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An anisotropic quantum vacuum (AQV) has been predicted to induce quantum interferences during the
spontaneous emission process in an atomic V transition [G. S. Agarwal, Phys. Rev. Lett. 84, 5500 (2000)].
Nevertheless, the finite lifetime of the excited states is expected to strongly limit the observability of this
phenomenon. In this paper, we predict that an AQV can induce a long-lifetime coherence in an atomic �

transition from the process of spontaneous emission, which has an additional advantage of removing the need for
coherent laser excitation. We also carry out two metasurface designs and compare their respective efficiencies for
creating an AQV over remote distances. The detection of this coherence induced by a metasurface, in addition
to being yet another vindication of quantum electrodynamics, could pave the way towards the remote distance
control of coherent coupling between quantum emitters, which is a key requirement to produce entanglement in
quantum technology applications.
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I. INTRODUCTION

The control of the spontaneous emission of quantum
emitters (QEs) has been investigated principally in a con-
fined volume by the cavity-quantum electrodynamics com-
munity [1], the archetype of which is a cavity formed by
perfect mirrors. The notion of “cavity” was then generalized to
open resonators by the nanophotonics community [2], where
strong couplings can be achieved. However, this typically only
occurs in the near field of the photonic nanostructure and
vanishes beyond a distance d ∼ λ0, where λ0 is the emission
wavelength of the QE in vacuum.

There are a few other optical systems that can affect the
spontaneous emission of QEs in the far field (d � λ0). For
instance, when covering half of the QE emission solid angle
with a spherical mirror, it has been predicted that the vacuum
fluctuations can be fully suppressed at remote distances within
a volume ≈λ3

0, leading to a total inhibition of the decay of a
two-level atom [3]. In a classical picture, the field reflected
by the spherical mirror can fully interfere with the direct field
emitted by the atom: If the atom is located at the focus of
the spherical mirror such that d = nλ0/2 with n an integer
number, there is a complete suppression of the spontaneous
emission, whereas if the atom is at the position d = (n +
1/2)λ0/2 the spontaneous emission is enhanced by a factor
of 2. Such effects occur provided that the round trip time of
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flight for the light to go from the atom to the mirror and back is
shorter than the atom decay time 1/γ0 (with γ0 the decay rate
in free space), that is, for distances d smaller than the photonic
coherence length dCL ≡ c/2γ0 [4,5]. Such an alteration of
the decay rate was already reported in [6], where the authors
measured 1% change in the decay rate of an ion located at
30 cm from a mirror.

More recently, it has been suggested to use a reflect-
ing metasurface acting as a spherical mirror to modify the
spontaneous emission of a multilevel QE located at remote
distances [7,8]. This new paradigm unites the quantum optics
and metasurface communities [9,10], and relies on the fact
that reflecting metasurfaces made of nanoresonators can break
the isotropic nature of the vacuum to induce a polarization-
dependent response, thus creating an anisotropic quantum
vacuum (AQV). It was previously predicted that an AQV
can lead to quantum interferences in orthogonal levels of a
multilevel QE in a V configuration, that is, two excited states
and one ground state [11]. However, the predicted effects,
i.e., a population transfer between the two excited states of
≈1% [7] and an induced coherence of about 10% [8], only
last as long as the atom remains in its excited states, which is
a drastic drawback for experimental confirmations.

Although the V scheme is the one most often considered
in the literature [7,8,11–16], this paper focuses on the spon-
taneous emission properties of a QE with a � transition,
i.e., a single excited state linked to two nearly degenerate
ground states, in an AQV created by a metasurface. We
predict the generation of a coherence between the two ground
states, which survives after the photon emission. The interest
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FIG. 1. Three-level quantum emitter with a � structure. The
upper level |0〉 can decay via two transitions: either to the state |1〉
with the emission of a right circularly polarized photon denoted σ+,
or to the state |2〉 with the emission of a left circularly polarized
photon denoted σ−. ρ12 denotes the coherence between the two
ground states |1〉 and |2〉.

in the ground-state coherence arises from its long lifetime,
which allows high-resolution experiments. Moreover, it was
previously known that this coherence could only be generated
with an external coherent laser field (see [17], Chap. 3). Here,
we show that such a coherence can be simply generated
by spontaneous emission in an anisotropic vacuum (in the
absence of a laser field).

In Sec. II, we derive the master equation for the � scheme
(Sec. II A), and we show how an anisotropic vacuum can
induce a coherence between the ground states from the pro-
cess of spontaneous emission (Sec. II B). We also provide
an interpretation of this result in terms of the dressed states
of the system (Sec. II C). In Sec. III, following a phase-
mapping approach (presented in Sec. III A), we propose two
designs of metasurfaces to realize the anisotropic vacuum and
characterize their performances (Secs. III B and III C). Finally,
we assess the value of the coherence that can be achieved
using such metasurfaces, taking into account the limitations
due to the finite size of their nanoresonators (Sec. IV).

II. THEORETICAL PREDICTION: LONG-LIFETIME
COHERENCE

We consider a three-level system in a so-called � scheme:
one single excited state |0〉, which can decay into two ground
states |1〉 and |2〉 via two orthogonal dipolar transitions by the
emission of circularly polarized photons σ+ and σ−, respec-
tively (see Fig. 1). By orthogonal transitions, we mean that the
dipole moments d01 and d02 corresponding to these transitions
are orthogonal (i.e., d∗

01 · d02 = 0). They are given by d01 =
+d01�ε+ and d02 = −d02�ε− where �ε± = (�x ± i�y)/

√
2. We use

the �z direction as the quantization axis. This scheme appears
naturally in nitrogen-vacancy (NV) centers in diamond, using
the magnetic sublevels |±1〉 as the ground states and |A2〉
as the excited state [18]. It also can be found in atoms, using
the Zeeman manifold with |F, m = ±1〉 for the ground states
and |F ′, m = 0〉 for the excited state, where m denotes the
magnetic quantum numbers, and F and F ′ are the total angular
momentum quantum numbers [17].

The interaction between the atom (at position r0) and the
electromagnetic (em) environment in the vacuum state (i.e.,
no photons) is described by the interaction Hamiltonian in the

electric dipole approximation: ĤI = −d̂ · Êv (r0). The dipole
moment operator d̂ is given by d̂ = d01 |0〉 〈1| + d02 |0〉 〈2| +
d∗

01 |1〉 〈0| + d∗
02 |2〉 〈0|. The electromagnetic-field operator

Êv (where the subscript v denotes the vacuum) can formally
be written as a sum of a complex field Ê(+)

v and its Her-
mitian conjugate (H.c.) Ê(−)

v = [Ê(+)
v ]†: Êv (r0) = Ê(+)

v (r0) +
Ê(−)

v (r0). In the interaction picture (time-dependent Hamilto-
nian), and after making the rotating wave approximation, this
interaction Hamiltonian reads

ĤI (t ) = −(d01 |0〉 〈1| eiω1t + d02 |0〉 〈2| eiω2t ) · Ê(+)
v (r0, t )

− (d∗
01 |1〉 〈0| e−iω1t + d∗

02 |2〉 〈0| e−iω2t ) · Ê(−)
v (r0, t ),

(1)

where ωi is the transition frequency associated with the tran-
sition |0〉 → |i〉 (i = 1, 2). We derive in Sec. II A the master
equation for the reduced density matrix of the atom.

A. Master equation for the atomic density matrix

The total system (atom plus em environment) is character-
ized by the density matrix ρT (t ), which obeys the Schrödinger
equation, which, in the interaction picture, reads [19,20]

∂ρT (t )

∂t
= 1

ih̄
[ĤI (t ), ρT (t )], (2)

with ĤI (t ) given by Eq. (1). The reduced density matrix
of the atom (atomic density matrix) is obtained by taking
the trace over the degrees of freedom of the environment:
ρ(t ) ≡ Tre[ρT (t )]. In order to find the master equation gov-
erning the evolution of this reduced density matrix, we first
assume that there is no correlation between the atom and
the em environment at time t = 0, so that ρT (0) factorizes
as ρT (0) = ρ(0) ⊗ ρe(0), with ρe the reduced density matrix
of the em environment. Moreover, considering that only the
state of the atom is affected by the interaction, we assume
that, at later times t , ρT (t ) factorizes as ρT (t ) = ρ(t ) ⊗ ρe(0).
Finally, by making two other major approximations, known as
the Born and Markov approximations, we obtain the following
master equation for the atomic density matrix ρ(t ) (where we
have considered for simplicity close-lying states, ω1 � ω2 ≡
ω0; see the Appendix for the details of the derivation):

∂ρ(t )

∂t
= −

[
iω0 + γ1

2
+ γ2

2

]
|0〉 〈0| ρ(t )

+ ρ00(t )
[γ1

2
|1〉 〈1| + γ2

2
|2〉 〈2|

+ κ21

2
|2〉 〈1| + κ12

2
|1〉 〈2|

]
+ H.c. (3)

In Eq. (3), ρ00(t ) denotes the population in the excited state
|0〉 (defined as ρ00(t ) ≡ 〈0| ρ(t ) |0〉), and we have introduced
the coefficients γi and κi j , the expressions of which are

γi ≡ 1

h̄2 d∗
0i · Ĉ(r0, r0, ω0) · d0i (i = 1, 2) (4)

and

κ12 ≡ 1

h̄2 d∗
01 · Ĉ(r0, r0, ω0) · d02. (5)

The coefficient γi characterizes the transition |0〉 to |i〉, and
is called the decay rate; the coefficient κ12 characterizes a
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cross-coupling between the states |1〉 and |2〉 (and κ21 = κ∗
12).

These coefficients are defined in Eqs. (4) and (5) in terms of
the correlation tensor Ĉ:

Ĉ(r, r′, ω) ≡
∫ +∞

−∞
dτ 〈Ê(+)

v (r, τ )Ê(−)
v (r′, 0)〉eiωτ , (6)

where the bracket indicates an ensemble average:〈
Ê(+)

v (r, τ )Ê(−)
v (r′, 0)

〉 ≡ Tre
[
ρe(0)Ê(+)

v (r, τ )Ê(−)
v (r′, 0)

]
(see the Appendix). This correlation tensor characterizes the
amplitude of the fluctuations of the electric field in the vacuum
state, which contain all the information about the dynamics of
the system since, once they are known, the dynamics of the
atom given by Eq. (3) can in principle be solved.

We now integrate Eq. (3) for an atom initially prepared
in the excited state corresponding to the following initial
conditions at t = 0: ρ00(0) = 1, ρ11(0) = ρ22(0) = 0, and
ρi j (0) = 0 for j �= i, where ρii(t ) is the atomic population in
the state |i〉 and ρi j (t ) is the atomic coherence between the
states |i〉 and | j〉. For the steady state (t → ∞), we find, for
the atomic populations, that ρ00(∞) = 0 and

ρii(∞) = γi

γ1 + γ2
(i = 1, 2), (7)

and, for the atomic coherences, that ρ10(t ) = ρ20(t ) = 0 (∀t)
and (using the fact that κ∗

21 = κ12)

ρ12(∞) = κ12

γ1 + γ2
. (8)

While the result in Eq. (7) simply shows that the popu-
lations in the steady state are in a probabilistic distribution
either in state |1〉 or |2〉, the result in Eq. (8) for the coherence
ρ12 is more surprising: it reveals that a coherence between the
two ground states can be induced by spontaneous emission,
i.e., without an external field, while to date it was thought
that a coherence between the two ground states required an
external coherent field such as a laser field ([17], Chap. 3).
Furthermore, because it involves ground states, this coherence
has in principle a long lifetime, in the millisecond range for
NV centers at room temperature [21], and in the order of sec-
onds for cold atom systems where collisions are suppressed.
Therefore, we have simply ignored the relaxation term of ρ12

in Eq. (3), which is supposed to be of much longer time than
the coherence involving the excited state.

The detection of the coherence ρ12 in NV centers can
be performed following the protocols discussed in [18]: A
magnetic field bias is applied to lift the degeneracy between
the two ground states |±1〉. It allows one to address separately
the transitions |±1〉 → |0〉 with two microwave fields, where
|0〉 is another magnetic sublevel. The presence of coherence
between the state |±1〉 results in a phase-sensitive transfer
to |0〉. Finally, the population of |0〉 is probed optically us-
ing a cycling transition with an auxiliary excited state |Ey〉
(see [18]). With cold atomic ensembles, a similar method
could be employed using the hyperfine structure of the ground
state of alkali-metal atoms. In this case, the coherence ρ12 is
generated between two states within one Zeeman manifold.
Then, two radio-frequency fields perform a phase-sensitive
transfer to a state belonging to another Zeeman manifold.
Finally, the population of this last state is optically measured.

B. Anisotropic quantum vacuum

We will now find the conditions for the existence of the
long-lifetime coherence of Eq. (8). For that, we first use the
fluctuation-dissipation theorem at zero temperature (we do
not consider the effect of the temperature, which is indeed
very small when one considers an atom emitting at optical
frequencies). This theorem links the correlation tensor Ĉ of
Eq. (6), which we recall characterizes the vacuum electric-
field fluctuations, to the imaginary part of the Green tensor Ĝ,
which describes the dissipation of the electric energy, as [11]

Ĉ(r, r′, ω) = 2h̄ω2

ε0c2
Im[Ĝ(r, r′, ω)]. (9)

The fluctuation-dissipation theorem shows that the amplitude
of the fluctuations is known once the imaginary part of the
Green tensor has been calculated. Making use of it, the
coefficients γi [Eq. (4)] and κ12 [Eq. (5)] can be expressed
in term of the Green tensor as

γi = 2ω2
0

h̄ε0c2
d∗

0i · Im[Ĝ(r0, r0, ω0)] · d0i (10)

and

κ12 = 2ω2
0

h̄ε0c2
d∗

01 · Im[Ĝ(r0, r0, ω0)] · d02. (11)

Next, we express the Green tensor and the dipole moments
appearing in Eqs. (10) and (11) in the Cartesian basis (�x, �y, �z)
(we recall that a static magnetic field is applied along the �z
direction, defining the quantization axis). Equation (8) can
then be recast in the following form (using the fact that Gyx =
Gxy):

ρ12(∞) = d01d02

d2
01 + d2

02︸ ︷︷ ︸
R

× Im[Gxx − Gyy] − i2Im[Gxy]

Im[Gxx + Gyy]︸ ︷︷ ︸
A

, (12)

where the Green tensor Cartesian components have to be
evaluated at the position of the quantum emitter r0 and at the
transition frequency ω0.

One immediately remarks that in the usual isotropic vac-
uum Gxx = Gyy and Gxy = 0, and Eq. (12) predicts null coher-
ence. Therefore, in order to generate coherence, the vacuum
has to be anisotropic. A similar result was first put forward
by Agarwal in [11] for a V configuration, where he predicted
a coherent population transfer between the two orthogonal
excited states in an AQV.

To quantify the anisotropy, the coherence in Eq. (12) can
be written as a product of two terms: the coefficients R and
A, characterizing the quantum emitter on one hand, and the
vacuum anisotropy on the other hand. R reaches its maximum
value of 0.5 when the two dipole moment amplitudes are
equal (d01 = d02). The coefficient A (referred to hereafter as
the “anisotropy”), in its general form, is a complex quantity,
and depends on the em environment which is completely
characterized by Ĝ. In this paper, we will only consider
situations where Gxy = 0 (which will be justified later), so
from now on A will be considered as a real quantity and takes
the form of a visibility with extremum values ±1. Therefore
the extrema of the coherence are ρ12(∞) = ±1/2.
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C. Interpretation in terms of dressed states

In situations where the coherence is extremum, the atomic
density matrix, after spontaneous emission, reads in the ba-
sis of the two ground states {|1〉 , |2〉}: ρ(∞) = 1

2 [ 1 ±1
±1 1 ],

which corresponds to a pure state. This is in stark contrast with
the isotropic vacuum where spontaneous emission produces a
statistical mixture with a reduced density matrix ρ(∞) = 1

2I.
One can interpret this in terms of the dressed states

of the system (atom plus field). Everything happens as if,
after the emission of a photon (t → ∞), the atom-field
“dressed state” is

|ψ (∞)〉 = 1√
d2

01 + d2
02

1√
Im(Gxx ) + Im(Gyy)

×{d01 |1〉 ⊗ [
√

Im(Gxx ) |X 〉 + i
√

Im(Gyy) |Y 〉]
+ d02 |2〉 ⊗ [

√
Im(Gxx ) |X 〉 − i

√
Im(Gyy) |Y 〉]},

(13)

where |X 〉 = 1/
√

2(|σ+〉 + |σ−〉) [respectively, |Y 〉 =
1/

√
2i(|σ+〉 − |σ−〉)] represents the state of photons

emitted with a linear polarization along �x [respectively,
�y]. Indeed, when tracing over the emitted photon, this
fully agrees with Eq. (12), and one also finds that
ρii(∞) = d2

0i/(d2
01 + d2

02) = γi/(γ1 + γ2) (for i = 1, 2),
in agreement with Eq. (7).

In isotropic vacuum, and when the two ground states are
equally weighted (d01 = d02, γ1 = γ2), it is well known that
the atom and the emitted photons are fully entangled [22]: at
the end of the decay process, the atom-field state is of the form

|ψ (∞)〉 = 1√
2

(|1〉 ⊗ |σ+〉 + |2〉 ⊗ |σ−〉). (14)

The reduced state of each subsystem (atom and field as well)
is thus fully incoherent, which explains why in isotropic
vacuum we obtain a reduced density matrix ρ(∞) = 1

2I. It
also explains why in order to observe quantum beats between
the emitted photons in the vacuum a V transition is necessary,
and no quantum beats will appear in the case of a � transition
(see [22], Chap. 1.4).

However, if the back reaction of the environment fully
eliminates the X component of the polarization [i.e., then
Im(Gxx ) = 0, which can be achieved with a metasurface as
we will see later], the atom-field state at the end of the decay
process is of the form

|ψ (∞)〉 = 1√
2

(|1〉 − |2〉) ⊗ 1√
2i

(|σ+〉 − |σ−〉). (15)

This atom-field state is factorizable (as it is the case for a
V transition in isotropic vacuum), but here the atom is in
a coherent superposition of ground states (whereas for a V
transition it is the photon which is in a coherent superposition
of two different modes). This means that the reduced density
matrix of each subsystem is a pure state. In particular, we
obtain here an atomic density matrix ρ(∞) equal to the one-
dimensional (1D) projector: ρ(∞) = 1

2 [ 1 −1
−1 1 ].

The environment can thus act as a quantum eraser which
erases the entanglement between the atom and the field

(emitted photon). According to the general complementary
relation between the entanglement of a system with its envi-
ronment and the degree of coherence of the reduced density
matrix of this system [23,24], the isotropic vacuum corre-
sponds to the situation where atom and field are maximally
entangled so that their coherence is minimal (zero); in con-
trast, if the environment acts exactly as a polarization filter
that destroys linear polarization along �x, it also destroys
the correlations (entanglement) between the emitted photon
and the two ground states, which fully restores the atomic
coherence. In realistic situations (as we will see in Sec. III),
only partial coherence is achieved, as an intermediary be-
tween these two extreme cases (isotropic vacuum and ideal
anisotropic vacuum).

III. METASURFACE DESIGNS

Vacuum anisotropy appears naturally in the near field of
a material media (see, e.g., [25]). For instance, anisotropic
suppression of spontaneous emission of atoms located be-
tween two close mirrors has been reported by Jhe et al. [26].
Anisotropy of Casimir-Polder interactions between atoms and
planar surfaces has also been investigated [27] leading to
atomic level mixing [28]. Resonant nanostructures are also
known to show important discrepancies between Im(Gxx )
and Im(Gyy) in the near field of, for example, metallic nan-
odisks [29], nanoparticles [30,31], or graphene [32]. Inter-
estingly, although near-field interactions can dramatically en-
hance the QE spontaneous emission because of large Im(Gii )
values, they are not better than far-field interactions for pro-
ducing an optimum value of the anisotropy A in Eq. (12).

Metasurfaces acting as a spherical mirror with
polarization-dependent responses have been proposed to
create anisotropic vacuum [7,8] in the far field. As a first
example, looking at Eq. (12), one can consider the ideal case
of a metasurface that perfectly reflects back to the QE half
of its own emission only at a particular polarization, say
the x component, leading to perfect destructive interferences
and thus Im[Gxx(r0, r0, ω0)] = 0. Considering that the other
polarization component (the y component) is not affected
and thus Im[Gyy(r0, r0, ω0)] = γ0/2, its value in vacuum,
such a metasurface might lead to an optimum anisotropy
A = −1. This was the strategy followed in [7] in order to
induce the coherent population transfer predicted in [11] for a
V configuration.

A metasurface can alternatively be designed as acting on
circular polarizations. To clarify this, instead of expressing the
quantities appearing in Eqs. (10) and (11) in Cartesian coor-
dinates [as done to obtain Eq. (12)], let us express the Green
tensor and dipole moments in the spherical basis (�ε+, �ε−, �ε0),
where �ε± = (�x ± i�y)/

√
2 and �ε0 = �z. Then, by plugging these

expressions into Eq. (8), one finds the following expression
for the coherence:

ρ12(∞) = d01d02

d2
01 + d2

02︸ ︷︷ ︸
R

× Im(G+−)

Im(G++)︸ ︷︷ ︸
A

, (16)

where the Green tensor spherical components have again
to be evaluated at the position of the quantum emitter
r0 and at the transition frequency ω0. This expression is
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equivalent to Eq. (12), since the Green tensor components
in the different bases verify the following relations: G+− =
1
2 (Gxx − Gyy − i2Gxy) and G++ = G−− = 1

2 (Gxx + Gyy). The
form of Eq. (16) suggests that a metasurface that mixes
the circular polarizations σ+ and σ−, thus leading to a
non-null cross-term Im[G+−(r0, r0, ω0)] �= 0, might create
a coherence. Ideally, if the metasurface totally inverses the
absolute rotation direction of the electric field with respect
to that of the incident circularly polarized one, one will have
Im[G+−(r0, r0, ω0)] = Im[G++(r0, r0, ω0)], and thus a max-
imum anisotropy A = 1. This strategy was employed in [8] in
order to induce a coherence between the two excited states in
a V configuration.

In this section, we present the two designs of the metasur-
face discussed in the above examples, we compare their per-
formances, and we assess the value of the induced coherence,
taking into account the limitations of such designs. But first
of all, we present in Sec. III A the general approach used to
make the designs.

A. Phase-mapping approach

The problem considered here is the interaction between a
planar (meta)surface and an electric dipole source of emission
wavelength λ0 located at a distance d above the surface. For
an emitter located at remote distances (in the far field d �
λ0), the interaction will be efficient only if the metasurface
is able to reflect and focus back the light originating from the
“point” dipole source. Thus, the metasurface must be optically
equivalent to a spherical mirror of focal length f = d/2, by
producing the following spherical phase profile:

ϕ(r) = π − 2k0|r − r0| (mod 2π ), (17)

where k0 = 2π/λ0, r denotes the coordinates of the points of
the metasurface, and r0 denotes the coordinates of the QE.

We parametrize the problem as follows: the points r lie
in the plane z = 0: r = (x, y, 0), and r0 = (0, 0, d ). In other
words, the phase accumulated through propagation should be
compensated in each point r of the flat metasurface—hence
the minus sign in Eq. (17)—by a phase shift corresponding
to the phase profile given in Eq. (17). Such metasurfaces
create interferences and a diffraction limited spot (at the
position of the QE r0), and are the equivalent in reflection of
metalenses [9,10]. They can be implemented using metallic
subwavelength reflect arrays, made of a metallic mirror, a
dielectric spacer, and subwavelength structures (also called
meta-atoms or nanoantennas) patterned on top (see Fig. 2).

By carefully choosing and positioning the meta-atoms,
the metasurface can induce local phase shifts that mimic the
spherical phase profile given by Eq. (17). This is the principle
of the phase-mapping approach. Obviously, each design is
specific for a couple of parameters {λ0, d}, so a modification
of one of these parameters leads to a new design. Good power
reflectances were reported for such metasurfaces at normal
incidence: about 80% for gold reflect arrays in the range
700–1100 nm [7,33–35] and up to 90% for silver reflect arrays
around 640–670 nm [8,36].

In order to design the metasurface, one usually extrapolates
its properties from the computations of an infinite periodic
grating. Such an approach assumes that locally the properties

FIG. 2. Unit cell of a reflect-array metasurface made of a metallic
mirror of thickness h1, a dielectric spacer of thickness h2, and a
rectangular nanoantenna of dimensions lx × ly and of thickness h3.
The dimensions of the unit cell are �UC

x × �UC
y .

of the metasurface are close to those of a periodic grating,
which is valid if the meta-atoms behave independently [9]
and is referred to as the local-periodicity approach. Adopt-
ing this approach, all the numerical simulations in this pa-
per are done using the open-source RETICOLO software for
grating analysis [37], which implements a frequency-domain
modal method known as the rigorous coupled wave analysis
(RCWA) [38–41]. Since it is a Fourier modal method, we
specify for each simulation the number of Fourier modes
retained for the computation (which are given for the direction
�x, and we use the same number of modes for the direction �y).
Moreover, all the meta-atoms considered here are nanorods
that respect a mirror symmetry, and therefore throughout this
paper Gxy = 0 [42].

In Secs. III B and III C, we present two designs aiming at
creating the coherence in the QE, and we characterize their
performances.

B. Design based on resonant-phase delays

In this section, we design the metasurface discussed in the
first example above—inspired from Eq. (12)—that must have
the following optical properties.

(i) The metasurface acts as a spherical mirror only for a
linearly polarized light along �x, resulting in Gxx(r0, r0, ω0) =
0 (destructive interferences).

(ii) The metasurface acts as a planar mirror for a linearly
polarized light along �y, so Gyy(r0, r0, ω0) is untouched.

Such a metasurface can be built from anisotropic resonant
nanoantennas, using, for example, metallic nanorods (like the
one represented in Fig. 2) with varying lengths along �x, in
order to tune the resonance and to induce different phase
shifts or resonant-phase delays on a x-polarized light that
reproduce the spherical phase profile of Eq. (17), and the same
width along �y, in order to induce a constant phase shift on a
y-polarized light that produces a flat phase profile [7,33,34].

For the simulations, we consider a two-dimensional (2D)
grating made of unit cells of the type presented in Fig. 2
with lateral dimensions of �UC

x × �UC
y = 300 × 150 nm, and
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FIG. 3. Power reflectance (in purple) and phase shift ϕ (in green)
of an incident x-polarized (respectively, y-polarized) wave as a
function of the length lx of the nanoantennas, computed for a 2D
grating (see main text). The symbols represent the simulated points,
and the solid lines are guides to the eyes. The dotted black lines
are spaced by 2π/5. The number of Fourier modes used for the
simulations is 30.

made of a gold mirror and a dielectric film of SiO2 with
respective thicknesses h1 = 130 nm and h2 = 50 nm, and a
gold nanorod patterned on top with fixed width ly = 100 nm
and thickness h3 = 30 nm. The wavelength is chosen at
λ0 = 852 nm, which corresponds to the D2 line of cesium
atom. At this wavelength, the refractive indices are n =
0.16 + i5.34 for gold and n = 1.45 for SiO2. In Fig. 3, we
computed the phase shifts (in green) and the efficiencies in
reflection (in purple) of such a 2D grating, for incident x-
and y-polarized waves at normal incidence, as a function of
the length lx of the nanorod. One can see that the phase
shift induced on a x-polarized wave (green crosses) spans
over 8π/5 (1.6π ), which corresponds to 4/5 of the 2π phase
space, while the phase shift induced on a y-polarized wave
(green circles) is rather flat. We can therefore choose five
nanoantennas to sample the entire phase space of 2π , with
respective phase shifts of 0, 2π/5, 4π/5, 6π/5, and 8π/5
(intersection with the dotted black lines spaced by 2π/5; see
dimensions in Table I). Moreover, the power reflectance of
the x-polarized wave (purple squares), which is the only one
that matters, is relatively good, remaining between 63 and
97%, the losses being due to absorption by the metal (we
check that the gold mirror is thick enough and that there is
no transmission loss).

TABLE I. Nanoantenna dimensions for sampling the phase space
from zero to 2π .

Nanoantenna lx (nm) ly (nm)

No. 1 30 100
No. 2 105 100
No. 3 125 100
No. 4 145 100
No. 5 250 100
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FIG. 4. Illustration of the phase-mapping approach for the 1D
design of the resonant-phase delay metasurface. (a) Phase profiles
to be encoded by the metasurface: the wrapped (respectively, un-
wrapped) spherical phase profile ϕx of Eq. (17) (red full line)
(respectively, red dashed line) desired for the x -polarization, and the
flat phase profile ϕy (blue line) desired for the y -polarization, starting
from the center of the metasurface at r = 0. (b) Corresponding
nanoantennas to encode the desired phase shifts ϕx and ϕy. The unit
cells of length �UC (black dashed box) containing the nanoantennas
are encompassed into supercells of length �SC (red box), spanning
the 2π phase space.

The design of the metasurface is achieved after combining
these five nanoantennas while employing the following rules:
All nanoantennas must be parallel (the varying length lx
always oriented along the �x axis), and patterned after Eq. (17)
according to the phase-mapping approach. This design is
illustrated “in 1D” in Fig. 4: In Fig. 4(a), we plot the ideal
unwrapped (respectively, wrapped) phase profile of Eq. (17)
of a x-polarized wave in dashed red (respectively, full red),
and the ideal flat phase profile of a y-polarized wave in
blue, starting from the center of the metasurface at r = 0; in
Fig. 4(a), we represent a slice of the metasurface where the
nanoantennas are distributed into supercells (one of them is
highlighted in the red box) that sample the 2π phase space,
mimicking the phase profiles of Fig. 4(a). The size of the
supercells is maximum at the center of the metasurface, and
progressively decreases with distance from the center because
the spherical phase profile varies more rapidly.

In addition to the absorption losses, the sampling of the
phase by discrete elements in the phase-mapping approach
also limits the performances of the metasurface (one talks
about discretization losses). In order to assess these discretiza-
tion losses, we compute the performances in the canonical
case of a linear-phase gradient metasurface [33,34], which
behaves as a blazed grating that diffracts entirely into the
diffraction order m = −1 only for an incident x-polarized
wave. Such a gradient metasurface is made of the same super-
cell containing nanoantennas that sample the phase regularly
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FIG. 5. Diffraction performances of a linear-phase gradient
metasurface. The inset shows a supercell of the gradient metasurface
of size �SC

x × �SC
y (see main text). (a) Reflection angle θr in the

diffracted order m = −1 of an incident plane wave polarized along �x
as a function of the incident angle θi (green circles). The generalized
Snell’s law of reflection [Eq. (18)] is also plotted (black dashed
line). (b) Power reflectance in the diffracted orders m = 0, −1, −2
(blue stars, green circles, and orange triangles, respectively) and
total reflection efficiency (black squares) of an incident plane wave
polarized along �x as a function of the incident angle θi. The number
of Fourier modes used to compute the reflectance is 30.

from 2π to zero (and from zero to 2π to diffract into the order
m = +1), repeated with periodic boundary conditions.

For the simulations, we consider a linear-phase gradient
metasurface made of supercells of dimensions �SC

x × �SC
y =

300 × 1500 nm, in which the five nanoantennas previously
selected are embedded into unit cells, with the same dimen-
sions as previously, and repeated twice [see inset in Fig. 5(a)].
The working wavelength is still 852 nm, as previously. The
angle of the diffracted order m = −1 (reflection angle θr) is
given in terms of the angle of the incident wave (incident angle
θi) by the generalized Snell law of reflection [10]:

sin(θr ) = sin(θi ) + λ0

2π

∂ϕ

∂y
, (18)

where in our case ∂ϕ/∂y = −2π/�SC
y with �SC

y = 1500 nm.
We check that we perfectly recover this law in Fig. 5(a) for an
incident x-polarized wave. Thus, one can see that the diffrac-
tion angle is the same either for a periodic blazed grating or for
a smooth linear-gradient metasurface, because it only depends
on the period and not on the underlying structure [43].

In Fig. 5(b), we computed the power reflectance of the
diffracted order m = −1 for an incident x-polarized wave
(green circles) as a function of the incident angle θi, and

TABLE II. Characteristics of the supercells of the metasurface
shown in Fig. 4, labeled by integer n = 1, 2, 3, 4, 5 (starting from
the center of the metasurface): length �SC (in units of λ0), number of
unit cells N per supercell, incident angle θi of the light impinging the
supercell, and power reflectance in the order m = −1 (computed for
a linear-phase gradient metasurface made of the supercell and at the
incident angle θi). The number of Fourier modes used to compute the
reflectance is 30.

Supercell n �SC (λ0) N θi (◦) Reflectance (%)

1 3.17 9 0 60
2 1.41 4 17.6 55
3 1.06 3 24.6 50
4 0.94 2 29.4 30
5 0.82 2 33.3 30
∞ 0.50 1 90.0 0

compare it with other dominant orders m = 0 (blue stars) and
m = −2 (orange triangles). The total power reflectance is also
shown (dark squares). First, the total power reflectance, which
varies between 59 and 77%, reveals absorption losses between
23 and 41%, depending on the incident angle. Second, one can
see that the reflectance of the order m = −1 is about 60% for
incident angles θi up to 30◦, and then decreases until 40% for
an incident angle of 70◦, while mostly the reflectance of the
order m = 0 increases. This reveals that while the reflectance
into a given order depends on the incident angle θi it is
relatively robust with the variations of θi (1/3 decrease of the
reflectance of the order m = −1 over 70◦).

The final metasurface is more complex than a linear-phase
gradient metasurface since it is made of supercells of different
sizes. One can show from Eq. (17) that the largest supercell
starts at r = 0 (at the center of the metasurface) and has
a length of �SC

max = √
dλ0, and that the length of the next

supercells quickly converges towards the minimum length
of �SC

min = λ0/2. In Table II, for a design working at {λ0 =
852 nm, d = 10λ0}, we give the length �SC of the first five
supercells represented in Fig. 4(b) (and labeled n = 1, . . . , 5
starting from the center) and the number of unit cells N per su-
percell, considering a unit cell of fixed length �UC = 300 nm
(≈0.35λ0). One can see that the number of unit cells—and
therefore of nanoantennas—quickly drops from 9 (first super-
cell) to 2 (fourth supercell). Consequently, the sampling of the
phase deteriorates, leading to higher discretization losses.

We computed in Table II the power reflectance of the
order m = −1 (for an incident x-polarized wave) for different
linear-phase gradient metasurfaces made of these supercells,
and taking into account the incident angle θi (also shown) at
which the light impinges the supercell in the final metasurface.
One can see that the reflectance decreases as the number
of unit cells per supercell decreases; in other words, the
discretization losses increase.

In summary, the performances of the metasurface are re-
duced for two main reasons: the absorption losses and the
discretization losses due to the finite number of unit cells
used to sample the phase. They are better in the center of
the metasurface, and deteriorate quickly when getting further
from the center (or with increasing of the incident angle),
which limits the numerical aperture (NA) of the metasurface.
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FIG. 6. Geometric phase ϕ as a function of the rotation angle φ of
the nanorods in the plane (�x, �y) (see inset), computed for a 2D grating
(see main text) (green circles). The analytical expression [Eq. (19)] is
also plotted (black dashed line). The number of Fourier modes used
to compute the geometric phase is 30.

C. Design based on geometric phases

In this section, we design the metasurface discussed in the
second example above—inspired from Eq. (16)—that must
have the following properties.

(i) The metasurface acts as a spherical mirror.
(ii) Upon reflection, the metasurface totally inverses the

absolute rotation direction of the electric field with respect to
that of the incident circularly polarized one.

This inversion of the electric-field rotation can be achieved
by using nanoantennas which act as half-wave plates, as the
result of a phase delay of π between the long and short
axes of the nanoantennas [35,42]. Moreover, a phase shift,
called geometric phase or Pancharatnam-Berry phase, which
depends on the orientation of the antenna, is acquired through
this inversion, according to [44,45]

ϕ = 2φ, (19)

where φ denotes the angle by which the antenna is rotated (see
inset in Fig. 6). This phase shift is of geometric origin since
it is solely due to the orientation of the nanoantenna and not
to its resonance properties. Thus, the spherical phase profile
can be built by mapping the orientation of the nanoantennas
[Eq. (19)] into the spherical phase profile [Eq. (17)].

For the simulations, we consider a 2D grating made
of unit cells of the type presented in Fig. 2 with lateral
dimensions of �UC

x × �UC
y = 300 × 300 nm, and made of

a gold mirror and a dielectric film of MgF2 with respective
thicknesses h1 = 130 nm and h2 = 90 nm, and a gold nanorod
patterned on top with lateral dimensions lx = 200 nm and
ly = 80 nm and thickness h3 = 30 nm, following [35,42]. The
working wavelength is 852 nm, and the refractive indices are
n = 0.16 + i5.34 for gold and n = 1.37 for MgF2. For such
a system, the phase shift for a light polarized along �x and a
light polarized along �y is π upon reflection, at 852 nm. Thus,
the system acts as a half-wave plate working in reflection.

FIG. 7. Three-dimensional design of the geometric metasurface,
made for a distance of the dipole source d = 10λ0 from the meta-
surface, and an emission wavelength of λ0 = 852 nm. The white box
highlights the first supercell (starting from the center) of size �SC

1 =
2.7 μm, made of nine nanorods. This computer aided design was
drawn using the software SOLIDWORKS developed by Dassault
Systèmes.

We check in Fig. 6 that we recover the behavior of Eq. (19)
(shown in dashed black line) by simulating the phase shift
induced by a periodic grating of such nanoantennas all rotated
by the same angle φ (green circles). We show in Fig. 7 the
three-dimensional drawing of such a metasurface working at
{λ0 = 852 nm, d = 10λ0}. In this figure, we also highlight
the first supercell (white box) starting from the center of the
metasurface.

Next, in Fig. 8, we compute the conversion efficiency of
a circularly polarized σ+ incident wave reflected into a σ−
circularly polarized wave (cross-polarization reflectance) of
the same 2D grating as a function of the incident angle θi. One
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FIG. 8. Cross-polarization (CP) power reflectance, which char-
acterizes the conversion efficiency in energy between a light circu-
larly polarized σ+ and a light circularly polarized σ−, as a function
of the incident angle θi, computed for a 2D grating (see main text).
The number of Fourier modes used to compute the CP reflectance is
30.
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can see that the cross-polarization power reflectance remains
>40% for θi < 45◦. This design does not seem to be as
good as the first design presented in Sec. III B, for which we
recall that the power reflectance into the desired order remains
>40% up to θi = 70◦ [Fig. 5(b)]. Even though the quantities
that we compare here are different, both characterize in a way
the performances of the metasurface.

IV. ESTIMATION OF THE COHERENCE INDUCED
BY THE METASURFACE

In this section, we want to assess a realistic value of
the ground-state coherence ρ12 in the steady state [Eq. (8)]
induced by a metasurface. To do so, we limit the discussion to
the first design (Sec. III B), since its performances seem to be
better than for the second design (Sec. III C).

If the dipole moments of the � transition are equal (d01 =
d02 = d), Eq. (12) [or equivalently Eq. (16)] becomes

ρ12(∞) = 1

2
× Im[Gxx − Gyy]

Im[Gxx + Gyy]
, (20)

where we recall that we consider Im[Gxy] = 0 since the
nanoantennas have a mirror symmetry. By noting that, for a
two-level atom characterized by a dipole moment d oriented
along the x axis, the decay rate is given by [46]

γx = 2ω2
0

h̄ε0c2
|d|2Im(Gxx ), (21)

and similarly for an orientation along the y axis, Eq. (20) can
be recast in the form

ρ12(∞) = 1

2
× γx − γy

γx + γy
. (22)

To evaluate the coherence of Eq. (22), one could use
Eq. (21) (or equivalently the expression in terms of the scat-
tered field as in [8,36]) and numerically compute the Green
tensor Ĝ (respectively, the scattered field Es) of the metasur-
face at the position of the atom, which is demanding in terms
of computation time.

Instead, we choose to take advantage of the analytical
results available for a spherical mirror [3]. We consider that
the quantity γy is not modified compared to its free-space
value: γy = γ0, while γx is altered since the metasurface acts
as a spherical mirror for such a polarization (in the case of the
first design). The alteration of γx is calculated as a function of
the power reflectance Rx (the subscript is for a light polarized
along �x) and the numerical aperture NA of the metasurface
using the following expression [3]:

γx

γ0
= 3

∫
2π

d�

4π

[
1 − |d · �|2

|d|2
]

× (1 − Rx ), (23)

where � is the vectorial solid angle, and for the power
reflectance Rx in diffraction order m = −1 we take the values
given in Table II. Rx is therefore a piecewise function, where
its value, for a given location on the metasurface, is given
by the underlying supercell. Moreover, Rx = 0 if sinθ > NA,
which takes into account the limited size of the metasurface.
Here, the use of Eq. (23), which was originally derived for
a two-level atom located at the focus of a spherical mirror
in [3], is justified since the metasurface acts as a spherical
mirror for a dipole emitter oriented along �x. In other words,
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FIG. 9. Relative decay rate modifications γx/γ0 (green circles)
and absolute coherence |ρ12| (red triangles) as a function of the
numerical aperture of the metasurface NA. For comparison, the
relative decay rate (respectively, coherence) for an ideal spherical
mirror of power reflectance Rx = 1 for the x polarization only is also
shown [green (respectively, red) dashed line].

the metasurface is optically equivalent to a spherical mirror,
and has the same Green tensor or scattered field value at
the position of the atom; generally speaking, since the decay
rate modification depends on these quantities [see Eq. (21) in
terms of the Green tensor or [8,36] in terms of the scattered
field], it should then be altered in the same way as in the
case of a spherical mirror, in the far-field limit. At the present
time, because of limitations of the computational resources,
we were not able to provide a fully numerical estimate of
the absolute coherence taking into account all the details of
the metasurface. Actually, although we made use of Eq. (23)
out of its original context (spherical mirror), we incorporated
results from numerical computations (reflectance values in
Table II), which constitutes in our eyes an acceptable compro-
mise, in between a fully numerical treatment and an educated
guess.

In Fig. 9, we show the relative decay rate modifications
γx/γ0 calculated from Eq. (23) (green circles) and the in-
duced coherence calculated from Eq. (22) (red triangles), as
a function of the numerical aperture defined as NA ≡ sin θ .
For comparison, we also show the decay rate modifications
(respectively, the induced coherence) in the case of a perfect
reflective spherical mirror (power reflectance Rx = 1) that
would only reflect a polarization along �x [green dashed line
(respectively, red dashed line)]. In this case, Eq. (23) can be
calculated analytically and reads

γx

γ0
=

√
1 − NA2 ×

(
1 − NA2

4

)
. (24)

One can see that for a metasurface of NA = 0.7 the decay
rate γx is reduced by 20% compared to γ0, with an induced
coherence of ≈0.05. Compared to the ideal case of an infinite
perfect spherical mirror, this value of the coherence is about
one order of magnitude smaller (0.5 for an ideal reflector with
NA = 1). Larger NA results only in a moderate improvement
of the effect because of the rapid drop of the reflectance,
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contrary to the ideal case. To attain near-unity efficiency in
reflection, further optimizations of the antenna geometries that
can take into consideration the coupling between neighboring
elements are required. Several methods have been proposed
including objective-first algorithms [47–49], topology opti-
mization [50], and inverse designs [51,52], which are also
applicable to improve our device efficiency notably at large
deflection angles, but beyond the scope of the present paper.

V. CONCLUSION

In this paper, we predict the creation of a long-lifetime
coherence between the two ground states of a quantum emitter
with a � configuration, induced by a quantum anisotropic
vacuum. An AQV can be engineered over macroscopic dis-
tances by a metasurface, made of metallic subwavelength
reflect arrays and having a polarization-dependent response.
We proposed and designed two of such metasurfaces, based on
the phase-mapping approach, using two different techniques:
resonant phase delays and geometric phases. We quantify the
efficiency of these metasurfaces to redirect the light on the
quantum emitter, located at remote distances, by taking into
account the limitations on the numerical aperture due to the
phase-mapping approach. Based on the exact results available
for a spherical mirror, we estimate a redirection of the light
of about 20% for a numerical aperture of 0.7, leading to a
coherence of 0.05, which is one order of magnitude smaller
than in the ideal case of an infinite and perfect reflector. Nev-
ertheless, due to the long lifetime of this coherence involving
the ground states in a � transition, this system allows for
high-resolution experiments, and this effect should be ob-
servable using the current state-of-art NV-center experimental
platform [18]. Detecting this coherence would represent an
experimental demonstration of the effect of the anisotropy of
vacuum on quantum emitters at remote distances. In addition,
this experiment would be a test of quantum electrodynamics,
in a counterintuitive regime where coherence is driven by
relaxation processes and vacuum fluctuations. Moreover, such
an experimental demonstration would also pave the way for
controlling interactions between several quantum emitters by
the means of metasurfaces, which ultimately could be used to
generate entanglement for quantum technology applications
in a new paradigm [16,36].
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APPENDIX: MASTER EQUATION DERIVATION

In this Appendix, we present the master equation frame-
work, closely following [19] Chap. 5.6 and [20] Chap. 1, that
we used to derive the master equation [Eq. (3)] in Sec. II.

1. Short notations

It will be convenient for the following calculations to
rewrite ĤI (t ) of Eq. (1) in a more compact form:

ĤI (t ) = d̂†(t ) · Ê(+)
v (t ) + d̂(t ) · Ê(−)

v (t ) (A1)

where d̂(t ) and d̂†(t ) are defined by

d̂(t ) ≡ −(d∗
01 |1〉 〈0| e−iω1t + d∗

02 |2〉 〈0| e−iω2t ), (A2)

d̂†(t ) ≡ −(d01 |0〉 〈1| eiω1t + d02 |0〉 〈2| eiω2t ). (A3)

Note that for clarity we dropped the label r0 appearing in
Ê(+)

v (r0, t ) and Ê(−)
v (r0, t ), but one must remember that the

fields are evaluated at the position of the atom r0. One must
also take note that this Hamiltonian is written in the electric
dipole and rotating wave approximations.

2. Master equation framework

In the interaction picture, the density matrix ρT (t ) of the
total system (atom plus environment) obeys the Schrödinger
equation [19,20]

∂ρT (t )

∂t
= 1

ih̄
[ĤI (t ), ρT (t )]. (A4)

The atomic density matrix ρ(t ) is obtained by taking the
trace over the degrees of freedom of the environment, ρ(t ) =
Tre[ρT (t )], and therefore obeys

∂ρ(t )

∂t
= 1

ih̄
Tre[ĤI (t ), ρT (t )]. (A5)

We formally integrate Eq. (A4),

ρT (t ) = ρT (0) + 1

ih̄

∫ t

0
dt ′ [ĤI (t ′), ρT (t ′)], (A6)

and substitute this expression in Eq. (A5):

∂ρ(t )

∂t
= 1

ih̄
Tre[ĤI (t ), ρT (0)]

− 1

h̄2

∫ t

0
dt ′ Tre[ĤI (t ), [ĤI (t ′), ρT (t ′)]]. (A7)

Assuming that Tre[ĤI (t ), ρT (0)] = 0, we make the Born
approximation: ρT (t ) = ρ(t ) ⊗ ρe(0), so that Eq. (A7) re-
duces to

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ Tre[ĤI (t ), [ĤI (t ′), ρe(0) ⊗ ρ(t ′)]].

(A8)
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Next, we make the Markov approximation and replace ρ(t ′)
by ρ(t ) in the integrand. Therefore, we get a master equa-
tion for the atomic density matrix ρ(t ) in the Born-Markov
approximation:

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ Tre[ĤI (t ), [ĤI (t ′), ρe(0) ⊗ ρ(t )]].

(A9)

Now, we write ĤI (t ) explicitly and expand the commuta-
tors. Using the compact form Eq. (A1) in Eq. (A9) one gets

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ Tre[d̂†(t ) · Ê(+)

v (t ) + d̂(t ) · Ê(−)
v (t ),

× [d̂†(t ′) · Ê(+)
v (t ′)+ d̂(t ′) · Ê(−)

v (t ′), ρe(0) ⊗ ρ(t )]].

(A10)

Expanding the commutators in Eq. (A10) gives 16 terms. Noting that the trace only acts on the field operators and on ρe(0), and
using the cyclic property of the trace operation and the fact that, for instance, Tre[ρe(0)Ê(+)

v (t )Ê(−)
v (t ′)] = 〈Ê(+)

v (t )Ê(−)
v (t ′)〉, we

find

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ 〈Ê(+)

v (t )Ê(−)
v (t ′)〉[d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )] + 〈Ê(+)

v (t ′)Ê(−)
v (t )〉[ρ(t )d̂†(t ′)d̂(t ) − d̂(t )ρ(t )d̂†(t ′)]

+〈Ê(−)
v (t )Ê(+)

v (t ′)〉[d̂(t )d̂†(t ′)ρ(t ) − d̂†(t ′)ρ(t )d̂(t )] + 〈Ê(−)
v (t ′)Ê(+)

v (t )〉[ρ(t )d̂(t ′)d̂†(t ) − d̂†(t )ρ(t )d̂(t ′)]

+〈Ê(+)
v (t )Ê(+)

v (t ′)〉[d̂†(t )d̂†(t ′)ρ(t ) − d̂†(t ′)ρ(t )d̂†(t )] + 〈Ê(+)
v (t ′)Ê(+)

v (t )〉[ρ(t )d̂†(t ′)d̂†(t ) − d̂†(t )ρ(t )d̂†(t ′)]

+〈Ê(−)
v (t )Ê(−)

v (t ′)〉[d̂(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂(t )] + 〈Ê(−)
v (t ′)Ê(−)

v (t )〉[ρ(t )d̂(t ′)d̂(t ) − d̂(t )ρ(t )d̂(t ′)]. (A11)

We make the two following additional approximations.
(1) 〈Ê(+)

v (t )Ê(+)
v (t ′)〉 = 〈Ê(+)

v (t ′)Ê(+)
v (t )〉 = 〈Ê(−)

v (t )Ê(−)
v (t ′)〉 = 〈Ê(−)

v (t ′)Ê(−)
v (t )〉 = 0 (which is valid for an environment in

thermodynamic equilibrium).
(2) 〈Ê(−)

v (t )Ê(+)
v (t ′)〉 = 〈Ê(−)

v (t ′)Ê(+)
v (t )〉 = 0 (which is valid for optical frequencies).

Thus, only the first two terms remain in Eq. (A11), which reduces to

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ 〈Ê(+)

v (t )Ê(−)
v (t ′)〉[d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )] + 〈Ê(+)

v (t ′)Ê(−)
v (t )〉[ρ(t )d̂†(t ′)d̂(t ) − d̂(t )ρ(t )d̂†(t ′)].

(A12)

By using the property of the correlation function 〈Ê(+)
v (t ′)Ê(−)

v (t )〉 = 〈Ê(+)
v (t )Ê(−)

v (t ′)〉∗, and noting the fact that

[ρ(t )d̂†(t ′)d̂(t ) − d̂(t )ρ(t )d̂†(t ′)] = [d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )]
†
, one can see that the second term in Eq. (A12) is actually

the Hermitian conjugate (H.c.) of the first one. Therefore, we simply write Eq. (A12) as

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ 〈Ê(+)

v (t )Ê(−)
v (t ′)〉[d̂†(t )d̂(t ′)ρ(t ) − d̂(t ′)ρ(t )d̂†(t )] + H.c. (A13)

3. Master equation for an atomic � transition

Equation (A13) is the starting point to calculate the dynamical evolution of any multilevel atom. Here, we proceed by writing
explicitly the terms in the integrand using the expressions for d̂(t ) and d̂†(t ) from Eqs. (A2) and (A3), which corresponds to the
� configuration with orthogonal transitions,

d̂†(t )d̂(t ′)ρ(t ) = eiω1(t−t ′ )d01 |0〉 〈0| d∗
01ρ(t ) + eiω2(t−t ′ )d02 |0〉 〈0| d∗

02ρ(t ), (A14)

and by defining ρ00(t ) ≡ 〈0| ρ(t ) |0〉 to simplify the expressions:

d̂(t ′)ρ(t )d̂†(t ) = +eiω1(t−t ′ )ρ00(t )d∗
01 |1〉 〈1| d01 + eiω2(t−t ′ )ρ00(t )d∗

02 |2〉 〈2| d02 + eiω1t e−iω2t ′
ρ00(t )d∗

02 |2〉 〈1| d01

+ eiω2t e−iω1t ′
ρ00(t )d∗

01 |1〉 〈2| d02. (A15)

Substituting these expressions in Eq. (A13) and by factorizing the exponential terms, we get

∂ρ(t )

∂t
= − 1

h̄2

∫ t

0
dt ′ 〈Ê(+)

v (t )Ê(−)
v (t ′)〉 × [

eiω1(t−t ′ )(d01 |0〉 〈0| d∗
01ρ(t ) − ρ00(t )d∗

01 |1〉 〈1| d01)

+ eiω2(t−t ′ )(d02 |0〉 〈0| d∗
02ρ(t ) − ρ00(t )d∗

02 |2〉 〈2| d02)

− eiω1t e−iω2t ′
ρ00(t )d∗

02 |2〉 〈1| d01 − eiω2t e−iω1t ′
ρ00(t )d∗

01 |1〉 〈2| d02
] + H.c. (A16)
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We now write: 〈Ê(+)
v (t )Ê(−)

v (t ′)〉 = 〈Ê(+)
v (t − t ′)Ê(−)

v (0)〉 (the correlation function only depends on the time difference).
Making the change of variable τ = t − t ′, the next approximation is to make the upper limit tend to infinity. Equation (A16)
becomes

∂ρ(t )

∂t
= − 1

h̄2

∫ ∞

0
dτ 〈Ê(+)

v (τ )Ê(−)
v (0)〉 × [

eiω1τ (d01 |0〉 〈0| d∗
01ρ(t ) − ρ00(t )d∗

01 |1〉 〈1| d01)

+ eiω2τ (d02 |0〉 〈0| d∗
02ρ(t ) − ρ00(t )d∗

02 |2〉 〈2| d02)

− ei(ω1−ω2 )t eiω2τ ρ00(t )d∗
02 |2〉 〈1| d01 − ei(ω2−ω1 )t eiω1τ ρ00(t )d∗

01 |1〉 〈2| d02
] + H.c. (A17)

We finally introduce the positive part of the correlation
tensor as

Ĉ(+)(ω) ≡
∫ ∞

0
dτ 〈Ê(+)

v (τ )Ê(−)
v (0)〉eiωτ (A18)

to get

∂ρ(t )

∂t
= −�1(|0〉 〈0| ρ(t ) − ρ00(t ) |1〉 〈1|)

−�2(|0〉 〈0| ρ(t ) − ρ00(t ) |2〉 〈2|)
+�21ei(ω1−ω2 )tρ00(t ) |2〉 〈1|
+�12ei(ω2−ω1 )tρ00(t ) |1〉 〈2| + H.c. (A19)

with the following definitions of the coefficients:

�i ≡ 1

h̄2 d∗
0i · Ĉ(+)(ωi ) · d0i (A20)

and

�i j ≡ 1

h̄2 d∗
0i · Ĉ(+)(ωi ) · d0 j . (A21)

Remember that in the master equation above ρ(t ) is still in
the interaction picture, and we come back to the Schrödinger
picture assuming furthermore that the transition energies are
about the same, ω1 � ω2 ≡ ω0:

∂ρ(t )

∂t
= −iω0 |0〉 〈0| ρ(t )

−�1(|0〉 〈0| ρ(t ) − ρ00(t ) |1〉 〈1|)
−�2(|0〉 〈0| ρ(t ) − ρ00(t ) |2〉 〈2|)
+�21ρ00(t ) |2〉 〈1| + �12ρ00(t ) |1〉 〈2| + H.c.

(A22)

In Eq. (A22), we have introduced the definitions of the
coefficients

�i ≡ 1

h̄2 d∗
0i · Ĉ(+)(r0, r0, ω0) · d0i (A23)

and

�i j ≡ 1

h̄2 d∗
0i · Ĉ(+)(r0, r0, ω0) · d0 j (A24)

defined in terms of the positive part of the correlation tensor
Ĉ(+) that reads

Ĉ(+)(r, r′, ω) =
∫ +∞

0
dτ 〈Ê(+)

v (r, τ )Ê(−)
v (r′, 0)〉eiωτ (A25)

where the bracket indicates an ensemble average:

〈Ê(+)
v (r, τ )Ê(−)

v (r′, 0)〉 ≡ Tre[ρe(0)Ê(+)
v (r, τ )Ê(−)

v (r′, 0)].
(A26)

Using the mathematical relation

P
(

1

x

)
= 1

x + iε
+ iπδ(x) with ε → 0 (A27)

one can demonstrate that

Ĉ(+)(r, r′, ω0)

= 1

2
Ĉ(r, r′, ω0) + i

2π
P

{∫ +∞

0
dω

Ĉ(r, r′, ω)

ω0 − ω

}
(A28)

where Ĉ is the correlation tensor defined as

Ĉ(r, r′, ω) ≡
∫ +∞

−∞
dτ 〈Ê(+)

v (r, τ )Ê(−)
v (r′, 0)〉eiωτ . (A29)

Therefore, the coefficients �i become

�i = γi

2
+ i�ωi (A30)

with

γi = 1

h̄2 d∗
0i · Ĉ(r0, r0, ω0) · d0i (A31)

and

�ωi = 1

2π h̄2 P
{∫ +∞

0
dω

d∗
0i · Ĉ(r0, r0, ω) · d0i

ω0 − ω

}
(A32)

where γi can be interpreted as the decay rate on the transition
|0〉 → |i〉, and �ωi is the Lamb shift of the level |i〉.

In the following, we recast the Lamb shift into the transi-
tion frequency and reduce Ĉ(+)(r, r′, ω0) as

Ĉ(+)(r, r′, ω0) ≡ 1
2 Ĉ(r, r′, ω0). (A33)

Therefore, the coefficients become

�i = γi

2
with γi = 1

h̄2 d∗
0i · Ĉ(r0, r0, ω0) · d0i (A34)

and

�i j = κi j

2
with κi j = 1

h̄2 d∗
0i · Ĉ(r0, r0, ω0) · d0 j . (A35)

4. Solution of the master equation

From the master equation, given in Eq. (A22), we obtain
the following equations for the atomic populations ρii(t ) and

013837-12



LONG-LIFETIME COHERENCE IN A QUANTUM EMITTER … PHYSICAL REVIEW A 101, 013837 (2020)

atomic coherences ρi j (t ) with j �= i:

ρ̇ii(t ) = γiρ00(t ) for i = 1, 2, (A36)

ρ̇00(t ) = −(γ1 + γ2)ρ00(t ), (A37)

ρ̇i0(t ) = −
(

γ1 + γ2

2
− iω0

)
ρi0(t ) for i = 1, 2, (A38)

ρ̇12(t ) = κ12ρ00(t ), (A39)

where we used the fact that κ∗
21 = κ12. Note that these equa-

tions are also supplemented by their conjugates.
The atom is initially prepared in the excited state with the

following initial conditions (at t = 0): ρ00(0) = 1, ρ11(0) =
ρ22(0) = 0, and ρi j (0) = 0 for j �= i. Solving Eqs. (A36)
and (A37) with the initial conditions above is straight-
forward. With the initial condition ρ00(0) = 1, Eq. (A37)
gives

ρ00(t ) = e−(γ1+γ2 )t ⇒ ρ00(∞) = 0. (A40)

Substituting it in Eqs. (A36) and carrying out the in-
tegration with the initial conditions ρ11(0) = ρ22(0) = 0

gives

ρ11(t ) = γ1

γ1 + γ2
[1 − e−(γ1+γ2 )t ] ⇒ ρ11(∞) = γ1

γ1 + γ2
,

(A41)

ρ22(t ) = γ2

γ1 + γ2
[1 − e−(γ1+γ2 )t ] ⇒ ρ22(∞) = γ2

γ1 + γ2
.

(A42)

Furthermore, integration of Eq. (A38) together with the initial
condition ρi j (0) = 0 for j �= i gives

ρ10(t ) = ρ20(t ) = 0 ∀t . (A43)

Finally, for the coherence ρ12(t ) given by Eq. (A39), substi-
tuting the expression of ρ00(t ) [Eq. (A40)] in Eq. (A39) gives

ρ̇12(t ) = κ12e−(γ1+γ2 )t (A44)

and after integration, together with the initial condition
ρ12(0) = 0, we find

ρ12(t ) = κ12

γ1 + γ2
[1 − e−(γ1+γ2 )t ], (A45)

and for t → ∞
ρ12(∞) = κ12

γ1 + γ2
. (A46)
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