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Single-shot measurement of the space-varying polarization state of light through interferometric
quantification of the geometric phase
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A light beam carrying a spatially varying state of polarization generates a space-varying Pancharatnam-Berry
geometric phase while propagating through a homogeneous anisotropic medium. We show that determination of
such a space-varying geometric phase provides a unique way to quantify the space-varying polarization state
of light using a single-shot interferometric measurement. We demonstrate this concept in a Mach-Zehnder
interferometric arrangement using a linearly polarized reference light beam, where full information on the
spatially varying polarization state is successfully recovered by quantifying the space-varying geometric phase
and the contrast of interference. The proposed method enables single-shot measurement of any space-varying
polarization state of light from the measured interference pattern with a polarized reference beam. This approach
shows considerable potential for instantaneous mapping of complex space-varying polarization of light in
diverse applications, such as astronomy, biomedical imaging, and nanophotonics, where high precision and near
real-time measurement of spatial polarization patterns are desirable.
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I. INTRODUCTION

Polarization measurement [1–3] has played an important
role in our understanding of the complex structure of different
biological samples [3], probing the dynamics of astrophysi-
cal phenomena [4,5], uncovering three-dimensional charac-
teristics of chemical bonds [6], and for the characterization
of complex nanomaterials and so forth [7]. Traditionally,
polarization is measured using the four Stokes vector el-
ements. This however involves multiple intensity measure-
ments, which is not amenable to probing fast dynamical pro-
cesses. Attempts have therefore been made to develop tech-
niques that can instantaneously provide the full spatial polar-
ization map, by simultaneously recording the different Stokes
vector elements in multiple optical paths using combinations
of polarizing beam splitters, retarders, etc. [8]. However, for
applications involving polarization measurements with high
spatial resolution and specifically for applications where the
signal-to-noise ratio of polarization is weak, e.g., in solar
coronal magnetometry [9], it is preferable to determine the
space-varying polarization in a single optical path. This fol-
lows because division of light in multiple optical paths leads to
further degradation of the signal-to-noise ratio. An alternative
method is therefore highly sought for such applications.

The concept of the geometric phase and the associated
spin-orbit interaction (SOI) of light may provide a route
for this purpose. Note that the angular momentum carried
by light can be divided into spin and orbital components,
which are related to circular (elliptical) polarization [10] and
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phase vortex [11,12] respectively. The spin and the orbital
degrees of freedom of light can get coupled under certain
circumstances, leading to interesting consequences such as
SOI [13,14]. The SOI of light has attracted much attention
due to its fundamental nature and potential applications in the
development of spin photonic devices [7,15]. The SOI effect
has an inherent geometrical origin that relates to the evolution
of the geometric phase of light [15–19]. The topology of the
evolution of the electromagnetic wave introduces two types
of geometric phases [7,14,19–26]: (a) the spin redirection
Berry phase, which arises when polarized light is passed
through a twisted dielectric medium [14,23,25], and (b) the
Pancharatnam-Berry phase, which arises due to continuous
change in the polarization state of the wave when polar-
ized light propagates through an anisotropic medium [7,19–
24,26]. An interesting manifestation of SOI is the so-called
spin Hall effect of light that leads to the spin- or circular-
polarization-dependent splitting of the light beam and has
been observed in various optical interactions [7,14,16,24].
The spin Hall effect is known to originate from the transverse
(with respect to the direction of propagation) spatial or mo-
mentum gradient of either the Pancharatnam-Berry geometric
phase or the spin redirection Berry phase [7,14,16]. For an
incident homogeneously polarized light beam, the spin Hall
effect produced in a transversely inhomogeneous anisotropic
medium that arises due to the Pancharatnam-Berry geometric
phase gradient is usually larger in magnitude as compared
to those produced due to the spin redirection Berry phase in
an isotropic medium, e.g., in tight focusing of fundamental
or higher-order Gaussian beams, scattering from micro- and
nanoscale systems, reflection, and refraction at dielectric in-
terfaces [7,15,24,27].
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It is known that a light beam carrying inhomogeneous
spatially varying polarization produces similar SOI effects
due to the generation of the space-varying Pancharatnam-
Berry geometric phase while propagating through a homo-
geneous anisotropic medium [24,28]. Thus, if any such spa-
tially varying polarized light is passed through a homoge-
neous anisotropic medium, one can obtain information on
the unknown space-varying polarization state through quan-
tification of the space-varying geometric phase. In this paper
we demonstrate this useful concept by developing a simple
yet elegant interferometric technique for the quantification
of the space-varying polarization state of light. Specifically,
we concentrate on the single-shot determination of space-
varying general elliptical polarization states because simulta-
neous retrieval of space-varying ellipticity and the orientation
of a polarization ellipse is challenging and has numerous
potential applications. For this purpose, we first demonstrate
the manifestation of the space-varying geometric phase as
spin-dependent splitting of a spatially varying polarized light
beam while propagating through a homogeneous anisotropic
medium. This lays the foundation for our next step, in which
we quantify the spatially varying polarization of light in a
Mach-Zehnder interferometric arrangement through quantifi-
cation of the geometric phase and the interference contrast.
The demonstrated principle of single-shot determination of
spatially varying polarization states of light may find useful
applications for mapping complex space-varying polarization
patterns of remote light sources in diverse fields of physics
ranging from nanophotonics [7] to materials characterization
[6,29], biophotonics [3], and astronomy [4,5].

II. THEORY

When an inhomogeneously polarized or spatially varying
polarized Gaussian beam propagates through a homogeneous
anisotropic medium, it acquires a space-varying geometric
phase. It can be shown that when such a spatially polarized
Gaussian beam carrying a space-varying geometric phase is
projected to right (RCP) or left circular polarization (LCP),
it exhibits opposite momentum domain shifts of the cen-
troid of the beam proportional to the spatial gradient of
geometric phase (see Appendix A) [30]. Such a spin- or
circular-polarization-dependent shift is similar to the momen-
tum domain spin Hall effect of light [28,31,32]. In order to
realize this phenomenon, we consider the case of a spatially
varying polarized beam generated using a twisted nematic-
liquid-crystal-based spatial light modulator (SLM). Here the
symmetry of the polarization is broken along one of the
transverse spatial coordinates (ξ → x/y) of the beam. The
evolution of polarization in the SLM can be modeled using the
effective Jones matrix Jeff as a sequential product of matrices
of an equivalent linear retarder Jreta (with effective linear
retardance δeff and its orientation angle θeff) and an effective
optical rotator R with optical rotation ψeff [31,32],

Jeff = R(ψeff )Jreta(δeff, θeff )

=
(

cos ψeff sin ψeff

− sin ψeff cos ψeff

)(
cos θeff − sin θeff

sin θeff cos θeff

)

×
(

e−iδeff/2 0
0 eiδeff/2

)(
cos θeff sin θeff

− sin θeff cos θeff

)
, (1)

with ψeff = −ψ + 2θeff. Here ψ = π/2 is the twist angle of
the SLM. As is evident from Eq. (1), the state of polarization
of light, i.e., the ellipticity, and the orientation angle of the
polarization ellipse emerging from the SLM are determined
by the polarization birefringence parameters δeff and ψeff.
These parameters, in the individual SLM pixels, can be mod-
ulated by changing the gray level values n. Therefore, by
modulating the pixels of the SLM using user-controlled gray
level distributions, one can produce any desirable spatially
varying polarization states of light using linearly polarized
light as input. When such a spatially varying polarized light
beam propagates through a homogeneous anisotropic medium
(e.g., a half waveplate, whose fast axis is oriented at 45◦) and
is subsequently projected to the opposite-circular-polarization
states, a space-varying geometric phase is generated.

Here the three relevant polarization states are

|ASVP〉 =
(

1
0

)
,

|BSVP〉 =

⎛
⎜⎝−i sin

δeff(ξ )

2
− cos

δeff(ξ )

2
sin ψeff(ξ )

cos
δeff(ξ )

2
cos ψeff(ξ )

⎞
⎟⎠,

|C〉 = 1√
2

(1 ± i)T,

where |ASVP〉 and |BSVP〉 are, respectively, the input polar-
ization state and the inhomogeneous spatially varying po-
larization state coming out of the half waveplate after pass-
ing through the SLM. The inhomogeneously polarized light
coming out of the half waveplate is projected to the RCP
state σ+ or the LCP state σ−, which is denoted by |C〉.
The corresponding expression for the geometric phase that
is acquired due to the evolution of polarization states can be
obtained using the Pancharatnam connection as [32,33]

φPB(ξ ) = arg(〈ASVP|C〉〈C|BSVP〉〈BSVP|ASVP〉). (2)

One can produce any desirable spatial gradient of the
geometric phase by using an appropriate gradient of the gray
levels ( dn

dξ=x/y ) along a chosen linear direction (ξ → x/y) of
the SLM [32]. The resulting spatial gradient of the geometric
phase manifests as shifts in the transverse momentum dis-
tribution ( kx/y

2π
) in the Fourier domain of the Gaussian beam

along the direction of the gradient, when projected to the
RCP and LCP states (opposite shifts for RCP and LCP;
see Appendix A). The corresponding momentum domain
spin Hall shift (±	kx/y) can be quantified by detecting the
shift of the centroid of the Gaussian momentum distribution
[32]. Experimental demonstration of this concept is presented
subsequently.

Having described the space-varying Pancharatnam-Berry
geometric phase acquired by the spatially varying polar-
ized light beam while propagating through a homogeneous
anisotropic medium, we now turn to the quantification of the
spatially varying polarization state through quantification of
the geometric phase information. In general, the geometric
phase depends upon the orientation of the polarization el-
lipse with respect to the anisotropy axis of the homogeneous
anisotropic medium [15,17,26]. Moreover, if the transmitted
spatially varying polarized light beam is made to interfere
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with a linearly polarized reference beam, the information on
the polarization ellipticity and the orientation of the polar-
ization ellipse will also be encoded in the spatially varying
contrast of the interference. Therefore, in principle, the geo-
metric phase and the contrast information can be combined
to obtain complete information on the space-varying elliptical
polarization (ellipticity and orientation of the ellipse) using
interferometric measurement with appropriate calibration of
the dynamical phase of the interferometer. In order to exper-
imentally demonstrate this concept, we take the example of
the symmetry-broken spatially varying polarized light beam
generated by the SLM, described above. Note that, unlike the
previous case, the state |C〉 is not required here for retrieval
of space-varying polarization using interferometric determi-
nation of the space-varying geometric phase of light. For
this specific interferometric arrangement, the space-varying
geometric phase is acquired in one arm of the interferometer
due to the propagation of the spatially varying polarized state
generated by the SLM through the homogeneous anisotropic
medium or the half waveplate and subsequent evolution of
the state to |BSVP〉. The corresponding expression for the
geometric phase is then given by

φPB(ξ ) = arg(〈ASVP|BSVP〉) = tan−1

(
tan δeff (ξ )

2

sin ψeff(ξ )

)
. (3)

As is evident, in this case, the generated space-varying
geometric phase depends upon the spatial distribution of the
δeff(ξ ) and ψeff(ξ ) birefringence parameters of the SLM. The
space-varying polarization state to be reconstructed (which
is generated using the SLM) is also determined by these
polarization birefringence parameters. Thus, our job here is
to determine the δeff(ξ ) and ψeff(ξ ) birefringence parameters
through interferometric quantification of the geometric phase
of light, which can then be subsequently used to retrieve
the space-varying polarization of the light beam. Note that,
in principle, any arbitrary space-varying polarization state
coming from a distant source can be determined using this
approach by quantifying the ellipticity and orientation of the
polarization ellipse through interferometric quantification of
the geometric phase information with proper calibration of the
dynamical phase of the interferometer.

It can be seen from Eq. (3) that the geometric phase
expression has two composite parameters δeff(ξ ) and ψeff(ξ );
however, that alone does not allow us to quantify them sep-
arately. As previously noted, since the reference light beam
of the interferometer is linearly polarized, the orientation of
the polarization ellipse in the sample interference arm [which
is also determined by the δeff(ξ ) and ψeff(ξ ) birefringence
parameters] will affect the contrast of interference. So, with an
extra measurement of contrast along with the geometric phase
information, one can extract both the space-varying polariza-
tion parameters δeff(ξ ) and ψeff(ξ ) and subsequently retrieve
the space-varying polarization. In order to accomplish this, we
proceed as follows. (i) We first determine the space-varying
Pancharatnam-Berry geometric phase from the interference
pattern in a Mach-Zehnder configuration with appropriate
calibration of the dynamical phase of the interferometric
system. (ii) We then quantify the spatially varying contrast
of the interference fringe. The birefringence parameters are

FIG. 1. (a) Schematic of the experimental arrangement for ob-
serving spin-dependent splitting of a spatially varying polarized light
beam in a homogeneous anisotropic medium. The polarization state
generator (PSG) unit comprises a linear polarizer followed by a spa-
tial light modulator (SLM). A half waveplate (HWP) is used as the
homogeneous anisotropic medium. To observe the spin-dependent
splitting of light, the transmitted beam was analyzed via the circular
analyzer (CA) comprising a rotatable quarter waveplate (QWP)
followed by a linear polarizer. (b) Mach-Zehnder interferometric
arrangement for quantification of the space-varying polarization state
of light: P1, polarizer; BS1 and BS2, beam splitters; M1 and M2,
mirrors; and HWP, half waveplate.

extracted using suitable calibration of the dependence of the
contrast on these polarization parameters of the SLM. This
information is subsequently used to retrieve the spatially
varying polarization state of light generated by the SLM.

III. EXPERIMENTAL METHODS

A schematic of the experimental arrangement for observ-
ing the spin-dependent splitting of the spatially varying polar-
ized light beam is shown in Fig. 1(a). A fundamental Gaussian
mode of the 632.8 nm line of a He-Ne laser is used to seed
the system. The spatially varying polarized beam is generated
using the polarization state generator unit, which comprises
a fixed linear polarizer (P1) and a transmissive SLM. A gray
level gradient ( dn

dξ=x/y = 0.0653 bit/μm) was created in the
SLM pixels along one chosen linear direction (ξ → x/y)
using a range of gray level values between n = 40 and 90.
This choice was driven by the observed linear variations of
the δeff(n) and ψeff(n) parameters over this range of n values
[32]. The beam is then passed through a half waveplate, which
acts as the homogeneous anisotropic medium. The transmitted
light beam is then sequentially analyzed for RCP and LCP
basis states by projecting it to opposite circular analyzers. The
circular analyzer comprises a rotatable quarter waveplate and
a linear polarizer. The beam transmitted through the circular
analyzer was imaged into a CCD camera. The CCD camera
was placed at the back focal Fourier plane of the Fourier
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FIG. 2. Manifestation of the space-varying Pancharatnam-Berry
geometric phase as spin-dependent splitting of the spatially varying
polarized beam in a homogeneous anisotropic medium. (a) Trans-
verse momentum distributions (

kx/y

2π
μm−1) of the transmitted beam

for the symmetry-broken spatially varying polarized beam. Opposite
shifts in the transverse momentum distribution of the LCP (σ−, top
panel) and RCP (σ+, middle panel) analyzed symmetry-broken spa-
tially varying polarized beam are observed. A gray level gradient was
applied along the x direction in the SLM and the applied gray level
values (n = 40-90) are displayed (bottom panel). (b) Corresponding
distribution of the Stokes vector element V/I .

transforming lens with focal length f . In this configuration,
the recorded intensity distribution at the CCD (x′, y′) plane
(Fourier plane) represented the transverse momentum (spatial
frequency) distribution [ kx

2π
= x′

λ f ; ky

2π
= y′

λ f ]. The momentum
domain spin Hall shift was quantified by determining the shift
in the centroid of the transverse momentum distribution 〈 kx/y

2π
〉

between the RCP and the LCP projections.
The Mach-Zehnder interferometric arrangement for the

quantification of space-varying polarization is shown in
Fig. 1(b). The spatially varying polarized light beam gener-
ated by the SLM is used in one arm of the interferometer and a
horizontally polarized Gaussian beam is used as the reference
beam in the other arm. The interference pattern is captured
using a CCD camera.

IV. RESULTS AND DISCUSSION

A. Spin-dependent splitting of a spatially varying polarized
light beam in a homogeneous anisotropic medium

Making use of the experimental arrangement [Fig. 1(a)],
spin-dependent splitting of the transverse momentum distri-
bution ( kx/y

2π
μm−1) of the spatially varying polarized beam is

demonstrated in Fig. 2. Note that, before recording the spin-
dependent splitting of the spatially varying polarized light (us-
ing the gray level gradient in the SLM), measurements were
taken by giving a uniform gray level distribution in the SLM.
No shift in the centroid of the Gaussian beam was recorded
when the output beam was projected to RCP and LCP states
by rotating the quarter waveplate at the detection end. Taking
this measurement as a reference, similar measurements were
subsequently performed on spatially varying polarized light
by applying the desirable gray level gradient in the SLM. The
projected LCP mode σ− (top panel) and the RCP mode σ+
(bottom panel) experience opposite momentum domain shifts,
observed as a shift of the beam centroid in the detection plane

[Fig. 2(a)]. This manifests as a spin separation or spatially
separated regions of opposite-circular-polarization states in
the circular-polarization descriptor Stokes vector element V

I

(= IRCP−ILCP
IRCP+ILCP

) [Fig. 2(b)]. The spin- or circular-polarization-
dependent momentum domain beam shift corresponding to
our experimental configuration was estimated theoretically
using Eqs. (A1) and (A2). The experimentally observed shift
of the centroid of the Gaussian momentum distribution in
the Fourier plane ( 	kx/y

2π
∼ ±13.68 × 10−4 μm−1) is found to

be in excellent agreement with the theoretically calculated
momentum domain shift (±14.64 × 10−4 μm−1). These re-
sults provide evidence that the spatially varying polarized
light beam generates a space-varying geometric phase while
propagating through a homogeneous anisotropic medium,
quantification of which opens up an interesting avenue for the
determination of any space-varying polarization state of light.

B. Interferometric determination of space-varying polarization

Figure 3 summarizes the results of quantification of space-
varying polarization through quantification of Pancharatnam-
Berry geometric phase using the Mach-Zehnder interferomet-
ric arrangement [Fig. 1(b)]. A homogeneously polarized light
beam generated by applying a uniform gray level distribution
at the SLM was first used in the sample arm to calibrate
the dynamical phase of the interferometric arrangement. In-
terference patterns with a linearly polarized reference beam
were sequentially recorded using both the homogeneously
polarized and the spatially varying polarized light beam pass-
ing through the half waveplate. The spatial variation of the
phase at the CCD plane was subsequently quantified using
the conventional Fourier transform method along with the
phase unwrapping procedure [34–36]. Figure 3 displays the
extracted unwrapped dynamical phase of the interferometer
corresponding to the homogeneously polarized light beam
[Fig. 3(a)], the unwrapped total phase (dynamical plus geo-
metric phase) corresponding to the spatially varying polarized
light beam [Fig. 3(b)], and the geometric phase [Fig. 3(c)]
that is exclusively related to the spatially varying polarization
state of light. As anticipated, the extracted geometric phase
exhibits a spatial gradient along the direction (y) of the gray
level gradient in the SLM. Figure 3(d) shows the calibration of
interference contrast with varying optical rotation parameter
ψeff(n) of the SLM for different sets of homogeneously po-
larized beams (varying from n = 40 to 90). Since the circular
birefringence or the optical rotation parameter ψeff determines
the orientation of the polarization ellipse in the sample arm
of the interferometer, increasing the magnitude of ψeff with
respect to the linear polarization state that is used in the ref-
erence arm will degrade the contrast of interference. This cal-
ibration curve is subsequently utilized to quantify the spatial
(y) variation of the ψeff parameter [Fig. 3(e)] from the spatially
varying contrast of interference [top panel of Fig. 3(e) and
inset]. Once the ψeff(y) parameter is determined, the extracted
spatial variation of the geometric phase [Fig. 3(c)] yields
the spatial variation of the other polarization birefringence
parameter, the linear retardance δeff of the SLM using Eq. (3)
[shown in Fig. 3(f)].

As previously noted, the controlled inputs δeff and ψeff, the
birefringence parameters of the SLM, contain information on
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FIG. 3. Interferometric determination of space-varying polarization through quantification of the Pancharatnam-Berry geometric phase.
(a) Dynamical phase of the interferometer extracted from the interference fringes (shown in the inset) corresponding to a homogeneously
polarized light beam. (b) Total phase and (c) geometric phase extracted from the interference fringe (shown in the inset) corresponding to
the spatially varying polarized beam. (d) Dependence of the contrast of interference on the varying optical rotation parameter ψeff of the
SLM obtained by changing the gray level values (n = 40-90) for different sets of homogeneously polarized beams. The inset shows the
corresponding interference patterns for different n. (e) Spatial (y) variation of ψeff derived from the spatially varying contrast [corresponding
to the fringe shown in the top panel of (e)] when the spatially varying polarized beam is used. The inset shows the corresponding spatial
(y) dependence of the contrast. (f) Derived spatial variation of the linear retardance parameter δeff(y) of the SLM for the spatially varying
polarized beam.

the ellipticity and the orientation angle of polarization ellipse,
respectively, of the polarization state generated by the SLM.
Therefore, the retrieved spatial variation of the δeff(y) and
ψeff(y) parameters are used to determine the spatially varying
polarization state of the light beam generated by the SLM. The
corresponding results are summarized in Fig. 4. The retrieved
spatial variation of the polarization birefringence parameters
δeff and ψeff and the recovered spatially varying polarization
state show excellent agreement with the controlled input
parameters [Fig. 4(a)] and the corresponding spatially varying
polarization state generated by the SLM [Fig. 4(b)], respec-
tively. In order to further comprehend these experimental
results, we present in Appendix B (Fig. 5) a simulation of

all the above steps of the experiment involving interferometric
determination of the geometric phase and the dynamical phase
of light for subsequent retrieval of space-varying polarization.
The presented experimental results and the corresponding
results of the simulations clearly demonstrate the ability of
the proposed technique for the quantification of the space-
varying polarization state of light through quantification of
the space-varying Pancharatnam-Berry geometric phase using
a single-shot interferometric measurement. The principle has
been demonstrated for the general case of space-varying ellip-
tical polarization and thus it is equally applicable for space-
varying linear polarization states as well. As an example,
simulation results of this approach for retrieving the radially
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FIG. 4. Comparison of the retrieved space-varying polarization
state using the interferometric measurement with the controlled
input. (a) Spatial (y) variation of the derived (closed symbols)
polarization birefringence parameters δeff(y) (circles) and ψeff(y)
(squares) and the corresponding controlled inputs (open symbols) in
the SLM. (b) Corresponding retrieved spatially varying polarization
states (solid line) and the controlled input states (dashed line) at the
SLM. (c) Poincaré sphere representation of the retrieved spatially
varying polarization states.

polarized vector beam are shown in Appendix C (Fig. 6).
However, retrieval of space-varying pure linear polarization
is less challenging in general and can be achieved using other
simpler approaches also.

We emphasize that in this particular scenario of the space-
varying polarization state generated by an SLM, the demon-
strated interferometric determination of the δeff(ξ → x/y) and
ψeff(ξ → x/y) parameters is equivalent to determination of
the space-varying ellipticity and orientation of the polarization
ellipse for the general case of any spatially varying polarized
light from remote sources. Moreover, in this specific case,
since the space-varying polarization state was generated by
introducing the SLM in one arm of the interferometer, it
necessitated cumbersome calibration of the dependence of the
contrast on the birefringence parameters of the SLM [shown
in Fig. 3(d)]. This may not be needed for the general case,
where the extracted spatial variation of the geometric phase
and the interference contrast contain sufficient information to
retrieve complete information on the spatial variation of the
polarization. Although the principle has been demonstrated
for completely polarized light, it can also be extended to
incorporate partial polarization states by including additional
calibration of the dependence of the contrast of interference
on the degree of polarization of light.

V. CONCLUSION

In summary, we have demonstrated an experimental tech-
nique for the quantification of the space-varying polarization
state of light using a single-shot interferometric measurement.
This method is based on the determination of the space-
varying Pancharatnam-Berry geometric phase that a spatially
varying polarized light generates while propagating through
a homogeneous anisotropic medium. It was shown that the
information on the space-varying geometric phase and the
space-varying contrast of the interference obtained using a
polarized reference light beam can be combined to yield
complete information on the spatially varying polarized light.
This principle was experimentally demonstrated in a Mach-

Zehnder interferometric arrangement by recovering spatially
varying polarized light generated by a spatial light modulator.
With regard to the accuracy and sensitivity of the method,
we would like to note that the sensitivity and accuracy of
the determination of space-varying polarization is entirely
determined by the sensitivity of the interferometric setup
for the quantification of the phase. Since this method is
based on quantification of the phase through interferometry,
it is expected to yield better sensitivity as compared to the
traditional intensity-based polarization measurement methods
[1–3]. This, however, remains to be rigorously evaluated.
This single-shot interferometric polarimetry technique may
significantly enhance polarimetric applications for probing the
dynamics of a wide range of phenomena in diverse systems
ranging from complex materials [6,29] and biological systems
[3] to the astrophysical domain [4,5], where high cadence
and high precision measurement of spatial polarization pat-
terns are desirable [9]. Finally, the proposed interferomet-
ric approach for spatially varying polarization measurements
represents a fundamentally interesting approach with much
potential. The expansion of our investigation toward practical
applications is left for future work.
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APPENDIX A: SPIN-DEPENDENT SPLITTING OF A
SPATIALLY VARYING POLARIZED LIGHT BEAM IN A

HOMOGENEOUS ANISOTROPIC MEDIUM

The experimental results for the spin-dependent splitting of
spatially varying polarized light are presented above. Here we
discuss the underlying physical mechanism. A Gaussian beam
with a spatially varying polarization state propagating along
the z direction of a homogeneous anisotropic medium acquires
a space-varying Pancharatnam-Berry (PB) geometric phase
[24,30]. If a constant spatial gradient of this geometric phase
is generated ( dφPB

dξ
= �ξ ; ξ → x/y), it will lead to a shift in the

distribution of transverse momentum (±	kx/y

2π
) of the Gaussian

beam along the direction of the gradient, when projected to
RCP and LCP states. This momentum domain spin Hall shift
can be quantified by as a shift of the beam centroid of the
Gaussian beam in the detection Fourier plane [32]. In our case,
the input inhomogeneous polarization state is generated using
a twisted nematic-liquid-crystal-based SLM. The polarization
response of the SLM can be modeled as a product of Jones
matrices of an equivalent linear retarder and an optical rotator
[Eq. (1)] with effective linear retardance δeff and effective
optical rotation ψeff. Since these polarization birefringence
parameters can be controlled by changing the gray level values
n in the SLM, one can controllably generate the spatially
polarized beam. The dependence of δeff and ψeff on the
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gray level n for our SLM was determined in our previous
publication [32], which has been used here to generate the
desired spatial variation of the polarization state. Thus, one
can produce an inhomogeneous spatially polarized light beam
creating a gray level gradient ( dn

dξ=x/y ) in the SLM along one
chosen linear direction (x or y). The input inhomogeneously
polarized light then passes through a half waveplate, ori-
ented at 45◦ with respect to the horizontal of the laboratory
frame, giving an inhomogeneous polarization state |BSVP〉,

and is then subsequently projected to the circular-polarization
state |C〉.

The expression for the geometric phase that is generated
due to this polarization evolution can be determined from
Eq. (2) by using the expression of the states |ASVP〉, |BSVP〉,
and |C〉 as the space-varying polarization state coming out
of the SLM, the space-varying polarization state coming out
of half waveplate, and projecting onto a circular polarizer,
respectively:

φPB(ξ ) = tan−1

(
cos2 δeff (ξ )

2 cos ψeff(ξ ) sin ψeff(ξ )
(
2 cos2 δeff (ξ )

2 cos2 ψeff(ξ ) − 1
)

2 cos4 δeff(ξ )
2 cos2 ψeff(ξ )[1 − cos2 ψeff(ξ )]

)
. (A1)

By applying a gray level gradient for the chosen range of
n values (for n = 40-90) where the parameters ψeff and the
δeff exhibit an approximate linear dependence [Fig. 3(c) of
Ref. [32]], a desirable spatial gradient of the geometric phase
(�ξ ) was generated. This resulted in the shift of the transverse
momentum distribution of the Gaussian beam for the RCP and
LCP projection states as

	kx/y

2π
= ±�ξ . (A2)

For the applied gray level gradient dn
dξ=x/y = 0.0653 bit/μm,

the momentum domain spin Hall shift for our experimental
case was determined using Eqs. (A1) and (A2) to be 	kx/y

2π
∼

±14.64 × 10−4 μm−1.

APPENDIX B: SIMULATION OF INTERFEROMETRIC
DETERMINATION OF SPACE-VARYING POLARIZATION

The experimental setup and the results for quantifying a
space-varying polarization state from interferometric mea-
surement have been discussed in Secs. III and IV B. Here
we provide stepwise procedures of numerical simulation of
the experiment involving interferometric determination of the
geometric phase and dynamical phase of light for subsequent
retrieval of space-varying polarization. The necessary equa-
tions used in the simulation are outlined.

In order to generate a spatially varying polarization along
the y direction (in Fig. 3), we used the SLM in one arm of the
interferometer. This was followed by a half waveplate acting
as the homogeneous anisotropic medium, with its fast axis at
45◦ with respect to the horizontal. The electric fields of the
initially horizontally polarized (Jones vector [1 0]T) Gaussian
beam coming out of the sample arm and from the reference
arm can be written as

E1 = e−(x2+y2 )/ω2
0

(
0 1
1 0

)
Jeff

(
1
0

)
,

E2 = e−(x2+y2 )/ω2
0

(
1
0

)
. (B1)

Here Jeff is the Jones matrix of the SLM [Eq. (1)]. For
the sake of simplicity, we have considered a simple Gaussian
spatial electric field profile of the beam, where x and y are the
transverse spatial coordinates and ω0 is the spot size of the

beam. Here E1 is the electric field from the path containing
the SLM and half waveplate, whereas E2 is the horizontally
polarized electric field from the other arm. In order to simulate
the experimental interference fringe, we consider that E1

acquires a dynamical phase αy relative to E2 due to the
path difference in the interferometer (α is the gradient of the
dynamical phase along y). The resultant electric field that is
used to simulate the interference pattern can be written as

E = E1eiαy + E2. (B2)

The simulations are performed using the input parameters
α = 0.075 rad μm−1 and ω0 = 300 μm. Figure 5 summarizes
the results of the simulation corresponding to the experimental
results presented in Fig. 3. Figure 5(a) shows the interfer-
ence fringe corresponding to a homogeneously polarized light
beam (with no spatial variation of the gray level imparted in
the SLM). The corresponding spatial phase pattern is solely
the dynamical phase of the interferometer (∼αy). Figure 5(b)
shows the simulation results for the spatially varying polarized
light [with spatial variation of the gray level imparted in the
SLM, modeled by using the corresponding δeff(n) and ψeff(n)
parameters in Jeff of Eq. (B1)]. The corresponding spatial
phase pattern has contributions from both the spatially vary-
ing dynamical phase of the interferometer and the spatially
varying geometric phase that is related to the space-varying
polarization. The spatial variation of the geometric phase is
subsequently extracted by subtracting the phase pattern of
Fig. 5(a) from that of Fig. 5(b) and is shown in Fig. 5(c).

Like the case of the experimental contrast calibration
[Fig. 3(d)], here also the interference patterns are simulated
for homogeneous polarization states generated by the SLM
using different uniform gray level values (n = 40-90) by using
the corresponding SLM Jones matrices Jeff in Eqs. (B1) and
(B2). As noted in this paper, the contrast is primarily deter-
mined by the optical rotation parameter ψeff which determines
the orientation of the polarization ellipse. Accordingly, the
variation of the normalized contrast ( Imax−Imin

Imax+Imin
) with the varying

parameter ψeff is shown in Fig. 5(d), which is subsequently
used as the contrast calibration curve. Now, for the case of
spatially varying polarization, the contrast of the simulated
fringes varies along y due to the variation of the parameter
ψeff along y. The normalized contrast is locally calculated for
different points along the y direction, which is then used to
determine the spatial variation of the parameter ψeff(y) using
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FIG. 5. Numerical simulation of interferometric determination
of space-varying polarization. (a) Simulated interference fringe
(shown in the inset) corresponding to a homogeneously polarized
light beam by utilizing the dynamical phase corresponding to the ex-
periment. (b) Total phase and (c) PB geometric phase extracted from
the simulated interference fringe (shown in the inset) corresponding
to the light beam with spatially varying polarization. (d) Dependence
of the contrast of interference on the varying optical rotation pa-
rameter ψeff of the SLM obtained by changing the gray level values
(n = 40-90) for different sets of homogeneously polarized beams.
(e) Spatial (y) variation of the parameter derived from the spatially
varying contrast (corresponding to the fringe shown in the top panel)
when the spatially varying polarized light beam is used. (f) Derived
spatial variation of the linear retardance parameter δeff(y) of the SLM
for the SVP beam.

the calibration curve of Fig. 5(d). The corresponding variation
of ψeff(y) is shown in Fig. 5(e). The spatial variation of the
linear retardance parameter δeff(y) is subsequently obtained
from the spatial variation of the geometric phase in Fig. 5(c)
using ψeff(y) and Eq. (3). The corresponding result is shown
in Fig. 5(f). Once the parameters δeff(y) and ψeff(y) are deter-
mined from the interference patterns, these are used to retrieve
the space-varying polarization state generated by the SLM.

The simulation results presented above confirm the exper-
imental results presented in Fig. 3. The important trends are
observed to be similar. The dependence of the contrast of in-
terference on the optical rotation parameter ψeff and the spatial
(y) dependence of both the ψeff(y) and the δeff(y) parameters
are observed to be in good agreement, thus establishing the
self-consistency of the method.

APPENDIX C: MAPPING OF A RADIAL POLARIZATION
STATE OF LIGHT USING THE INTERFEROMETRIC

SINGLE-SHOT MEASUREMENT SCHEME

The proposed method has been demonstrated for space-
varying elliptical polarization. It is equally applicable for
any space-varying linear polarization states as well. Here
we provide an illustrative example of a numerical simula-
tion for recovering a two-dimensional space-varying linear
polarization state of light i.e., for a radially polarized vector
beam. The state of radial polarization can be conveniently
described using the Jones vector [cos ϕ sin ϕ]T, where ϕ is the
azimuthal angle. Recovery of such space-varying pure linear
polarization is less challenging as compared to the general
space-varying elliptical polarization, as one would only need
to map the ϕ dependence of the orientation of the polarization
vector.

In order to implement the geometric phase principle of our
proposed method, we propagate the radially polarized beam
through a quarter waveplate oriented at 45◦ with respect to the
horizontal axis followed by a linear polarizer (oriented verti-
cally) in one of the arms of a Mach-Zehnder interferometer by
which it acquires the space-varying PB geometric phase [see
Eq. (C1)]. It then interferes with a reference vertical linear
polarization state ([0 1]T). The evolution of the polarization
state in the sample arm and the acquired geometric phase can
be modeled as

|A〉 =
(

cos ϕ

sin ϕ

)
, |B〉 = 1√

2

(
0

sin ϕ − i cos ϕ

)
,

φPB = arg(〈A|B〉) = tan−1(− cot ϕ). (C1)

FIG. 6. Numerical simulation for extraction of the two-
dimensional spatial polarization distribution for a radially polarized
vortex beam. (a) Applied dynamical phase for simulating the interfer-
ence fringes (shown in the inset) corresponding to a homogeneously
polarized Gaussian beam. (b) Total phase and (c) PB geometric phase
extracted from the simulated interference fringe (shown in the inset)
corresponding to the radially polarized vortex beam. (d) Correspond-
ing spatial distribution of the radially polarization state (solid white
lines) retrieved using Eq. (C1).
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In order to replicate the experimental situation, we consider
generation of a radially polarized vortex beam in one arm
of the interferometer by propagating linearly polarized light
through a q-plate [19]. The resulting radially polarized vortex
beam is subsequently passed through a quarter waveplate
oriented at 45◦ with respect to the horizontal followed by a
vertical linear polarizer. The corresponding expressions for
the electric field can be obtained as

E1 = E0

(
0 0
0 1

)(
1 + i 1 − i
1 − i 1 + i

)(
cos ϕ

sin ϕ

)
,

E0 =
√

2|l|+1

2ω0
√

π |l|!
(

x + i sgn(l )y

ω0

)|l|
e−(x2+y2 )/ω2

0 ,

(C2)

where x and y are the transverse spatial coordinates, ω0 is the
spot size of the beam, l is the topological charge, and sgn(·)
is the sign function. The vertical polarization in the other arm

with a Gaussian profile can be written as

E2 = e−(x2+y2 )/ω2
0

(
0
1

)
. (C3)

Once again, in order to simulate the experimental interference
fringe pattern, we consider that E1 acquires a dynamical
phase αy relative to E2 due to the path difference in the
interferometer (α is the gradient of the dynamical phase along
y). An arbitrary amplitude factor A is used in the electric field
of amplitude of the reference arm of the interferometer to
ensure comparable intensities in both the arms. The resultant
electric field of interference is written as

E = E1eiαy + AE2. (C4)

In order to simulate the interference patterns, the following
parameters were used: α = 0.075 rad μm−1, ω0 = 300 μm,
and l = 1. The results of the simulation are summarized in
Fig. 6, which demonstrates excellent recovery of the radial
polarization distribution.

[1] R. A. Chipman, Handboook of Optics (CRC, Boca Raton,
2003).

[2] W. S. Bickel and W. M. Bailey, Am. J. Phys. 53, 468 (1985).
[3] N. Ghosh and A. I. Vitkin, J. Biomed. Opt. 16, 110801

(2011).
[4] J. Tinbergen, Astronomical Polarimetry (Cambridge University

Press, Cambridge, 2005).
[5] C. R. Kitchin, Astrophysical Techniques (CRC, Boca Raton,

2003).
[6] J. Michl and E. W. Thulstrup, Spectroscopy with Polarized

Light: Solute Alignment by Photoselection in Liquid Crystals,
Polymers and Membranes (VCH, Weinheim, 1986).

[7] N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V.
Kleiner, and E. Hasman, Science 340, 724 (2013).

[8] R. Azzam, Opt. Acta 29, 685 (1982).
[9] D. Nandy, in Subsurface and Atmospheric Influences on

Solar Activity, edited by R. Howe, R. W. Komm, K. S.
Balasubramaniam, and G. J. D. Petrie (Astronomical Society
of the Pacific, San Francisco, 2008), Vol. 383, p. 201.

[10] R. A. Beth, Phys. Rev. 50, 115 (1936).
[11] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[12] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-

Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[13] V. S. Liberman and B. Y. Zel’dovich, Phys. Rev. A 46, 5199

(1992).
[14] K. Y. Bliokh, A. Aiello, and M. A. Alonso, in The An-

gular Momentum of Light, edited by D. L. Andrews and
M. Babiker (Cambridge University Press, Cambridge, 2012),
pp. 174–245.

[15] X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Science 339,
1405 (2013).

[16] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats,
Nat. Photon. 9, 796 (2015).

[17] S. D. Gupta, N. Ghosh, and A. Banerjee, Wave Optics: Basic
Concepts and Contemporary Trends (CRC, Boca Raton, 2015).

[18] F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat.
Phys. 7, 195 (2011).

[19] L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96,
163905 (2006).

[20] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 398 (1956).
[21] M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984).
[22] R. Bhandari and J. Samuel, Phys. Rev. Lett. 60, 1211 (1988).
[23] K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, Phys.

Rev. Lett. 101, 030404 (2008).
[24] X. Ling, X. Zhou, W. Shu, H. Luo, and S. Wen, Sci. Rep. 4,

5557 (2014).
[25] M. Berry, Nature (London) 326, 277 (1987).
[26] R. Simon, H. J. Kimble, and E. C. G. Sudarshan, Phys. Rev.

Lett. 61, 19 (1988).
[27] E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L.

Brongersma, and E. Hasman, Science 352, 1202 (2016).
[28] Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
[29] D. Kliger, J. Lewis, and C. Randall, Elliptical Polarizers and

Retarders in: Polarized Light in Optics and Spectroscopy (Aca-
demic, New York, 1990).

[30] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-
Marte, New J. Phys. 9, 78 (2007).

[31] V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, J. Appl.
Phys. 97, 043101 (2005).

[32] M. Pal, C. Banerjee, S. Chandel, A. Bag, S. K. Majumder, and
N. Ghosh, Sci. Rep. 6, 39582 (2016).

[33] M. V. Berry, J. Mod. Opt. 34, 1401 (1987).
[34] M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156

(1982).
[35] Q. Kemao, Opt. Lasers Eng. 45, 304 (2007).
[36] M. Servin, J. Marroquin, and F. Cuevas, Appl. Opt. 36, 4540

(1997).

013836-9

https://doi.org/10.1119/1.14202
https://doi.org/10.1119/1.14202
https://doi.org/10.1119/1.14202
https://doi.org/10.1119/1.14202
https://doi.org/10.1117/1.3652896
https://doi.org/10.1117/1.3652896
https://doi.org/10.1117/1.3652896
https://doi.org/10.1117/1.3652896
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1234892
https://doi.org/10.1080/713820903
https://doi.org/10.1080/713820903
https://doi.org/10.1080/713820903
https://doi.org/10.1080/713820903
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1126/science.1231758
https://doi.org/10.1126/science.1231758
https://doi.org/10.1126/science.1231758
https://doi.org/10.1126/science.1231758
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphys1907
https://doi.org/10.1038/nphys1907
https://doi.org/10.1038/nphys1907
https://doi.org/10.1038/nphys1907
https://doi.org/10.1103/PhysRevLett.96.163905
https://doi.org/10.1103/PhysRevLett.96.163905
https://doi.org/10.1103/PhysRevLett.96.163905
https://doi.org/10.1103/PhysRevLett.96.163905
https://doi.org/10.1007/BF03046095
https://doi.org/10.1007/BF03046095
https://doi.org/10.1007/BF03046095
https://doi.org/10.1007/BF03046095
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.60.1211
https://doi.org/10.1103/PhysRevLett.60.1211
https://doi.org/10.1103/PhysRevLett.60.1211
https://doi.org/10.1103/PhysRevLett.60.1211
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1038/srep05557
https://doi.org/10.1038/srep05557
https://doi.org/10.1038/srep05557
https://doi.org/10.1038/srep05557
https://doi.org/10.1038/326277a0
https://doi.org/10.1038/326277a0
https://doi.org/10.1038/326277a0
https://doi.org/10.1038/326277a0
https://doi.org/10.1103/PhysRevLett.61.19
https://doi.org/10.1103/PhysRevLett.61.19
https://doi.org/10.1103/PhysRevLett.61.19
https://doi.org/10.1103/PhysRevLett.61.19
https://doi.org/10.1126/science.aaf3417
https://doi.org/10.1126/science.aaf3417
https://doi.org/10.1126/science.aaf3417
https://doi.org/10.1126/science.aaf3417
https://doi.org/10.1364/OE.10.000324
https://doi.org/10.1364/OE.10.000324
https://doi.org/10.1364/OE.10.000324
https://doi.org/10.1364/OE.10.000324
https://doi.org/10.1088/1367-2630/9/3/078
https://doi.org/10.1088/1367-2630/9/3/078
https://doi.org/10.1088/1367-2630/9/3/078
https://doi.org/10.1088/1367-2630/9/3/078
https://doi.org/10.1063/1.1846142
https://doi.org/10.1063/1.1846142
https://doi.org/10.1063/1.1846142
https://doi.org/10.1063/1.1846142
https://doi.org/10.1038/srep39582
https://doi.org/10.1038/srep39582
https://doi.org/10.1038/srep39582
https://doi.org/10.1038/srep39582
https://doi.org/10.1080/09500348714551321
https://doi.org/10.1080/09500348714551321
https://doi.org/10.1080/09500348714551321
https://doi.org/10.1080/09500348714551321
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1016/j.optlaseng.2005.10.012
https://doi.org/10.1016/j.optlaseng.2005.10.012
https://doi.org/10.1016/j.optlaseng.2005.10.012
https://doi.org/10.1016/j.optlaseng.2005.10.012
https://doi.org/10.1364/AO.36.004540
https://doi.org/10.1364/AO.36.004540
https://doi.org/10.1364/AO.36.004540
https://doi.org/10.1364/AO.36.004540

