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Theory of two atoms in a chiral waveguide
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A theory is presented that describes the atom and field dynamics for two atoms in a chiral waveguide. A
source-field approach is used that enables one to identify the various physical processes contributing to these
dynamics. Each atom is prepared in an arbitrary state at t = 0 and the field intensity and correlation functions
are calculated, fully accounting for retardation. When the atoms are prepared in identical superposition states,
the effects of constructive and destructive interference play a significant role on both the field intensity and
second-order correlation function. It is also shown that the results can be taken over to provide a solution for the
related problem of a single-photon pulse incident on an atom prepared in an arbitrary initial state.
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I. INTRODUCTION

The problem of two stationary atoms coupled by the
vacuum radiation field represents a fundamental problem in
quantum optics. If, at t = 0, the atoms are prepared in some
arbitrary initial state and the field is in its vacuum state, a com-
plete solution of the problem requires that the atom-field state
vector be determined for all times t > 0. Since this problem
is of such fundamental importance, it has been the subject of
numerous studies dating back to the beginning of the quantum
theory [1]. In many of these studies, the atoms are modeled as
having a J = 0 ground state and a J = 1 excited state. The
decay rate of the excited state for an isolated atom is denoted
by γ2. If γ2R/c � 1, where R is the separation of the atoms,
retardation effects can be neglected insofar as they affect the
atomic state dynamics. In this limit the problem admits to
an analytic solution. For example, Lehmberg [2] has given
a detailed description of the average field intensity radiated
by the atoms for a number of different initial conditions. If
retardation effects cannot be neglected, the solution can be
expressed only as an infinite sum [3].

For the most part, calculations of the atomic state dynam-
ics have been carried out assuming the atoms are at fixed
positions in free space. More recently, however, motivated
by developments in quantum information, there have been a
number of studies of atoms confined to chiral waveguides,
waveguides that allow for emission into one direction of the
guide only [4–6]. Many of these studies have focused on
the interaction of an incident pulse with ground-state atoms
[5], but several authors have analyzed a problem in which
a single-photon or n-photon pulse is incident on an atom
prepared in its excited state [6]. By obtaining an analytic
solution for the state vector or the state amplitudes, these
authors [6] were able to show that, with a proper choice
of the initial state for the field, the output field can mirror
the input field to a good approximation, with one additional
photon in the field. In such cases, the input field acts like
a π pulse, driving the atom to its ground state. To achieve
this result for a single-photon pulse, it is necessary that its
temporal width be of the same order as the inverse lifetime of

the atom. With increasing n, the pulse width needed for it to
act as a π pulse is diminished. As a consequence the input
pulse duration becomes much less that the atomic lifetime
and radiative decay plays a negligible role. In this limit, the
output pulse for an n-photon input pulse approaches that of
an (n + 1)-photon pulse with approximately, but not exactly,
the same spatiotemporal profile. Although accessible in their
calculations, the authors do not focus on the output field
intensity in the guide.

In this paper, I consider emission from two atoms located
on the axis of a chiral waveguide. The radiation is produced
solely by the atoms—there is no input field as in the previ-
ous studies mentioned above. One atom is located at X = 0
and the other at X = X2 > 0. At time t = 0, the atoms are
prepared in an arbitrary initial state, which can be entangled.
A source-field approach [7] is used to obtain closed form
analytic expressions for the field intensity, the integrated field
intensity, the second-order correlation function, and the time-
integrated second-order correlation function. The source-field
approach is especially well suited to this calculation since
it allows one to isolate and identify the various physical
processes that contribute to the field radiated by this two-atom
system. It will be seen that the second-order correlation func-
tion g(2)(X, t ; X, t + τ ) at some position X > X2 in the guide
is a discontinuous function of t for t = X/c. In the Appendix,
I show how the results can be used to obtain expressions for
the field intensity and second-order correlation function in the
complementary problem involving a single-photon pulse that
is incident on an atom prepared in an arbitrary initial state.

II. HAMILTONIAN AND EQUATIONS OF MOTION

The atoms are modeled as two-level quantum systems
having transition frequency ω0, with the lower level denoted
by 1 and the upper by 2. It is assumed that the atoms emit only
z polarized radiation and I consider only z polarized electric
fields in the guide. In the chiral guide under consideration,
atoms can radiate only in the positive X direction. That is,
for this two-atom system, the expectation value of the field
intensity vanishes for all X < 0. An unusual feature of such
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a guide is that the “dipole-dipole” interaction between the
atoms is independent of their separation [8], a consequence
of the strong coupling between the atoms and the modes of
the chiral waveguide. The positive frequency operator of the
electric field operator for this one-dimensional problem can
be written as

E+(X, t ) = i
∑

k

(h̄ωk/2ε0AL)1/2ak (t )eikX e−iωkt , (1)

where L is a quantization length, A is the cross-sectional area
of the guide, and ak (t ) is a destruction operator (written in an
interaction representation) for the mode having propagation
constant k = ωk/c. All relevant field modes have frequencies
that are sufficiently close to the atomic frequency to justify the
replacement of (h̄ωk/2ε0AL)1/2 that appears in the expression
for the field operator by (h̄ω0/2ε0AL)1/2.

For an atom-field interaction of the form −μE , where
μ is an atomic dipole moment matrix element (assumed
real), the Hamiltonian for the atom-field system is written
in an interaction representation and in the rotating-wave
approximation as

H (I )(t ) ≈ h̄g
2∑

j=1

∑
k

σ
( j)
+ (t )ak (t )eikXj e−i(ωk−ω0 )t

− a†
k (t )e−ikXj σ

( j)
− (t )ei(ωk−ω0 )t , (2)

where σ
( j)
+ (t ) [σ ( j)

− (t )] is a raising (lowering) operator for
atom j and

g = −i

(
ω0

2h̄ε0AL

)1/2

μ (3)

is a coupling constant. The interaction representation is de-
fined by

aH
k (t ) = ak (t )e−iωkt ; (4a)

σ
H ( j)
± (t ) = σ

( j)
± (t )e±iω0t , (4b)

where the H superscript indicates an operator in the Heisen-
berg representation.

In the Wigner-Weisskopf approximation, it is straightfor-
ward to show that the excited state decay rate for a single atom
in the guide is given by

γ2 = ω0μ
2

2h̄ε0Ac
. (5)

In terms of γ2, the coupling constant g can be written as

g = −i

√
γ2c

L
, (6)

and the factor (h̄ωk/2ε0AL)1/2 ≈ (h̄ω0/2ε0AL)1/2 that
appears in Eq. (1) as

(
h̄ω0

2ε0AL

)1/2

=
√

γ2c

L

h̄

μ
.

From Schrödinger’s equation with the Hamiltonian given in
Eq. (2), it then follows that the time evolution equations for
the atomic and field operators are

σ̇
( j)
+ (t ) =

√
γ2c

L

∑
k

a†
k (t )e−ikXj

[
2σ

( j)
22 (t ) − 1

]
ei(ωk−ω0 )t , (7a)

σ̇
( j)
22 (t ) = −

√
γ2c

L

∑
k

σ
( j)
+ (t )ak (t )eikXj e−i(ωk−ω0 )t

−
√

γ2c

L

∑
k

a†
k (t )e−ikXj σ

( j)
− (t )ei(ωk−ω0 )t , (7b)

ȧk (t ) =
√

γ2c

L

2∑
j=1

e−ikXj σ
( j)
− (t )ei(ωk−ω0 )t , (7c)

along with the adjoints of these equations. The operator
σ

( j)
22 (t ) is that associated with the Schrödinger operator |2〉〈2|

for atom j.
The formal solution for ak (t ) is given by

ak (t ) = ak +
√

γ2c

L

2∑
j=1

∫ t

0
e−ikXj σ

( j)
− (t ′)ei(ωk−ω0 )t ′

, (8)

containing a term equal to ak ≡ ak (0) and a source term that
depends on atomic operators. Substituting Eq. (8) back into
Eqs. (7a) and (7b), converting the sum over k to an integral
using the prescription,

∑
k

→ L

2πc

∫ ∞

−∞
dωk, (9)

I find that, for t > 0, the atomic operators evolve as

σ̇
(1)
+ (t ) = −γ σ

(1)
+ (t ) + i

h̄

μ
Ẽ (0)

− (0, t )
[
2σ

(1)
22 (t ) − 1

]
; (10a)

σ̇
(1)
− (t ) = −γ σ

(1)
− (t ) − i

h̄

μ

[
2σ

(1)
22 (t ) − 1

]
Ẽ (0)

+ (0, t ); (10b)

σ̇
(2)
+ (t ) = −γ σ

(2)
+ (t ) + γ2σ

(1)
+ (t − X2/c)

[
2σ

(2)
22 (t ) − 1

]
e−ik0X2

+ i
h̄

μ
Ẽ (0)

− (X2, t )
[
2σ

(2)
22 (t ) − 1

]
; (10c)

σ̇
(2)
− (t ) = −γ σ

(2)
− (t ) + γ2

[
2σ

(2)
22 (t ) − 1

]
σ

(1)
− (t − X2/c)eik0X2

− i
h̄

μ

[
2σ

(2)
22 (t ) − 1

]
Ẽ (0)

+ (X2, t ); (10d)

σ̇
(1)
22 (t ) = −γ2σ

(1)
22 (t ) + i

h̄

μ
[σ (1)

+ (t )Ẽ (0)
+ (0, t )

− Ẽ (0)
− (0, t )σ (1)

− (t )]; (10e)

σ̇
(2)
22 (t ) = −γ2σ

(2)
22 (t ) − γ2σ

(2)
+ (t )σ (1)

− (t − X2/c)eik0X2

− γ2σ
(1)
+ (t − X2/c)σ (2)

− (t )e−ik0X2 ;

+ i
h̄

μ
[σ (2)

+ (t )Ẽ (0)
+ (X2, t ) − Ẽ (0)

− (X2, t )σ (2)
− (t )],

(10f)
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where k0 = ω0/c, γ = γ2/2, and

Ẽ (0)
+ (X, t ) = [Ẽ (0)

− (X, t )]†

= i

(
h̄

μ

)√
γ2c

L

∑
k

eikX ake−i(ωk−ω0 )t . (11)

In using the prescription (9), I have implicitly made the
Wigner-Weisskopf approximation by setting ωk = |k|c and
neglecting the contributions from negative values of k. In one
dimension, this approximation is a good one for a chiral guide,
but not for a bi-directional guide. In a bi-directional guide
atoms can radiate in both directions and negative values of
k contribute to the decay rate in the same way as positive
values—the decay rate in that case is twice that given in
Eq. (5). Equation (10) reflects the underlying physics of this
chiral guide. Atom 1 evolves as if atom 2 were absent. Since
atom 2 cannot radiate in the backwards direction, it does not
influence the decay of atom 1. On the other hand the evolution
of atom 2 at time t depends on the state of atom 1 at the
retarded time t − X2/c. The additional Ẽ (0)

± (Xj, t ) terms in
Eqs. (10) are “fluctuation” terms that are needed to maintain
the equal-time commutation relations between the atom-atom
and atom-field operators as well as operator products such as
σ

( j)
+ (t )σ ( j)

− (t ) = σ
( j)
22 (t ); σ

( j)
+ (t )σ ( j)

22 (t ) = 0. However, owing
to the fact that the initial state for the field is the vacuum state
and that [9]

[Ẽ (0)
+ (0, t ), σ (1)

+ (t ′)] = 0 t � t ′; (12a)

[Ẽ (0)
+ (X2, t ), σ (2)

+ (t ′)] = 0 t � t ′, (12b)

the fluctuation terms do not contribute to any of the expecta-
tion values of operators that are evaluated in this paper.

III. FIELD INTENSITY

I first calculate the field intensity I (X, t ) at position X > X2

and time t , defined as

I (X, t ) = 2ε0cA〈E−(X, t )E+(X, t )〉. (13)

In this case, the position X is meant to correspond to the
position of a photodetector that records the field intensity.
When the solution given by Eq. (8) is substituted back into
Eq. (1) and the sum over k is converted to an integral using
Eq. (9), the field operator can be expressed:

E+(X, t ) = E+(tr ) = E (0)
+ (tr ) + E (Source)

+ (tr ), (14)

where the “free-field” component is given by

E (0)
+ (tr ) = i

(
h̄

μ

)√
γ2c

L

∑
k

ake−iωktr , (15)

and the “source-field” component by

E (Source)
+ (tr )

= i

(
h̄γ2

μ

)
e−iω0tr [σ (1)

− (tr ) + σ
(2)
− (tr + X2/c)e−ik0X2 ]. (16)

The time,

tr = t − X/c, (17)

appearing in Eq. (14) is the retarded time at the field point
relative to the origin.

The E (0)
± (tr ) terms do not contribute to the expectation

value in Eq. (13), since the field starts in the vacuum state.
It then follows that

I (X, t ) = I (tr ) = h̄ω0γ2
〈
σ

(1)
22 (tr ) + σ

(2)
22 (tr + X2/c)

+ [σ (1)
+ (tr )σ (2)

− (tr + X2/c)e−ik0X2 + adjoint]
〉
, (18)

where the expectation value is taken with respect to the initial
state vector,

|ψ (0)〉 = |i〉A|0〉F , (19)

and |i〉A is the initial atomic state vector and |0〉F is the
vacuum state of the field. The intensity at point X at time t
depends only on the retarded time tr = t − X/c relative to the
position of atom 1 and on the retarded time,

tr (2) = t − (X − X2)/c = tr + X2/c, (20)

relative to the position of atom 2. From this point onwards, I
drop the r subscript on t and t always refers to the retarded
time tr relative to the origin unless noted otherwise.

From Eqs. (10e) and (11), I find that the first term needed
in Eq. (18) is simply〈

σ
(1)
22 (t )

〉 = e−γ2tρ
(1)
22 (0)
(t ), (21)

where ρ
(1)
22 (0) is the initial excited state density matrix element

for atom 1 and 
(t ) is a Heaviside function defined by 
(t ) =
1 for t � 0 and 
(t ) = 0 for t < 0. Atom 1 decays as if atom
2 was not present. The second term needed in Eq. (18) is
proportional to 〈σ (2)

22 (t + X2/c)〉. To calculate this term, I start
from Eq. (10f), use Eqs. (10a), (10c), and (11), and obtain〈

σ̇
(2)
22 (t )

〉 = ρ̇
(2)
22 (t ) = −γ2ρ

(2)
22 (t ) − γ2G(t ) f (t )

− γ2G∗(t ) f ∗(t ), (22)

where

f (t ) = e−γ (t−X2/c)eik0X2
(t − X2/c), (23)

G(t ) = 〈σ (2)
+ (t )σ (1)

− (0)〉, (24)

and ρ
(2)
22 (t ) is the excited state density matrix element for

atom 2.
Using Eqs. (10c) and (11), I find that G(t ) satisfies the

differential equation,

Ġ(t ) = −γ G(t ) + γ2 f ∗(t )
〈
σ

(1)
+ (0)

[
2σ

(2)
22 (t ) − 1

]
σ

(1)
− (0)

〉
= −γ G(t ) + 2γ2 f ∗(t )

〈
σ

(1)
+ (0)σ (2)

22 (t )σ (1)
− (0)

〉
− γ2 f ∗(t )ρ (1)

22 (0). (25)

It then follows from Eqs. (10f) and (12) that
〈σ (1)

+ (0)σ (2)
22 (t )σ (1)

− (0)〉 obeys the differential equation,

d
〈
σ

(1)
+ (0)σ (2)

22 (t )σ (1)
− (0)

〉/
dt = −γ2

〈
σ

(1)
+ (0)σ (2)

22 (t )σ (1)
− (0)

〉
.

(26)
In deriving this equation, I used the identities,

σ
(1)
− (t )σ (1)

− (0)|ψ (0)〉 = 〈ψ (0)|σ (1)
+ (0)σ (1)

+ (t ) = 0, (27)
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which are a consequence of Eqs. (10a), (10b), (12), (11), and
(19). The solution of Eq. (26) is〈

σ
(1)
+ (0)σ (2)

22 (t )σ (1)
− (0)

〉 = e−γ2t
〈
σ

(1)
+ (0)σ (2)

22 (0)σ (1)
− (0)

〉

(t )

= e−γ2t T (0)
(t ), (28)

with

T (0) = 〈
σ

(2)
22 (0)σ (1)

22 (0)
〉
. (29)

When Eq. (28) is substituted into Eq. (25), the resulting
equation can be integrated to obtain

G(t ) = G(0)e−γ t
(t ) + 2T (0)e−γ (t−X2/c)e−ik0X2 (e−γ2X2/c − e−γ2t )

×
(t − X2/c) − γ2(t − X2/c)e−ik0X2 e−γ (t−X2/c)ρ
(1)
22 (0)
(t − X2/c). (30)

It is now straightforward to insert Eq. (30) back into Eq. (22) and to integrate that equation to arrive at〈
σ

(2)
22 (t + X2/c)

〉 = ρ
(2)
22 (t + X2/c) = ρ

(2)
22 (0)e−γ2(t+X2/c)
(t + X2/c) − γ2te−γ2t e−γ X2/c[G(0)eik0X2 + G∗(0)e−ik0X2 ]
(t )

− 4T (0)e−γ2t [e−γ2X2/c(γ2t − 1) + e−γ2(t+X2/c)]
(t ) + ρ
(1)
22 (0)e−γ2tγ 2

2 t2
(t ). (31)

I now have the first two terms needed in Eq. (18).
The remaining terms in Eq. (18) are proportional to

〈σ (2)
+ (t + X2/c)σ (1)

− (t )eik0X2〉 + c.c. = G(t + X2/c)eik0X2 e−γ t
(t ) + c.c. (32)

Using Eq. (30), I find

G(t + X2/c)eik0X2 e−γ t
(t ) = G(0)e−γ X2/ceik0X2 e−γ2t
(t ) + 2T (0)e−γ2t (e−γ2X2/c − e−γ2(t+X2/c) )
(t )

− γ2te−γ2tρ
(1)
22 (0)
(t ). (33)

Finally, by combining Eqs. (18), (21), (31), and (30), I obtain

IN (t ) = I (t )

h̄ω0γ2
= ρ

(2)
22 (0)e−γ2X2/ce−γ2t
(t + X2/c)

+ (1 − γ2t )e−γ2t e−γ X2/c[G(0)eik0X2 + G∗(0)e−ik0X2 ]
(t )

+ ρ
(1)
22 (0)e−γ2t (1 − γ2t )2
(t )

+ 4T (0)e−γ2t e−γ2X2/c[2(1 − e−γ2t ) − γ2t]
(t ), (34)

where IN (t ) is a dimensionless intensity defined such that its
time integral is equal to the initial energy of the two-atom
system.

The most general initial atomic state can be written as

|i〉A = c11|11〉 + c12|12〉 + c21|21〉 + c22|22〉, (35)

where | jk〉 is a state in which atom 1 is in state j and atom 2
in state k. For this initial state vector,

ρ
(1)
22 (0) = |c12|2 + |c22|2; (36a)

ρ
(2)
22 (0) = |c21|2 + |c22|2; (36b)

T (0) = |c22|2; (36c)

G(0) = c∗
21c12. (36d)

If the initial state is the factorized symmetric state,

|i1〉A = (α|1〉1 + β|2〉1)(α|1〉2 + β|2〉2), (37)

(|α|2 + |β|2 = 1), then

ρ
(1)
22 (0) = ρ

(2)
22 (0) = |β|2; (38a)

T (0) = |β|4; G(0) = |αβ|2. (38b)

On the other hand, for the maximally entangled state,

|i2〉A = 1√
2

(|12〉 + |21〉), (39)

ρ
(1)
22 (0) = ρ

(2)
22 (0) = G(0) = 1/2; (40a)

T (0) = 0. (40b)

Equation (34) gives the intensity dynamics for any initial
conditions, with retardation taken fully into account. It is easy
to verify that∫ ∞

0
I (t )dt = h̄ω0

[
ρ

(1)
22 (0) + ρ

(2)
22 (0)

]
, (41)

as it must from conservation of energy. I consider two limits,
γ X2/c � 1 and γ X2/c � 1. For convenience, I define

d = γ X2/c; θ = k0X2. (42)

A. d = γX2/c � 1

In the limit that γ X2/c � 1, interatomic retardation plays
no role and

IN (t ) ∼ ρ
(2)
22 (0)
(t )e−γ2t

+ (1 − γ2t )e−γ2t [G(0)eiθ + G∗(0)e−iθ ]
(t )

+ ρ
(1)
22 (0)e−γ2t (1 − γ2t )2
(t )

+ 4T (0)e−γ2t [2(1 − e−γ2t ) − γ2t]
(t ). (43)

For the symmetric factorized initial state [see Eq. (38)],

IN1(t ) ∼ |β|2e−γ2t [1 + (1 − γ2t )2]
(t )

+ 2(1 − γ2t )e−γ2t |αβ|2 cos θ 
(t )

+ 4|β|4e−γ2t [2(1 − e−γ2t ) − γ2t]
(t ), (44)
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FIG. 1. Dimensionless intensity IN1 as a function of γ2t for the
symmetric factorized initial state with d = γ2X2/c � 1, α = β =
1/

√
2, and θ = k0X2 = (2n + 1)π , 2nπ .

and for the maximally entangled initial state [see Eq. (40)],

IN2(t ) ∼ 1
2 [1 + (1 − γ2t )2]
(t )e−γ2t

+ (1 − γ2t )e−γ2t cos θ 
(t ). (45)

At t = 0,

IN1(0) = 2|β|2[1 + |α|2 cos θ ]; (46a)

IN2(0) = 1 + cos θ. (46b)

In both cases there can be constructive or destructive
interference resulting from the relative spatial phase factor.
For the factorized state, interference occurs only when the
initial dipole moment of the atoms is nonvanishing (αβ �= 0),
with the spatial phase provided by the vacuum field. For the
maximally entangled state, the atoms never acquire a dipole
moment, but the relative spatial phase factor of the vacuum
field at the two atomic sites at t = 0 leads to the interference.
When θ = k0X2 is an odd multiple of π , IN2(0) ∼ 0, whereas
the minimum value possible for IN1(0) is 2|β|4. In Fig. 1, I
plot IN1(t ) as a function of γ2t for d � 1 and α = β = 1/

√
2.

The solid red curve is for θ = 2nπ (constructive interference)
and the dashed blue curve for θ = (2n + 1)π (destructive
interference). The dotted black curve is e−γ2t , drawn for
reference. The analogous curves for the maximally entangled
state are shown in Fig. 2. Note that IN2(t ) = 0 if θ = 2nπ and
γ2t = 2.

In Fig. 3, I plot IN1(t ) as a function of γ2t for d � 1 and
β = 1 (both atoms inverted). In this limit,

IN1(t ) ∼ e−γ2t [10 − 6γ2t + (γ2t )2 − 8e−γ2t ]
(t ). (47)

The dotted black curve is 2e−γ2t and corresponds to what
the intensity pattern would be for two noninteracting atoms.
The fact that IN2(t ) > 2e−γ2t for early times and that the
output field decays to zero more rapidly than 2e−γ2t can be
viewed as a signature of stimulated emission—the field from
the first atom produces stimulated emission in the second
atom. Alternatively, the output field can be interpreted as
superradiance from the inverted two-atom system. It is inter-
esting to compare Eq. (47) with the analogous result for the

FIG. 2. Dimensionless intensity IN2 as a function of γ2t for a
maximally entangled initial state with d = γ2X2/c � 1, α = β =
1/

√
2, and θ = k0X2 = (2n + 1)π , 2nπ .

spatially integrated intensity of two, inverted atoms in free
space having d � 1. In that case [2],

Isr
N1(t ) = 2e−2γ2t (1 + 2γ2t )
(t ), (48)

which is plotted as the dashed blue curve in the figure. As you
can see, the chiral result is close, but not identical, to that of
the corresponding free space result. I will return to this point
in Sec. V.

B. d = γX2/c � 1

In the limit that γ X2/c � 1, the field from atom 2 arrives
at the detector, followed by the field from atom 1, which is
modified by its interaction with atom 2. In that limit,

IN (t ) ∼ ρ
(2)
22 (0)e−γ2(t+X2/c)
(t + X2/c)

+ ρ
(1)
22 (0)e−γ2t (1 − γ2t )2
(t ). (49)

FIG. 3. Dimensionless intensity IN1 as a function of γ2t for the
symmetric factorized initial state with d = γ2X2/c � 1 and β = 1
(both atoms inverted). The dashed blue curve corresponds to the
spatially integrated intensity from two atoms in free space, that is,
to two-atom superradiance.
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FIG. 4. Normalized intensity IN1 as a function of γ2t for the
symmetric factorized initial state with d = γ2X2/c = 6, |β|2 = 1/2,

and θ = 2nπ . For d � 1, the intensity depends only on the initial
state populations of the atoms. The black dotted curve represents the
intensity at the detector neglecting any modification of the field from
atom 1 produced by atom 2.

There is no longer any interference that depends on the spatial
separation of the atoms. The only interference is between the
scattered and unscattered components of the field radiated
from atom 1 that is scattered by atom 2. This interference

is totally destructive at γ2t = 1. In Fig. 4, the solid red
curve is a plot of IN1(t ) as a function of γ2t for d = 6
and |β|2 = 1/2 [ρ (1)

22 (0) = ρ
(2)
22 (0) = 1/2]. The dotted black

curve is [e−γ2(t+X2/c)
(t + X2/c) + e−γ2t
(t )]/2, drawn for
reference. It is seen that the detector initially records the field
radiated by atom 2 whose wavefront arrives at t = −X2/c,
followed by the field from atom 1, modified by its interaction
with atom 2, whose wavefront arrives at t = 0. For t > 0, the
intensity at the detector no longer depends on the initial state
of atom 2, since atom 2 has decayed by the time the field from
atom 1 reaches atom 2.

IV. SECOND-ORDER CORRELATION FUNCTION

I now turn my attention to the second-order correlation
function, which can be defined as

g(2)(X, t, τ )

= 〈E−(X, t )E−(X, t + τ )E+(X, t + τ )E+(X, t )〉
〈E−(X, t )E+(X, t )〉〈E−(X, t + τ )E+(X, t + τ )〉 . (50)

For a photodetector located at position X , g(2)(X, t, τ ) is
proportional to the joint probability of detecting one photon
at time t and a second photon at time t + τ . For τ > 0, owing
to Eq. (12), the contributions to E+(X, t ) from E (0)

+ (t ) make
no contributions to g(2)(X, t, τ ), and Eq. (50) reduces to

g(2)(t, τ ) =
∑2

i, j,k,�=1〈σ (i)
+ (t (i) )σ ( j)

+ (t ( j) + τ )σ (k)
− (t (k) + τ )σ (�)

− (t (�) )〉eik0(i jk�)X2

IN (t )IN (t + τ )
, (51)

where

t (1) = t ; (52)

t (2) = t + X2/c; (53)

k0(i jk�) = k0[δi,2 + δ j,2 − δk,2 − δ�,2], (54)

and δi,2 is a Kronecker delta. Recall that t is the retarded time associated with the position of atom 1.
A time-integrated second-order correlation function can be defined by

g(2) =
∫ ∞
−∞ dt1

∫ ∞
−∞ dt2〈E−(X, t1)E−(X, t2)E+(X, t2)E+(X, t1)〉[ ∫ ∞

−∞ dt〈E−(X, t )E+(X, t )〉]2 , (55)

which will turn out to be independent of X and X2, provided X > X2, as is assumed. Using the fact that g(2)(X, t,−τ ) =
g(2)(X, t, τ ), it is possible to recast this equation as

g(2) = 2γ 2
2

∫ ∞
−∞ dt

∫ ∞
0 dτ

∑2
i, j,k,�=1〈σ (i)

+ (t (i) )σ ( j)
+ (t ( j) + τ )σ (k)

− (t (k) + τ )σ (�)
− (t (�) )〉eik0(i jk�)X2

[
ρ

(1)
22 (0) + ρ

(2)
22 (0)

]2 . (56)

The calculation of g(2)(t, τ ) reduces to an evaluation of the 16 terms in the sum,

M(t, τ ) =
2∑

i, j,k,�=1

〈σ (i)
+ (t (i) )σ ( j)

+ (t ( j) + τ )σ (k)
− (t (k) + τ )σ (�)

− (t (�) )〉. (57)

Using relationships of the type,

σ
(i)
+ (t (i) )σ (i)

− (t (i) ) = σ
(i)
22 (t (i) ); (58)

σ
(i)
22 (t (i) )σ (i)

− (t (i) ) = σ
(i)
+ (t (i) )σ (i)

22 (t (i) ) = 0, (59)

one can show that there are only nine nonvanishing terms in
the sum, which can be rewritten as

M(t, τ ) =
9∑

j=1

Aj (t, τ ), (60)
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where

A1(t, τ ) = 〈
σ

(2)
+ (t + X2/c)σ (1)

22 (t + τ )σ (2)
− (t + X2/c)

〉
; (61a)

A2(t, τ ) = 〈
σ

(1)
+ (t )σ (2)

22 (t + τ + X2/c)σ (1)
− (t )

〉
; (61b)

A3(t, τ ) =
〈
σ

(1)
+ (t )σ (2)

22 (t + τ + X2/c)σ (2)
− (t + X2/c)

〉
e−ik0X2 ; (61c)

A4(t, τ ) = 〈
σ

(2)
+ (t + X2/c)σ (2)

22 (t + τ + X2/c)σ (1)
− (t )

〉
eik0X2 = A∗

3(t, τ ); (61d)

A5(t, τ ) = 〈
σ

(2)
+ (t + X2/c)σ (2)

22 (t + τ + X2/c)σ (2)
− (t + X2/c)

〉
; (61e)

A6(t, τ ) = 〈σ (1)
+ (t )σ (2)

+ (t + τ + X2/c)σ (1)
− (t + τ )σ (2)

− (t + X2/c)〉; (61f)

A7(t, τ ) = 〈σ (2)
+ (t + X2/c)σ (2)

+ (t + τ + X2/c)σ (1)
− (t + τ )σ (2)

− (t + X2/c)〉eik0X2 ; (61g)

A8(t, τ ) = 〈σ (2)
+ (t + X2/c)σ (1)

+ (t + τ )σ (2)
− (t + τ + X2/c)σ (1)

− (t )〉 = A∗
6(t, τ ); (61h)

A9(t, τ ) = 〈σ (2)
+ (t + X2/c)σ (1)

+ (t + τ )σ (2)
− (t + τ + X2/c)σ (2)

− (t + X2/c)〉e−ik0X2 = A∗
7(t, τ ). (61i)

In these expressions, all the arguments of the operators must be positive.
Using Eqs. (12), (11), and (19), I find that, for τ > 0, the Aj (t, τ ) satisfy the differential equations:

∂A1(t, τ )

∂τ
= −γ2A1(t, τ )
(t + τ ); (62a)

∂A2(t, τ )

∂τ
= −γ2A2(t, τ ); (62b)

∂A3(t, τ )

∂τ
= −γ2A3(t, τ ) − γ2A6(t, τ ); (62c)

∂A5(t, τ )

∂τ
= −γ2A5(t, τ ) − γ2

[
A7(t, τ ) + A∗

7(t, τ )
]
; (62d)

∂A6(t, τ )

∂τ
= −γ2A6(t, τ ); (62e)

∂A7(t, τ )

∂τ
= −γ2

2
[
(t + τ + X2/c) + 
(t + τ )]A7(t, τ ) − γ2A1(t, τ ) + 2γ2B(t, τ ); (62f)

∂B(t, τ )

∂τ
= −γ2[
(t + τ + X2/c) + 
(t + τ )]B(t, τ ), (62g)

A4(t, τ ) = A∗
3(t, τ ); A8(t, τ ) = A∗

6(t, τ ); A9(t, τ ) = A∗
7(t, τ ), (62h)

where

B(t, τ ) = 〈
σ

(2)
+ (t + X2/c)σ (1)

+ (t + τ )σ (2)
22 (t + τ + X2/c)σ (1)

− (t + τ )σ (2)
− (t + X2/c)

〉
. (63)

It follows immediately from the definitions given in
Eq. (61) that

A3(t, 0) = A4(t, 0) = A5(t, 0) = A7(t, 0) = A9(t, 0) = 0.

(64)
Moreover, using Eqs. (10a), (10b), and (12), one can show that

[σ (1)
− (t ), σ (2)

− (t + X2/c)]|ψ (0)〉
= 〈ψ (0)|[σ (2)

+ (t + X2/c), σ (1)
+ (t )] = 0. (65)

This relationship holds for both positive and negative t . As
a consequence, I can deduce from Eqs. (62a), (62b), (62e),

(62h), and (63) that

A1(t, 0) = A2(t, 0) = A6(t, 0) = A8(t, 0)

= 〈
σ

(1)
+ (t )σ (2)

22 (t + X2/c)σ (1)
− (t )

〉 ≡ F (t ), (66)

and

B(t, 0) = 0. (67)

With these initial conditions the solution of Eq. (62) is

A1(t, τ ) = F (t )e−γ2τ [
(t ) + 
(−t )
(t + τ )e−γ2t ]; (68a)

A2(t, τ ) = F (t )
(t )e−γ2τ ; (68b)
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A3(t, τ ) = −γ2τF (t )
(t )e−γ2τ ; (68c)

A5(t, τ ) = γ 2
2 τ 2e−γ2τ F (t )
(t )

+γ 2
2 (t + τ )2e−γ2(t+τ )F (t )
(t + τ )
(−t ); (68d)

A6(t, τ ) = F (t )
(t )e−γ2τ ; (68e)

A7(t, τ ) = −γ2τF (t )e−γ2τ
(t )

−γ2(t + τ )F (t )e−γ2(t+τ )
(t + τ )
(−t ), (68f)

provided t � −X2/c. For t < −X2/c and τ > 0, all terms van-
ish since the earliest time that radiation can reach a detector
located at position X is t = −X2/c.

I can obtain a differential equation for F (t ) using
Eqs. (10b) and (10f), but some care must be taken for negative
t , that is, for −X2/c � t < 0. Equation (10b) is valid only for
t � 0; for t < 0, it must be replaced by

σ̇
(1)
− (t ) = −i

h̄

μ

[
2σ

(1)
22 (t ) − 1

]
Ẽ (0)

+ (0, t ). (69)

It then follows from Eqs. (10b), (10f), (70), and (12) that

dF/dt = [−(2γ2 + X2/c)
(t ) − (γ2 + X2/c)
(−t )]F,

(70)
implying that

F (t ) = [e−γ2(2t+X2/c)
(t ) + e−γ2(t+X2/c)
(−t )]T (0), (71)

where T (0) = F (0) is given by Eq. (29).

By combining Eqs. (51)–(71), I finally arrive at

M(t, τ ) = T (0)e−γ2(2t+τ )e−γ2X2/c
(t + X2/c)

×{(2 − γ2τ )2
(t ) + [1 − γ2(t + τ )]2

×
(−t )
(t + τ )}. (72)

The quantity M(t, τ ) is proportional to the joint probability
that a detector placed at position X records one count at time
t and a second count at time t + τ , with τ > 0. It can be seen
that M(t, τ ) undergoes a discontinuous jump at t = 0. That is,
for γ2t = ±|ε| and |ε| � 1,

M(|ε|/γ2, τ ) ∼ T (0)e−γ2τ e−γ2X2/c(2 − γ2τ )2; (73a)

M(−|ε|/γ2, τ ) ∼ T (0)e−γ2τ e−γ2X2/c[1 − γ2τ ]2

×
(τ − |ε|/γ2). (73b)

For t > 0, the count at time t can be produced by radiation
from either atom, regardless of the value of τ . However, once
t is negative, the count at time t can be produced only by atom
2. The value of M(±|ε|/γ2, τ ) is a maximum near τ = 0, but
it is about four times larger for t > 0. Mathematically, this
result can be understood from the fact that A2(t, τ ), A3(t, τ ),
A4(t, τ ), A6(t, τ ), and A8(t, τ ) no longer contribute to M(t, τ )
for t < 0.

Other quantities of physical interest are the rate of delayed
coincidences Rc(X2, τ ) which, for τ > 0, is defined by

Rc(X2, τ ) = γ 2
2

∫ ∞

−∞
dt M(t, τ ) = γ2T (0)

4
e−γ2(τ+X2/c)(7 − 6γ2τ ) + γ2T (0)

4
e−γ2(τ−X2/c)

×
[

1 − 2γ2τ + 2γ 2
2 τ 2 + 2

γ2X2

c

(
1 − 2γ2τ + γ2X2

c

)]

(τ − X2/c) + γ2T (0)

4
e−γ2(X2/c−τ )
(X2/c − τ ), (74)

the time-integrated number of coincidence counts,

Nc = 2
∫ ∞

0
dτ Rc(τ ) = 2T (0),

the second-order correlation function,

g(2)(t, τ ) = M(t, τ )

IN (t )IN (t + τ )
, (75)

and the time-integrated second-order correlation function,

g(2) = 2P12

(P1 + P2)2
= 2T (0)[

ρ
(1)
22 (0) + ρ

(2)
22 (0)

]2 , (76)

with

P12 = Nc/2 = T (0); P1 = ρ
(1)
22 (0); P2 = ρ

(2)
22 (0). (77)

The time-integrated second-order correlation function is
twice the number of pairs of excitations (P12) divided by the
square of the number of excitations. If there are exactly two
excitations in the system, that is, when ρ

(1)
22 (0) = ρ

(2)
22 (0) =

T (0) = 1, then g(2) = 1/2, the same result that would be
obtained for a two-photon, single mode field. Interestingly, for
the symmetric factorized initial state with β �= 0 [ρ (1)

22 (0) =

ρ
(2)
22 (0) = |β|2; T (0) = |β|4], g(2) = 1/2 as well. For the max-

imally entangled initial state, g(2) = 0, since there is only a
single excitation in the system.

In Figs. 5 and 6 the dimensionless rate of delayed coinci-
dences γ2Rc(X2, τ ) is plotted as a function of γ2τ for T (0) =

FIG. 5. Dimensionless rate of delayed coincidences γ2Rc(X2, τ )
as a function of γ2τ for T (0) = 1 (both atoms inverted) and d =
γ2X2/c = 0, 0.5.
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FIG. 6. Dimensionless rate of delayed coincidences γ2Rc(X2, τ )
as a function of γ2τ for T (0) = 1 (both atoms inverted) and d =
γ2X2/c = 2, 5.

1 and d = {0, 0.5} and {2, 5}, respectively. Note that for
X2 = 0,

γ2Rc(0, τ ) = T (0)

2
e−γ2τ (2 − γ2τ )2 (78)

is equal to 2 at γ2τ = 0, vanishes identically for γ2τ = 2,
and has a secondary maximum before decaying away. When
X2 �= 0 and d > 1, there is a local maximum at γ2τ = d and
a secondary maximum at γ2τ ≈ d + (3 + √

3)/2. If X2 �=
0, the slope is always discontinuous at τ = X2/c; it varies
from −3T (0) to −4T (0) if d � 1 and from (1/4)T (0) to
(−3/4)T (0) if d � 1.

I restrict the discussion of the second-order correlation
function to the symmetric factorized state with β �= 0. For this
initial state, I denote the second-order correlation function by

g(2)
1 (t, τ ) = M1(t, τ )

IN1(t )IN1(t + τ )
, (79)

where

M1(t, τ )

= |β|4e−γ2(2t+τ )e−γ2X2/c
(t + X2/c)

×[(2 − γ2τ )2
(t ) + [1 − γ2(t + τ )]2
(−t )
(t + τ )],

(80)

and IN1(t ) is given by Eq. (34). Moreover, I consider
only the two limiting cases, γ2X2/c � 1 and γ2X2/c � 1.

Recall that T (0) = |β|4 for the symmetric factorized state. For
classical fields, g(2)

classical(t, τ ) = 1. For the two-atom system
under consideration, g(2)

1 (t, τ ) can vary between 0 and ∞
and can exhibit very different behavior as τ is scanned for
different t . That is, both photon bunching and anti-bunching
can occur, depending on the values of γ2τ and θ = k0X2. Only
a few representative plots are given. For any value of γ2X2/c,
g(2)

1 (t � 0, τ = 2γ −1
2 ) = 0 and g(2)

1 (t < 0, τ = −t + γ −1
2 ) =

0, nonclassical values resulting from intensity-intensity inter-
ference.

A. d = γ2X2/c � 1

Since t � −X2/c and γ2X2/c � 1, it is sufficient in this
subsection to take t � 0. For the symmetric factorized initial
state and d � 1,

g(2)
1 (t, τ ) ∼ (2 − γ2τ )2

W (γ2t )W [γ2(t + τ )]
, (81)

where

W (x) = 1 + (1 − x)2 + 2|α|2(1 − x) cos θ

+ 4|β|2(−2e−x + 2 − x). (82)

As a function of γ2t , the correlation function can become large
if γ2τ = 0,∞, as W (γ2t ) goes through a minimum. For the
symmetric factorized state with |β|2 � 1, this can occur at
γ2t = 0 or 2. Explicitly,

g(2)
1 (0, 0) ∼ 1

[1 + |α|2 cos θ ]2
; (83)

g(2)
1 (0,∞) ∼ 1

2[1 + |α|2 cos θ ]
, (84)

g(2)
1 (2/γ2, 0) ∼ 1

[1 − |α|2 cos θ − 4|β|2e−2]2
; (85)

g(2)
1 (2/γ2,∞) ∼ 1

2[1 − |α|2 cos θ − 4|β|2e−2]
. (86)

For θ = (2n + 1)π (integer n), g(2)
1 (0, 0) ∼ |β|−4,

g(2)
1 (0,∞) ∼ |β|−2/2, while for θ = 2nπ , g(2)

1 (2/γ2, 0) ∼
4.75|β|−4, g(2)

1 (2/γ2,∞) ∼ 1.09|β|−2. If both atoms are
inverted initially,

g(2)
1 (t, τ ; β = 1) ∼ (2 − γ2τ )2[ − 8e−γ2t + 10 − 6γ2t + γ 2

2 t2
][ − 8e−γ2(t+τ ) + 10 − 6γ2(t + τ ) + γ 2

2 (t + τ )2
] (87)

and g(2)
1 (t, 0; β = 1) reaches a maximum value of 13.2 for

γ2t = 2.74, with g(2)
1 (t = 2.74/γ2,∞; β = 1) ∼ 1.81.

In Fig. 7, g(2)
1 (t, τ ) is plotted as a function of d =

γ2X2/c � 1 for θ = (2n + 1)π, |β|2 = 0.4, and γ2t = 0
(solid red curve) and γ2t = 2 (dashed blue curve). Analogous
curves are shown in Fig. 8 for θ = 2nπ . The curves in Fig. 9

are drawn for β = 1 and γ2t = 2, 2.74. Asymptotic values are
indicated by dotted black lines.

B. d = γ2X2/c � 1

Radiation from atom 2 reaches the detector at t = −X2/c
and that from atom 1 at t = 0. Thus, to have coincidence
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FIG. 7. Second order correlation function as a function of γ2τ

for a symmetric factorized initial state and |β|2 = 0.4, d � 1, and
θ = k0X2 = (2n + 1)π . The dotted black lines are the theoretical
asymptotes.

counts from the two atoms when γ2X2/c � 1, it is necessary
that t > −X2/c and τ � t . If t > 0 and γ2X2/c � 1, then
g(2)

1 (t, τ ) � 1, in general, so the examples that are given are
restricted to −X2/c < t < 0. For −X2/c < t < 0,

g(2)
1 (t, τ ) = g(d, y) ∼ (1 − y)2

D(d, y)

(y), (88)

where

d = γ2X2/c; y = γ2(t + τ ), (89)

and

D(d, y) = (1 − y)2 + 2|α|2(1 − y)e−d/2 cos θ

+ [1 + 4|β|2(2 − y)] − 8|β|2e−(d+y). (90)

The second-order correlation function vanishes for
τ < −t and at y = γ2(t + τ ) = 1. For −γ2t < γ2τ <

FIG. 8. Second order correlation function as a function of γ2τ for
a symmetric factorized initial state and |β|2 = 0.4, d � 1, and θ =
k0X2 = 2nπ . The dotted black lines are the theoretical asymptotes.

FIG. 9. Second order correlation function as a function of γ2τ

for a symmetric factorized initial state with β = 1 and d � 1. The
dotted black lines are the theoretical asymptotes.

(−γ2t + 1), g(2)
1 (t, τ ) rises for θ = (2n + 1)π , falls for

θ = 2nπ , and is approximately constant for θ = (n + 1/2)π.

For γ2τ > (−γ2t + 1), g(2)
1 (t, τ ) rises to an asymptotic value

of unity for θ = (2n + 1)π , rises sharply and then falls to an
asymptotic value of unity for θ = 2nπ , and is approximately
equal to unity for θ = (n + 1/2)π . These features are
illustrated in Figs. 10–12, in which g(2)

1 (t, τ ) is plotted as
a function of γ2τ for d = 7, γ2t = −3,−6, α = √

0.9,
β = √

0.1 and θ = (2n + 1)π (Fig. 10), θ = 2nπ (Fig. 11),
and θ = (n + 1/2)π (Fig. 12). Analogous curves for
β = 1(not shown) are essentially the same as those shown in
Fig. 12.

If γ2X2/c � 1 and t is close to zero, some special attention
is needed. As long as t < 0, Eq. (88) remains valid and
the dependence of g(2)

1 (t, τ ) on γ2τ mirrors that shown in
Figs. 10–12. However, as soon as t � 0, the dependence
changes dramatically since the count at time t can be produced
by radiation from either atom. For d � 1 and t = 0, g(2)

1 (0, τ )

FIG. 10. Second order correlation function as a function of γ2τ

for a symmetric factorized initial state and |β|2 = 0.1, d = 7, and
θ = k0X2 = (2n + 1)π .
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FIG. 11. Second order correlation function as a function of γ2τ

for a symmetric factorized initial state and |β|2 = 0.1, d = 7, and
θ = k0X2 = 2nπ .

is nonvanishing only in a small range ε of γ2τ about unity, for
which

g(2)
1 [0, τ = (1 + ε)/γ2]

∼ 1

4|β|2(1 − 2
e

) + 1 − 2|α|2εed/2 cos θ + ε2ed
.

(91)

That is, g(2)
1 (0, τ ) is centered at

γ2τ = 1 + |α|2e−d/2 cos θ, (92)

has a width of order e−d , and a maximum value

g(2)
1 (0, τ )max = 1

4|β|2(1 − 2
e

) + 1 − |α|4 cos2 θ
. (93)

In Fig. 13, g(2)
1 (0, τ ) is plotted as a function of z =

(γ2τ − 1)ed/2/|α|2 for |α|2 = 0.9, d = 12, and θ = π (solid
red curve), θ = 2π (dashed blue curve), and θ = π/2 (lower

FIG. 12. Second order correlation function as a function of γ2τ

for a symmetric factorized initial state and |β|2 = 0.1, d = 7, and
θ = k0X2 = (n + 1/2)π .

FIG. 13. Second order correlation function g(2)
1 (0, τ ) as a func-

tion of z = (γ2τ − 1)ed/2/|α|2 for a symmetric factorized initial
state with |α|2 = 0.9 and d = 12. Dotted black lines give theoretical
values for the maxima.

solid black curve), exhibiting all the features predicted above.
The maximum values predicted in Eq. (93) are indicated by
dotted black lines. The feature that g(2)

1 (0, τ ) undergoes a
qualitative change as t changes sign when d � 1 is illustrated
in Fig. 14, drawn for d = 4, θ = π , and γ2t = −0.1, 0.1.

V. CONCLUSIONS AND DISCUSSION

The problem of two atoms in a chiral waveguide has
been studied in detail using a source-field approach. Analytic
solutions were obtained for the field intensity and the second-
order correlation function. In a chiral guide having cross-
sectional area A � λ2, the pulse area of the field radiated by
each atom is much less than unity. As a consequence, when
γ2X2/c � 1, atom 2 does not undergo Rabi oscillations as it
scatters the field from atom 1. Instead, it modifies this output
field from atom 1, with total destructive interference in the
output intensity at a time t = γ −1

2 following the arrival of the
wavefront at atom 2. When γ2X2/c � 1 and both atoms are
initially inverted, there is stimulated emission, but not into
the same spatio-temporal modes as the input field produced

FIG. 14. Second order correlation function as a function of γ2τ

for a symmetric factorized initial state and |β|2 = 0.1, d = 4, and
θ = k0X2 = π, showing the change as t changes sign.
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by atom 1. The second-order correlation function can take
on nonclassical values ranging from zero to arbitrarily high
limits, depending on the initial conditions. In the Appendix,
it is shown how the results can be taken over to provide
a solution for the related problem of a single-photon pulse
incident on an atom prepared in an arbitrary initial state.

Admittedly, the solutions presented in this paper corre-
spond to an idealized situation. Aside from the difficulty
in designing chiral guides, preparing atoms in the desired
initial state, and measuring the output field, there are always
some losses present. The losses can be accounted for in a
phenomenological manner in Eqs. (10) and (16) by assuming
that the amplitude of the source field decays exponentially as
it propagates down the guide. The effect of losses is to reduce
both the output field intensity and the coupling between the
atoms. As a consequence, when ρ

(1)
22 (0) = ρ

(2)
22 (0) = T (0) =

1, the output field is no longer a two-photon field and g(2) <

1/2. It is not difficult to generalize Eqs. (10) and (16) to allow
for additional atoms in the guide. However, the solution of the
equations becomes increasingly complicated as the number of
atoms increases. In effect, you need to first solve the operator
equations for the first two atoms, then use this solution to
obtain the operator solution for three atoms, and so forth.

If retardation is neglected and if all the atoms are prepared
in their excited states, the problem corresponds to a unique
type of superradiance, in which the atom-atom coupling
induced by the vacuum field is independent of interatomic
separation and does not result in a shift of the atomic energy
levels, as in conventional superradiance. As we have seen
[Eqs. (47) and (48)], even for two atoms separated by less
than a wavelength, the total intensity radiated in the chiral
guide differs from that of atoms in free space (two-atom
superradiance). In effect, the chiral nature of the guide leads to
coupling of Dicke states [10] that are not coupled for atoms in
free space (states having the same m but different r in Dicke’s
notation). For example, in the two-atom case, there are four
Dicke states,

|E〉 = |r = 1, m = 1〉 = |22〉; (94a)

|S〉 = |r = 1, m = 0〉 = 1√
2

(|21〉 + |12〉); (94b)

|G〉 = |r = 1, m = −1〉 = |11〉; (94c)

|A〉 = |r = 0, m = 0〉 = 1√
2

(|21〉 − |12〉). (94d)

Assuming the atoms are separated by much less than a
wavelength and the atoms are prepared in state |E〉, the
antisymmetric state |A〉 is not coupled to any other state for
atoms in free space. However, in a chiral guide, while state |A〉
is still not coupled to states |E〉 and |G〉, it is coupled to state
|S〉 and becomes populated as the two-atom system decays.
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APPENDIX: SINGLE-PHOTON PULSE + ATOM

An analytic solution to the problem of a single-photon
pulse interacting with an atom in a chiral guide was given
by Valente et al. [6] by obtaining and solving a partial
differential equation for field propagation in the guide. In
this Appendix, I show that the source-field approach can
be used as an alternative method for arriving at expressions
for the field intensity and second-order correlation function
for the atom-field problem by simply taking over the results of
the main text for the atom-atom problem. It is not difficult to
understand why the atom-atom results can be mapped into the
atom-field results, since the atom-atom problem, in the limit
that ρ

(1)
22 (0) = 1, corresponds to a single-photon pulse (albeit

a specific one) incident on an atom. In fact, this is the situation
envisioned by Valente et al. in formulating their problem.

I take the atom located at X = 0 and the wavefront of the
single-photon pulse located at −ct0 � 0 at time t = 0. For an
arbitrary single-photon input pulse, the initial state vector for
the system is written as

|ψ (0)〉 = |i〉A

∫ ∞

−∞
dk b(k)|k〉, (A1)

where |i〉A is the initial atomic state vector, b(k) is a field state
amplitude, and |k〉 is a single-photon state of the field. I have
assumed I can extend the k integral to −∞ with little error. I
define

q(t ) =
(

1

2πc

)1/2 ∫ ∞

−∞
dω b(ω/c)e−i(ω−ω0 )t . (A2)

The quantity |q(t )|2 is proportional to the pulse intensity at
X = 0 at time t ; since the wavefront of the pulse arrives at the
origin at t = t0, |q(t )|2 = 0 for t < t0.

The calculation of the main text can then be used
by setting X2 = 0, ρ

(1)
22 (0) = 1 and replacing σ

(1)
− (t ) with

q(t )σ (1)
− (0)/

√
γ2. In this manner, I find

I (t ) = h̄ω0γ2IN (t ), (A3)

where

IN (t ) =
[ |q(t )|2

γ2
+ Q(t ) + Q∗(t ) + ρ22(t )

]

(t ), (A4)

where

Q̇(t ) = −γ2

2
Q(t ) − dq/dt

q(t )
Q(t )

+ |q(t ′)|2[2e−γ2t ′
ρ22(0) − 1]; (A5a)

ρ22(t ) = ρ22(0)e−γ2t − γ2

∫ t

0
dt ′[Q(t ′)

+ Q∗(t ′)]e−γ2(t−t ′ ). (A5b)

Equation (A5a) can be solved formally as

Q(t ) =
∫ t

0
dt ′e− γ2

2 (t−t ′ )q(t )q∗(t ′)[2e−γ2t ′
ρ22(0) − 1]. (A6)

As in the main text, all times in these equations are retarded
times relative to the origin.

First consider the case where ρ22(0) = 0 and

q(t ) = q1(t ) = √
γ2e−γ (T −t )/2
(T − t ), (A7)
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with γ T � 1 [5]. For this pulse, the intensity rises exponen-
tially at the origin until time t = T , and then falls instanta-
neously to zero. The time constant of the intensity matches
the excited state lifetime of the atom. In this case,

Q(t ) = e−γ (t+T )[1 − eγ2T + (eγ2t − eγ2T )
(T − t )]; (A8a)

ρ22(t ) = e−γ2(t+T )[(1 − eγ2T )2 + (eγ2t − eγ2T )

× (−2 + eγ2t + eγ2T )
(T − t )], (A8b)

and

lim
γ2T �1

IN (t ) = e−γ2(t−T )
(t − T ). (A9)

At t = T , ρ22(T ) = 1; the system is completely inverted when
the tail end of the pulse reaches the origin [5]. For this

result to be consistent with energy conservation, IN (t ) must
vanish identically for t < T , as it does [see Eq. (A9)]. The
contribution to the radiated intensity from the first term in
Eq. (A4) and that part of ρ22(t ) associated with the first term
in Eq. (A8b), is exactly canceled by the interference terms. In
other words, as the pulse arrives at the atom, the interference
of the incident and scattered radiation is totally destructive for
times t < T . For t > T , the atom simply decays.

Next consider an atom prepared in its excited state
[ρ22(0) = 1] and an exponentially falling input pulse,

q(t ) = q2(t ) = √
�pe−�pt/2
(t ), (A10)

whose wavefront coincides with the atom at t = 0, for which

Q(t ) = 2
(t )�p

[
e−�pt − e−(γ2+�p)t/2

�p − γ2
+ 2e−(γ2+�p)t/2 1 − e−(γ2+�p)t/2

γ2 + �p

]
; (A11a)

ρ22(t ) = e−γ2t
(t ) + 4γ2e−(γ2+�p)t K (t )
(t )

(γ2 − �p)2(γ2 + �p)
, (A11b)

and

IN (t ) = e−(γ2+�p)t

γ2(γ2 − �p)2
J (t )
(t ), (A12)

where

K (t ) = 2(γ2)2(−1 + e�pt ) + γ2�p(4 + eγ2t + e�pt − 6e(γ2+�p)t/2) + (�p)2(−2 + eγ2t − e�pt + 2e(γ2+�p)t/2), (A13)

and

J (t ) = (γ2)3(−8 + 9e�pt ) + (γ2)2�p(16 + eγ2t − 6e�pt − 12e(γ2+�p)t/2)

+ γ2(�p)2(−8 + 2eγ2t + e�pt + 4e(γ2+�p)t/2) + (�p)3eγ2t . (A14)

The condition �p = 3γ2 is the optimal one for stimulated
emission [6]. In this limit,

IN (t ) = 4(3e−3γ2t − 2e−4γ2t )
(t ). (A15)

Although the emission rate is increased, the temporal shape of
the output pulse is not the same as the input pulse. If �p = γ2,

IN (t ) = e−γ2t
[
10 − 6γ2t + (γ2t )2 − 8e−γ2t

]

(t ), (A16)

and we recover Eq. (48). For arbitrary q(t ),

γ2

∫ ∞

0
IN (t )dt = [1 + ρ22(0)];

∫ ∞

0
I (t )dt = h̄ω0[1 + ρ22(0)]; (A17)

the integrated intensity always corresponds to h̄ω0 of energy
from the field and h̄ω0ρ22(0) of energy from the atom.

The second-order correlation function is given by

g(2)(t, τ ) = C(t, τ )

IN (t )IN (t + τ )
, (A18)

with

C(t, τ ) = ρ22(0)e−γ2t
(t )
9∑

j=1

Cj (t, τ ), (A19)

and

C1(t, τ ) = |q(t + τ )|2
γ2

; (A20a)

C2(t, τ ) = |q(t )|2
γ2

e−γ2τ ; (A20b)

C3(t, τ ) = −q∗(t )
∫ τ

0
dτ ′e−γ2(τ−τ ′ )q(t + τ ′)e−γ2τ

′/2

= C∗
4 (t, τ ); (A20c)

C6(t, τ ) = q∗(t )q(t + τ )

γ2
e−γ2τ/2 = C∗

8 (t, τ ), (A20d)

with

∂C5(t, τ )

∂τ
= −γ2C5(t, τ )

− γ2[C7(t, τ ) + C∗
7 (t, τ )]; (A21a)

∂C7(t, τ )

∂τ
= −γ2

2
C7(t, τ ) − ∂q(t + τ )/∂t

q(t + τ )
C7(t, τ )

− γ2C1(t, τ ), (A21b)
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from which it follows that

C7(t, τ ) = −q(t + τ )
∫ τ

0
dτ ′ exp

[
−γ2

2
(τ − τ ′)

]

× q∗(t + τ ′), (A22a)

C5(t, τ ) = −γ2

∫ τ

0
dτ ′e−γ2(τ−τ ′ )

× [C7(t, τ ′) + C∗
7 (t, τ ′)]. (A22b)

Given q(t ), it is now possible to use Eqs. (A3)–(A22) to
calculate C(t, τ ) and g(2)(t, τ ). Note that

(γ2)2
∫ ∞

−∞
dt

∫ ∞

0
dτ C(t, τ ) = ρ22(0) (A23)

for any q(t ).
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(2018); S. Mahmoodian, M. Čepulkovskis, S. Das, P. Lodahl,
K. Hammerer, and A. S. Sorensen, Strongly Correlated Photon
Transport in Waveguide Electrodynamics with Weakly Coupled
Emitters, Phys. Rev. Lett. 121, 143601 (2018); A. H. Kiilerich
and K. Molmer, Input-Output Theory with Quantum Pulses,
ibid. 123, 123604 (2019).
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V. Scarani, Efficient excitation of a two-level atom by a single
photon in a propagating mode, Phys. Rev. A 83, 063842 (2011);
S. A. Aljunid, G. Maslennikov, Y. Wang, H. L. Dao, V. Scarani,
and C. Kurtsiefer, Excitation of a Single Atom with Exponen-
tially Rising Light Pulses, Phys. Rev. Lett. 111, 103001 (2013);
H. S. Rag and J. Gea-Banacloche, Two-level-atom excitation
probability for single and N-photon wave packets, Phys. Rev. A
96, 033817 (2017).

[6] See, for example, D. Valente, Y. Li, J. P. Poizat, J. M. Gérard,
L. C. Kwek, M. F. Santos, and A. Auffèves, Optimal irre-
versible stimulated emission, New J. Phys. 14, 083029 (2012);
E. Rephaeli and S. Fan, Stimulated Emission from a Single
Excited Atom in a Waveguide, Phys. Rev. Lett. 108, 143602
(2012); K. A. Fischer, Exact calculation of stimulated emission
driven by pulsed light, OSA Continuum 1, 772 (2018).

[7] See, for example, P. R. Berman and V. S. Malinovsky, in
Principles of Laser Spectroscopy and Quantum Optics
(Princeton University Press, Princeton, 2011), Secs. 19.3 and
19.4.

[8] A. F. van Loo, A. Federov, K. Lalumière, B. C. Sanders, A.
Blais, and A. Wallraff, Photon-mediated interactions between
distant artificial atoms, Science 342, 1494 (2013); H. Zheng and
H. U. Baranger, Persistent Quantum Beats and Long-Distance
Entanglement from Waveguide-Mediated Interactions, Phys.
Rev. Lett. 110, 113601 (2013); P. Solano, P. Barberis-Blostein,
F. K. Fatemi, L. A. Orozco, and S. L. Rolston, Super-radiance
reveals infinite-range dipole interactions through a nanofiber,
Nat. Commun. 8, 1857 (2017).

[9] B. R. Mollow, Free-field-matter commutation relations in oper-
ator radiation reaction theory, J. Phys. A 8, L130 (1975).

[10] R. H. Dicke, Coherence in Spontaneous Radiation Processes,
Phys. Rev. 93, 99 (1954).

013830-14

https://doi.org/10.1007/BF01341258
https://doi.org/10.1007/BF01341258
https://doi.org/10.1007/BF01341258
https://doi.org/10.1007/BF01341258
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1103/PhysRevA.10.1096
https://doi.org/10.1103/PhysRevA.10.1096
https://doi.org/10.1103/PhysRevA.10.1096
https://doi.org/10.1103/PhysRevA.10.1096
https://doi.org/10.1103/PhysRevA.41.2668
https://doi.org/10.1103/PhysRevA.41.2668
https://doi.org/10.1103/PhysRevA.41.2668
https://doi.org/10.1103/PhysRevA.41.2668
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevA.86.013811
https://doi.org/10.1103/PhysRevA.86.013811
https://doi.org/10.1103/PhysRevA.86.013811
https://doi.org/10.1103/PhysRevA.86.013811
https://doi.org/10.1103/PhysRevA.91.042116
https://doi.org/10.1103/PhysRevA.91.042116
https://doi.org/10.1103/PhysRevA.91.042116
https://doi.org/10.1103/PhysRevA.91.042116
https://doi.org/10.1103/PhysRevB.92.155304
https://doi.org/10.1103/PhysRevB.92.155304
https://doi.org/10.1103/PhysRevB.92.155304
https://doi.org/10.1103/PhysRevB.92.155304
https://doi.org/10.1088/1367-2630/18/9/093035
https://doi.org/10.1088/1367-2630/18/9/093035
https://doi.org/10.1088/1367-2630/18/9/093035
https://doi.org/10.1088/1367-2630/18/9/093035
https://doi.org/10.1103/PhysRevA.98.043825
https://doi.org/10.1103/PhysRevA.98.043825
https://doi.org/10.1103/PhysRevA.98.043825
https://doi.org/10.1103/PhysRevA.98.043825
https://doi.org/10.1103/PhysRevLett.121.143601
https://doi.org/10.1103/PhysRevLett.121.143601
https://doi.org/10.1103/PhysRevLett.121.143601
https://doi.org/10.1103/PhysRevLett.121.143601
https://doi.org/10.1103/PhysRevLett.123.123604
https://doi.org/10.1103/PhysRevLett.123.123604
https://doi.org/10.1103/PhysRevLett.123.123604
https://doi.org/10.1103/PhysRevLett.123.123604
https://doi.org/10.1209/0295-5075/86/14007
https://doi.org/10.1209/0295-5075/86/14007
https://doi.org/10.1209/0295-5075/86/14007
https://doi.org/10.1209/0295-5075/86/14007
https://doi.org/10.1103/PhysRevA.83.063842
https://doi.org/10.1103/PhysRevA.83.063842
https://doi.org/10.1103/PhysRevA.83.063842
https://doi.org/10.1103/PhysRevA.83.063842
https://doi.org/10.1103/PhysRevLett.111.103001
https://doi.org/10.1103/PhysRevLett.111.103001
https://doi.org/10.1103/PhysRevLett.111.103001
https://doi.org/10.1103/PhysRevLett.111.103001
https://doi.org/10.1103/PhysRevA.96.033817
https://doi.org/10.1103/PhysRevA.96.033817
https://doi.org/10.1103/PhysRevA.96.033817
https://doi.org/10.1103/PhysRevA.96.033817
https://doi.org/10.1088/1367-2630/14/8/083029
https://doi.org/10.1088/1367-2630/14/8/083029
https://doi.org/10.1088/1367-2630/14/8/083029
https://doi.org/10.1088/1367-2630/14/8/083029
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1364/OSAC.1.000772
https://doi.org/10.1364/OSAC.1.000772
https://doi.org/10.1364/OSAC.1.000772
https://doi.org/10.1364/OSAC.1.000772
https://doi.org/10.1126/science.1244324
https://doi.org/10.1126/science.1244324
https://doi.org/10.1126/science.1244324
https://doi.org/10.1126/science.1244324
https://doi.org/10.1103/PhysRevLett.110.113601
https://doi.org/10.1103/PhysRevLett.110.113601
https://doi.org/10.1103/PhysRevLett.110.113601
https://doi.org/10.1103/PhysRevLett.110.113601
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1088/0305-4470/8/11/003
https://doi.org/10.1088/0305-4470/8/11/003
https://doi.org/10.1088/0305-4470/8/11/003
https://doi.org/10.1088/0305-4470/8/11/003
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99

