 0 [41,42], the well-known gapless spin liquid.
For δ �= 0, reliable information is based on density matrix
renormalization group [43] and exact diagonalizations [34].
As for the SSH Hamiltonian, the OBC chain has in-gap edge
excitations for δ < 0, but not for δ > 0. This, together with
the fact that this model can be obtained from the SSH model
when strong Hubbard repulsion is added [44,45], implies the
two phases are topologically different.

The topological classification of the model can be done
using a method proposed by Hatsugai [25], which consists of
introducing a twist phase ρ in a single local bond,

�σ j−1 · �σ j → 1
2 (e−iρσ+

j−1σ
−
j + eiρσ−

j−1σ
+
j ) + σ z

j−1σ
z
j . (9)

The PBC ground state remains nondegenerate and gapped
as ρ is ramped between 0 and 2π in the ring geometry. The
Berry phase θB( j) that arises from this ρ loop defines a local
topological marker that reveals the dimer structure of the
chain: It is π at the stronger links and 0 at the weaker ones
[Fig. 3(a)]. As δ changes sign and a strong bond becomes a
weak one, the corresponding local Berry phase goes from π

to 0, and vice versa. Crucially, if a strong bond is removed
from the PBC ring, the resulting OBC chain is topologically
nontrivial due to the presence of topologically protected edge
states. If instead a weak bond is removed, no edge states
appear.

To implement the Berry phase estimation algorithm, sev-
eral technical caveats that were absent in the case of the
SSH model have to be dealt with. First, we need as many
qubits as sites in the spin chain. Remarkably, the topological
transition survives in small systems with as few as four spins,
although finite-size effects are present (see Supplemental Ma-
terial [38]). Second, the ground state |�G(ρ = 0)〉, which is
no longer a product state in the computational basis, must
be initialized before the start of the adiabatic loop. This is
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FIG. 3. (a) Local Berry phase θB obtained via a Hatsugai twist
[25] as a local topological marker that reveals the dimer structure
of the Heisenberg ring. Strong links (Jeff ≡ J ± δ > J) have θB = π ,
while weak ones (Jeff < J) have θB = 0. (b) Local Berry phase of
a link with coupling Jeff = J − δ for a dimerized Heisenberg ring
of four spins with J = 1 obtained via a noiseless unitary simulation
of the Berry phase estimation circuit shown in Fig. 1(a). Quantum
algorithm results (green dots) deviate slightly from those obtained
via exact exponentiation of the full 16×16 Hamiltonian (red pluses)
due to shot-noise and Trotterization errors. Both simulations reveal
a deviation from the expected steplike pattern (blue dashed line) due
to finite-size effects (see Supplemental Material [38]).

accomplished in two stages: Obtaining |�G(ρ = 0)〉 as a lin-
ear combination of computational basis states via numerical
diagonalization of the model, followed by the preparation
of the state using the approach proposed by Shende et al.
[46]. The number of gates required for this initialization
varies depending on the specific values of J , δ, and ρ, taking
values between 44 and 79 for a four-spin ring. The number
of controlled-NOT (CNOT) gates corresponds to roughly two
thirds of the total number of gates. Third, the Hamiltonian is
the sum of noncommuting terms, so the implementation of the
propagator requires a Trotter-Suzuki expansion [47,48]. Last,
the decomposition of the controlled propagator in terms of
basis gates cannot be achieved via the Z-Y -Z decomposition
as before, since the input register involves more than one
qubit. Instead, we make use of a scheme proposed in Ref. [49]
(see Supplemental Material [38]). Regarding the cancellation
of θD, it can be checked numerically that the spectrum satisfies
Eq. (4) for the Hatsugai twist.

The results of the in silico simulation of the Berry phase
estimation algorithm [Hadamard-test circuit shown in
Fig. 1(a)] applied to the topological classification of the
dimerized Heisenberg ring are shown in Fig. 3(b) (green
markers), for a system with Ns = 4 spins and J = 1, as δ is
ramped. These results differ only slightly from those obtained
from the numerical simulation in classical hardware where
the propagator of the full Hamiltonian is obtained via exact
exponentiation (orange markers). This minor discrepancy is

due to shot-noise and Trotterization errors. Both sets of results
deviate from the expected steplike pattern (blue dashed line)
due to finite-size effects (see Supplemental Material [38]).

Finally, we discuss the perspective for implementation of
the topological classification algorithm in quantum hardware.
As a preliminary step, two sanity checks on the ground-state
initialization for a ring of four spins were carried out. First, its
energy was estimated via IPEA [36] with R = 8 in a noiseless
simulation; good agreement with the exact diagonalization
results was observed. Second, a parity conservation check
[50] was conducted in both a noiseless simulation and the
ibmq_16_melbourne device. The results, shown in Fig. 6
of the Supplemental Material [38], show a clear discrep-
ancy between the noiseless simulation and the actual quan-
tum experiment, implying that the Uinit subroutine alone is
too deep for current quantum hardware even for just four
spins.

In principle, our Berry phase estimation quantum algo-
rithm method can be used to implement the topological
classification scheme proposed by Hatsugai [25] in higher-
spin systems, in higher dimensions, and also for fermions
in general [26]. Hence, we hope that the proposed Berry
phase estimation algorithm will be used as a tool to explore
interacting topological phases when digital quantum comput-
ers outperform conventional computers in the simulation of
quantum systems. There are, however, a few issues that need
to be addressed to extend the applicability of this algorithm,
notably canceling the dynamical phase without having to
satisfy Eq. (4). Moreover, adiabatic evolution typically leads
to deep quantum circuits that defy the coherence properties of
current quantum processors. The optimization of the adiabatic
evolution [51] and the conversion of a single deep quantum
circuit into multiple shallow ones [52]—in line with the recent
success of hybrid variational algorithms [37,53]—should be
considered.

In summary, we have proposed a quantum algorithm to
estimate the Berry phase acquired during the digitized quan-
tum simulation of the ground state of an Hamiltonian as
it undergoes an adiabatic loop in a parameter space. Our
approach combines the phase estimation algorithm [35,36]
with the gate-based quantum simulation of cyclic adiabatic
evolutions to estimate the Berry phase. We have discussed the
use of this algorithm to classify topological phases of two
types of Hamiltonians: The SSH model and the dimerized
Heisenberg spin model in one dimension (1D). We have
also successfully implemented the algorithm in IBM quantum
hardware, evidencing the topological phase transition of the
SSH chain. This Rapid Communication illustrates the po-
tential of digital quantum computing to simulate topological
quantum many-body systems.
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